| in half4 circleRect; |
| in half textureRadius; |
| in half solidRadius; |
| in uniform sampler2D blurProfileSampler; |
| |
| // The data is formatted as: |
| // x, y - the center of the circle |
| // z - inner radius that should map to 0th entry in the texture. |
| // w - the inverse of the distance over which the texture is stretched. |
| uniform half4 circleData; |
| |
| @optimizationFlags { |
| kCompatibleWithCoverageAsAlpha_OptimizationFlag |
| } |
| |
| @constructorParams { |
| GrResourceProvider* resourceProvider |
| } |
| |
| @make { |
| static std::unique_ptr<GrFragmentProcessor> Make(GrResourceProvider* resourceProvider, |
| const SkRect& circle, float sigma); |
| } |
| |
| @setData(data) { |
| data.set4f(circleData, circleRect.centerX(), circleRect.centerY(), solidRadius, |
| 1.f / textureRadius); |
| } |
| |
| @cpp { |
| #include "GrResourceProvider.h" |
| |
| // Computes an unnormalized half kernel (right side). Returns the summation of all the half |
| // kernel values. |
| static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) { |
| const float invSigma = 1.f / sigma; |
| const float b = -0.5f * invSigma * invSigma; |
| float tot = 0.0f; |
| // Compute half kernel values at half pixel steps out from the center. |
| float t = 0.5f; |
| for (int i = 0; i < halfKernelSize; ++i) { |
| float value = expf(t * t * b); |
| tot += value; |
| halfKernel[i] = value; |
| t += 1.f; |
| } |
| return tot; |
| } |
| |
| // Create a Gaussian half-kernel (right side) and a summed area table given a sigma and number |
| // of discrete steps. The half kernel is normalized to sum to 0.5. |
| static void make_half_kernel_and_summed_table(float* halfKernel, float* summedHalfKernel, |
| int halfKernelSize, float sigma) { |
| // The half kernel should sum to 0.5 not 1.0. |
| const float tot = 2.f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma); |
| float sum = 0.f; |
| for (int i = 0; i < halfKernelSize; ++i) { |
| halfKernel[i] /= tot; |
| sum += halfKernel[i]; |
| summedHalfKernel[i] = sum; |
| } |
| } |
| |
| // Applies the 1D half kernel vertically at points along the x axis to a circle centered at the |
| // origin with radius circleR. |
| void apply_kernel_in_y(float* results, int numSteps, float firstX, float circleR, |
| int halfKernelSize, const float* summedHalfKernelTable) { |
| float x = firstX; |
| for (int i = 0; i < numSteps; ++i, x += 1.f) { |
| if (x < -circleR || x > circleR) { |
| results[i] = 0; |
| continue; |
| } |
| float y = sqrtf(circleR * circleR - x * x); |
| // In the column at x we exit the circle at +y and -y |
| // The summed table entry j is actually reflects an offset of j + 0.5. |
| y -= 0.5f; |
| int yInt = SkScalarFloorToInt(y); |
| SkASSERT(yInt >= -1); |
| if (y < 0) { |
| results[i] = (y + 0.5f) * summedHalfKernelTable[0]; |
| } else if (yInt >= halfKernelSize - 1) { |
| results[i] = 0.5f; |
| } else { |
| float yFrac = y - yInt; |
| results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] + |
| yFrac * summedHalfKernelTable[yInt + 1]; |
| } |
| } |
| } |
| |
| // Apply a Gaussian at point (evalX, 0) to a circle centered at the origin with radius circleR. |
| // This relies on having a half kernel computed for the Gaussian and a table of applications of |
| // the half kernel in y to columns at (evalX - halfKernel, evalX - halfKernel + 1, ..., evalX + |
| // halfKernel) passed in as yKernelEvaluations. |
| static uint8_t eval_at(float evalX, float circleR, const float* halfKernel, int halfKernelSize, |
| const float* yKernelEvaluations) { |
| float acc = 0; |
| |
| float x = evalX - halfKernelSize; |
| for (int i = 0; i < halfKernelSize; ++i, x += 1.f) { |
| if (x < -circleR || x > circleR) { |
| continue; |
| } |
| float verticalEval = yKernelEvaluations[i]; |
| acc += verticalEval * halfKernel[halfKernelSize - i - 1]; |
