blob: 3b88b8870238ba63111d72084907d4de541dea93 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkIntersections.h"
#include "SkPathOpsLine.h"
/* Determine the intersection point of two lines. This assumes the lines are not parallel,
and that that the lines are infinite.
From http://en.wikipedia.org/wiki/Line-line_intersection
*/
SkDPoint SkIntersections::Line(const SkDLine& a, const SkDLine& b) {
double axLen = a[1].fX - a[0].fX;
double ayLen = a[1].fY - a[0].fY;
double bxLen = b[1].fX - b[0].fX;
double byLen = b[1].fY - b[0].fY;
double denom = byLen * axLen - ayLen * bxLen;
SkASSERT(denom);
double term1 = a[1].fX * a[0].fY - a[1].fY * a[0].fX;
double term2 = b[1].fX * b[0].fY - b[1].fY * b[0].fX;
SkDPoint p;
p.fX = (term1 * bxLen - axLen * term2) / denom;
p.fY = (term1 * byLen - ayLen * term2) / denom;
return p;
}
int SkIntersections::computePoints(const SkDLine& line, int used) {
fPt[0] = line.xyAtT(fT[0][0]);
if ((fUsed = used) == 2) {
fPt[1] = line.xyAtT(fT[0][1]);
}
return fUsed;
}
int SkIntersections::intersectRay(const SkDLine& a, const SkDLine& b) {
double axLen = a[1].fX - a[0].fX;
double ayLen = a[1].fY - a[0].fY;
double bxLen = b[1].fX - b[0].fX;
double byLen = b[1].fY - b[0].fY;
/* Slopes match when denom goes to zero:
axLen / ayLen == bxLen / byLen
(ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen
byLen * axLen == ayLen * bxLen
byLen * axLen - ayLen * bxLen == 0 ( == denom )
*/
double denom = byLen * axLen - ayLen * bxLen;
double ab0y = a[0].fY - b[0].fY;
double ab0x = a[0].fX - b[0].fX;
double numerA = ab0y * bxLen - byLen * ab0x;
double numerB = ab0y * axLen - ayLen * ab0x;
numerA /= denom;
numerB /= denom;
int used;
if (!approximately_zero(denom)) {
fT[0][0] = numerA;
fT[1][0] = numerB;
used = 1;
} else {
/* See if the axis intercepts match:
ay - ax * ayLen / axLen == by - bx * ayLen / axLen
axLen * (ay - ax * ayLen / axLen) == axLen * (by - bx * ayLen / axLen)
axLen * ay - ax * ayLen == axLen * by - bx * ayLen
*/
if (!AlmostEqualUlps(axLen * a[0].fY - ayLen * a[0].fX,
axLen * b[0].fY - ayLen * b[0].fX)) {
return fUsed = 0;
}
// there's no great answer for intersection points for coincident rays, but return something
fT[0][0] = fT[1][0] = 0;
fT[1][0] = fT[1][1] = 1;
used = 2;
}
return computePoints(a, used);
}
static bool checkEndPoint(double x, double y, const SkDLine& l, double* tPtr, int useX) {
if (!between(l[0].fX, x, l[1].fX) || !between(l[0].fY, y, l[1].fY)) {
return false;
}
double xLen = l[1].fX - l[0].fX;
double yLen = l[1].fY - l[0].fY;
if (useX < 0) {
useX = SkTAbs(xLen) > SkTAbs(yLen);
}
// OPTIMIZATION: do between test before divide
double t = useX ? (x - l[0].fX) / xLen : (y - l[0].fY) / yLen;
if (!between(0, t, 1)) {
return false;
}
double opp = useX ? (1 - t) * l[0].fY + t * l[1].fY : (1 - t) * l[0].fX + t * l[1].fX;
if (!AlmostEqualUlps(opp, useX ? y : x)) {
return false;
}
*tPtr = t;
return true;
}
// note that this only works if both lines are neither horizontal nor vertical
int SkIntersections::intersect(const SkDLine& a, const SkDLine& b) {
// see if end points intersect the opposite line
double t;
for (int iA = 0; iA < 2; ++iA) {
if (!checkEndPoint(a[iA].fX, a[iA].fY, b, &t, -1)) {
continue;
}
insert(iA, t, a[iA]);
}
for (int iB = 0; iB < 2; ++iB) {
if (!checkEndPoint(b[iB].fX, b[iB].fY, a, &t, -1)) {
continue;
}
insert(t, iB, b[iB]);
}
if (used() > 0) {
SkASSERT(fUsed <= 2);
return used(); // coincident lines are returned here
}
/* Determine the intersection point of two line segments
Return FALSE if the lines don't intersect
from: http://paulbourke.net/geometry/lineline2d/ */
double axLen = a[1].fX - a[0].fX;
double ayLen = a[1].fY - a[0].fY;
double bxLen = b[1].fX - b[0].fX;
double byLen = b[1].fY - b[0].fY;
/* Slopes match when denom goes to zero:
axLen / ayLen == bxLen / byLen
(ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen
byLen * axLen == ayLen * bxLen
byLen * axLen - ayLen * bxLen == 0 ( == denom )
*/
double denom = byLen * axLen - ayLen * bxLen;
double ab0y = a[0].fY - b[0].fY;
double ab0x = a[0].fX - b[0].fX;
double numerA = ab0y * bxLen - byLen * ab0x;
double numerB = ab0y * axLen - ayLen * ab0x;
bool mayNotOverlap = (numerA < 0 && denom > numerA) || (numerA > 0 && denom < numerA)
|| (numerB < 0 && denom > numerB) || (numerB > 0 && denom < numerB);
numerA /= denom;
numerB /= denom;
if ((!approximately_zero(denom) || (!approximately_zero_inverse(numerA)
&& !approximately_zero_inverse(numerB))) && !sk_double_isnan(numerA)
&& !sk_double_isnan(numerB)) {
if (mayNotOverlap) {
return 0;
}
fT[0][0] = numerA;
fT[1][0] = numerB;
fPt[0] = a.xyAtT(numerA);
return computePoints(a, 1);
}
return 0;
}
int SkIntersections::horizontal(const SkDLine& line, double y) {
double min = line[0].fY;
double max = line[1].fY;
if (min > max) {
SkTSwap(min, max);
}
if (min > y || max < y) {
return fUsed = 0;
}
if (AlmostEqualUlps(min, max) && max - min < fabs(line[0].fX - line[1].fX)) {
fT[0][0] = 0;
fT[0][1] = 1;
return fUsed = 2;
}
fT[0][0] = (y - line[0].fY) / (line[1].fY - line[0].fY);
return fUsed = 1;
}
static bool checkEndPointH(const SkDPoint& end, double left, double right,
double y, bool flipped, double* tPtr) {
if (!between(left, end.fX, right) || !AlmostEqualUlps(y, end.fY)) {
return false;
}
double t = (end.fX - left) / (right - left);
SkASSERT(between(0, t, 1));
*tPtr = flipped ? 1 - t : t;
return true;
}
int SkIntersections::horizontal(const SkDLine& line, double left, double right,
double y, bool flipped) {
// see if end points intersect the opposite line
double t;
if (checkEndPoint(left, y, line, &t, true)) {
insert(t, flipped, left, y);
}
if (left != right) {
if (checkEndPoint(right, y, line, &t, true)) {
insert(t, !flipped, right, y);
}
for (int index = 0; index < 2; ++index) {
if (!checkEndPointH(line[index], left, right, y, flipped, &t)) {
continue;
}
insert(index, t, line[index]);
}
}
if (used() > 0) {
SkASSERT(fUsed <= 2);
return used(); // coincident lines are returned here
}
int result = horizontal(line, y);
if (!result) {
return 0;
}
SkASSERT(result == 1);
double xIntercept = line[0].fX + fT[0][0] * (line[1].fX - line[0].fX);
if (!precisely_between(left, xIntercept, right)) {
return fUsed = 0;
}
fT[1][0] = (xIntercept - left) / (right - left);
if (flipped) {
// OPTIMIZATION: ? instead of swapping, pass original line, use [1].fX - [0].fX
for (int index = 0; index < result; ++index) {
fT[1][index] = 1 - fT[1][index];
}
}
return computePoints(line, result);
}
int SkIntersections::vertical(const SkDLine& line, double x) {
double min = line[0].fX;
double max = line[1].fX;
if (min > max) {
SkTSwap(min, max);
}
if (!precisely_between(min, x, max)) {
return fUsed = 0;
}
if (AlmostEqualUlps(min, max)) {
fT[0][0] = 0;
fT[0][1] = 1;
return fUsed = 2;
}
fT[0][0] = (x - line[0].fX) / (line[1].fX - line[0].fX);
return fUsed = 1;
}
static bool checkEndPointV(const SkDPoint& end, double top, double bottom,
double x, bool flipped, double* tPtr) {
if (!between(top, end.fY, bottom) || !AlmostEqualUlps(x, end.fX)) {
return false;
}
double t = (end.fY - top) / (bottom - top);
SkASSERT(between(0, t, 1));
*tPtr = flipped ? 1 - t : t;
return true;
}
int SkIntersections::vertical(const SkDLine& line, double top, double bottom,
double x, bool flipped) {
// see if end points intersect the opposite line
double t;
if (checkEndPoint(x, top, line, &t, false)) {
insert(t, flipped, x, top);
}
if (top != bottom) {
if (checkEndPoint(x, bottom,line, &t, false)) {
insert(t, !flipped, x, bottom);
}
for (int index = 0; index < 2; ++index) {
if (!checkEndPointV(line[index], top, bottom, x, flipped, &t)) {
continue;
}
insert( index, t, line[index]);
}
}
if (used() > 0) {
SkASSERT(fUsed <= 2);
return used(); // coincident lines are returned here
}
int result = vertical(line, x);
if (!result) {
return 0;
}
SkASSERT(result == 1);
double yIntercept = line[0].fY + fT[0][0] * (line[1].fY - line[0].fY);
if (!precisely_between(top, yIntercept, bottom)) {
return fUsed = 0;
}
fT[1][0] = (yIntercept - top) / (bottom - top);
if (flipped) {
// OPTIMIZATION: instead of swapping, pass original line, use [1].fY - [0].fY
for (int index = 0; index < result; ++index) {
fT[1][index] = 1 - fT[1][index];
}
}
return computePoints(line, result);
}
// from http://www.bryceboe.com/wordpress/wp-content/uploads/2006/10/intersect.py
// 4 subs, 2 muls, 1 cmp
static bool ccw(const SkDPoint& A, const SkDPoint& B, const SkDPoint& C) {
return (C.fY - A.fY) * (B.fX - A.fX) > (B.fY - A.fY) * (C.fX - A.fX);
}
// 16 subs, 8 muls, 6 cmps
bool SkIntersections::Test(const SkDLine& a, const SkDLine& b) {
return ccw(a[0], b[0], b[1]) != ccw(a[1], b[0], b[1])
&& ccw(a[0], a[1], b[0]) != ccw(a[0], a[1], b[1]);
}