| } |
| for (int i = 0; i < halfKernelSize; ++i, x += 1.f) { |
| if (x < -circleR || x > circleR) { |
| continue; |
| } |
| float verticalEval = yKernelEvaluations[i + halfKernelSize]; |
| acc += verticalEval * halfKernel[i]; |
| } |
| // Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about |
| // the x axis). |
| return SkUnitScalarClampToByte(2.f * acc); |
| } |
| |
| // This function creates a profile of a blurred circle. It does this by computing a kernel for |
| // half the Gaussian and a matching summed area table. The summed area table is used to compute |
| // an array of vertical applications of the half kernel to the circle along the x axis. The |
| // table of y evaluations has 2 * k + n entries where k is the size of the half kernel and n is |
| // the size of the profile being computed. Then for each of the n profile entries we walk out k |
| // steps in each horizontal direction multiplying the corresponding y evaluation by the half |
| // kernel entry and sum these values to compute the profile entry. |
| static uint8_t* create_circle_profile(float sigma, float circleR, int profileTextureWidth) { |
| const int numSteps = profileTextureWidth; |
| uint8_t* weights = new uint8_t[numSteps]; |
| |
| // The full kernel is 6 sigmas wide. |
| int halfKernelSize = SkScalarCeilToInt(6.0f*sigma); |
| // round up to next multiple of 2 and then divide by 2 |
| halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1; |
| |
| // Number of x steps at which to apply kernel in y to cover all the profile samples in x. |
| int numYSteps = numSteps + 2 * halfKernelSize; |
| |
| SkAutoTArray<float> bulkAlloc(halfKernelSize + halfKernelSize + numYSteps); |
| float* halfKernel = bulkAlloc.get(); |
| float* summedKernel = bulkAlloc.get() + halfKernelSize; |
| float* yEvals = bulkAlloc.get() + 2 * halfKernelSize; |
| make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma); |
| |
| float firstX = -halfKernelSize + 0.5f; |
| apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel); |
| |
| for (int i = 0; i < numSteps - 1; ++i) { |
| float evalX = i + 0.5f; |
| weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i); |
| } |
| // Ensure the tail of the Gaussian goes to zero. |
| weights[numSteps - 1] = 0; |
| return weights; |
| } |
| |
| static uint8_t* create_half_plane_profile(int profileWidth) { |
| SkASSERT(!(profileWidth & 0x1)); |
| // The full kernel is 6 sigmas wide. |
| float sigma = profileWidth / 6.f; |
| int halfKernelSize = profileWidth / 2; |
| |
| SkAutoTArray<float> halfKernel(halfKernelSize); |
| uint8_t* profile = new uint8_t[profileWidth]; |
| |
| // The half kernel should sum to 0.5. |
| const float tot = 2.f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize, |
| sigma); |
| float sum = 0.f; |
| // Populate the profile from the right edge to the middle. |
| for (int i = 0; i < halfKernelSize; ++i) { |
| halfKernel[halfKernelSize - i - 1] /= tot; |
| sum += halfKernel[halfKernelSize - i - 1]; |
| profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum); |
| } |
| // Populate the profile from the middle to the left edge (by flipping the half kernel and |
| // continuing the summation). |
| for (int i = 0; i < halfKernelSize; ++i) { |
| sum += halfKernel[i]; |
| profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum); |
| } |
| // Ensure tail goes to 0. |
| profile[profileWidth - 1] = 0; |
| return profile; |
| } |
| |
| static sk_sp<GrTextureProxy> create_profile_texture(GrResourceProvider* resourceProvider, |
| const SkRect& circle, |
| float sigma, |
| float* solidRadius, float* textureRadius) { |
| float circleR = circle.width() / 2.0f; |
| // Profile textures are cached by the ratio of sigma to circle radius and by the size of the |
| // profile texture (binned by powers of 2). |
| SkScalar sigmaToCircleRRatio = sigma / circleR; |
| // When sigma is really small this becomes a equivalent to convolving a Gaussian with a |
| // half-plane. Similarly, in the extreme high ratio cases circle becomes a point WRT to the |
| // Guassian and the profile texture is a just a Gaussian evaluation. However, we haven't yet |
| // implemented this latter optimization. |
| sigmaToCircleRRatio = SkTMin(sigmaToCircleRRatio, 8.f); |
| SkFixed sigmaToCircleRRatioFixed; |
| static const SkScalar kHalfPlaneThreshold = 0.1f; |
| bool useHalfPlaneApprox = false; |
| if (sigmaToCircleRRatio <= kHalfPlaneThreshold) { |
| useHalfPlaneApprox = true; |
| sigmaToCircleRRatioFixed = 0; |
| *solidRadius = circleR - 3 * sigma; |
| *textureRadius = 6 * sigma; |
| } else { |
| // Convert to fixed point for the key. |
| sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio); |
| // We shave off some bits to reduce the number of unique entries. We could probably |
| // shave off more than we do. |
| sigmaToCircleRRatioFixed &= ~0xff; |
| sigmaToCircleRRatio = SkFixedToScalar(sigmaToCircleRRatioFixed); |
| sigma = circleR * sigmaToCircleRRatio; |
| *solidRadius = 0; |
| *textureRadius = circleR + 3 * sigma; |
| } |
| |
| static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain(); |
| GrUniqueKey key; |
| GrUniqueKey::Builder builder(&key, kDomain, 1); |
| builder[0] = sigmaToCircleRRatioFixed; |
| builder.finish(); |
| |
| sk_sp<GrTextureProxy> blurProfile = |
| resourceProvider->findOrCreateProxyByUniqueKey(key, kTopLeft_GrSurfaceOrigin); |
| if (!blurProfile) { |
| static constexpr int kProfileTextureWidth = 512; |
| GrSurfaceDesc texDesc; |
| texDesc.fOrigin = kTopLeft_GrSurfaceOrigin; |
| texDesc.fWidth = kProfileTextureWidth; |
| texDesc.fHeight = 1; |
| texDesc.fConfig = kAlpha_8_GrPixelConfig; |
| |
| std::unique_ptr<uint8_t[]> profile(nullptr); |
| if (useHalfPlaneApprox) { |
| profile.reset(create_half_plane_profile(kProfileTextureWidth)); |
| } else { |
| // Rescale params to the size of the texture we're creating. |
| SkScalar scale = kProfileTextureWidth / *textureRadius; |
| profile.reset(create_circle_profile(sigma * scale, circleR * scale, |
| kProfileTextureWidth)); |
| } |
| |
| blurProfile = GrSurfaceProxy::MakeDeferred(resourceProvider, |
| texDesc, SkBudgeted::kYes, profile.get(), 0); |
| if (!blurProfile) { |
| return nullptr; |
| } |
| |
| SkASSERT(blurProfile->origin() == kTopLeft_GrSurfaceOrigin); |
| resourceProvider->assignUniqueKeyToProxy(key, blurProfile.get()); |
| } |
| |
| return blurProfile; |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrCircleBlurFragmentProcessor::Make( |
| GrResourceProvider* resourceProvider, const SkRect& circle, float sigma) { |
| float solidRadius; |
| float textureRadius; |
| sk_sp<GrTextureProxy> profile(create_profile_texture(resourceProvider, circle, sigma, |
| &solidRadius, &textureRadius)); |
| if (!profile) { |
| return nullptr; |
| } |
| return std::unique_ptr<GrFragmentProcessor>(new GrCircleBlurFragmentProcessor( |
| circle, textureRadius, solidRadius, std::move(profile), resourceProvider)); |
| } |
| } |
| |
| void main() { |
| // We just want to compute "(length(vec) - circleData.z + 0.5) * circleData.w" but need to |
| // rearrange for precision. |
| half2 vec = half2((sk_FragCoord.x - circleData.x) * circleData.w, |
| (sk_FragCoord.y - circleData.y) * circleData.w); |
| half dist = length(vec) + (0.5 - circleData.z) * circleData.w; |
| sk_OutColor = sk_InColor * texture(blurProfileSampler, half2(dist, 0.5)).a; |
| } |
| |
| @test(testData) { |
| SkScalar wh = testData->fRandom->nextRangeScalar(100.f, 1000.f); |
| SkScalar sigma = testData->fRandom->nextRangeF(1.f,10.f); |
| SkRect circle = SkRect::MakeWH(wh, wh); |
| return GrCircleBlurFragmentProcessor::Make(testData->resourceProvider(), circle, sigma); |
| } |