blob: 5fce192904834ca309ebcdba4ea9f2748b42ca1c [file] [log] [blame]
/*
* Copyright 2019 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "tests/Test.h"
#include "src/gpu/geometry/GrQuadBuffer.h"
#include <vector>
#define ASSERT(cond) REPORTER_ASSERT(r, cond)
#define ASSERTF(cond, ...) REPORTER_ASSERT(r, cond, __VA_ARGS__)
#define TEST(name) DEF_TEST(GrQuadBuffer##name, r)
struct TestData {
int fItem1;
float fItem2;
};
static void assert_quad_eq(skiatest::Reporter* r, const GrQuad& expected, const GrQuad& actual) {
ASSERTF(expected.quadType() == actual.quadType(), "Expected type %d, got %d",
(int) expected.quadType(), (int) actual.quadType());
for (int i = 0; i < 4; ++i) {
ASSERTF(expected.x(i) == actual.x(i), "Expected x(%d) = %f, got %f",
i, expected.x(i), actual.x(i));
ASSERTF(expected.y(i) == actual.y(i), "Expected y(%d) = %f, got %f",
i, expected.y(i), actual.y(i));
ASSERTF(expected.w(i) == actual.w(i), "Expected w(%d) = %f, got %f",
i, expected.w(i), actual.w(i));
}
}
static void assert_metadata_eq(skiatest::Reporter* r, const TestData& expected,
const TestData& actual) {
ASSERTF(expected.fItem1 == actual.fItem1 && expected.fItem2 == actual.fItem2,
"Expected { %d, %f } for metadata, got: { %d %f }",
expected.fItem1, expected.fItem2, actual.fItem1, actual.fItem2);
}
static std::vector<GrQuad> generate_quads(float seed, int cnt, const GrQuad::Type types[]) {
// For convenience use matrix to derive each quad type, rely on different seed values to
// differentiate between quads of the same type
SkMatrix rotate;
rotate.setRotate(45.f);
SkMatrix skew;
skew.setSkew(0.5f, 0.5f);
SkMatrix perspective;
perspective.setPerspX(0.01f);
perspective.setPerspY(0.001f);
std::vector<GrQuad> quads;
SkRect rect = SkRect::MakeXYWH(seed, 2.f * seed, 2.f * seed, seed);
for (int i = 0; i < cnt; ++i) {
GrQuad quad;
switch(types[i]) {
case GrQuad::Type::kAxisAligned:
quad = GrQuad(rect);
break;
case GrQuad::Type::kRectilinear:
quad = GrQuad::MakeFromRect(rect, rotate);
break;
case GrQuad::Type::kGeneral:
quad = GrQuad::MakeFromRect(rect, skew);
break;
default:
SkASSERT(types[i] == GrQuad::Type::kPerspective);
quad = GrQuad::MakeFromRect(rect, perspective);
break;
}
SkASSERT(quad.quadType() == types[i]);
quads.push_back(quad);
}
return quads;
}
TEST(Append) {
// Generate test data, which includes all quad types out of enum-order and duplicates
static const int kQuadCount = 6;
static const GrQuad::Type kDeviceTypes[] = {
GrQuad::Type::kAxisAligned, GrQuad::Type::kRectilinear, GrQuad::Type::kGeneral,
GrQuad::Type::kPerspective, GrQuad::Type::kRectilinear, GrQuad::Type::kAxisAligned
};
// Odd indexed quads will be ignored and not stored in the buffer
static const GrQuad::Type kLocalTypes[] = {
GrQuad::Type::kGeneral, GrQuad::Type::kGeneral, GrQuad::Type::kRectilinear,
GrQuad::Type::kRectilinear, GrQuad::Type::kAxisAligned, GrQuad::Type::kAxisAligned
};
static_assert(SK_ARRAY_COUNT(kDeviceTypes) == kQuadCount, "device quad count");
static_assert(SK_ARRAY_COUNT(kLocalTypes) == kQuadCount, "local quad count");
std::vector<GrQuad> expectedDeviceQuads = generate_quads(1.f, kQuadCount, kDeviceTypes);
std::vector<GrQuad> expectedLocalQuads = generate_quads(2.f, kQuadCount, kLocalTypes);
// Fill in the buffer with the device quads, and a local quad if the index is even
GrQuadBuffer<TestData> buffer;
for (int i = 0; i < kQuadCount; ++i) {
buffer.append(expectedDeviceQuads[i], // device quad
{ 2 * i, 3.f * i }, // metadata
i % 2 == 0 ? &expectedLocalQuads[i] : nullptr); // optional local quad
}
// Confirm the state of the buffer
ASSERT(kQuadCount == buffer.count());
ASSERT(GrQuad::Type::kPerspective == buffer.deviceQuadType());
ASSERT(GrQuad::Type::kGeneral == buffer.localQuadType());
int i = 0;
auto iter = buffer.iterator();
while(iter.next()) {
// Each entry always has the device quad
assert_quad_eq(r, expectedDeviceQuads[i], *iter.deviceQuad());
assert_metadata_eq(r, {2 * i, 3.f * i}, iter.metadata());
if (i % 2 == 0) {
// Confirm local quads included on even entries
ASSERT(iter.isLocalValid());
assert_quad_eq(r, expectedLocalQuads[i], *iter.localQuad());
} else {
// Should not have locals
ASSERT(!iter.isLocalValid());
ASSERT(!iter.localQuad());
}
i++;
}
ASSERTF(i == kQuadCount, "Expected %d iterations, got: %d", kQuadCount, i);
}
TEST(Concat) {
static const int kQuadCount = 2;
static const GrQuad::Type kTypesA[] = { GrQuad::Type::kAxisAligned, GrQuad::Type::kRectilinear };
static const GrQuad::Type kTypesB[] = { GrQuad::Type::kGeneral, GrQuad::Type::kPerspective };
static_assert(SK_ARRAY_COUNT(kTypesA) == kQuadCount, "quadsA count");
static_assert(SK_ARRAY_COUNT(kTypesB) == kQuadCount, "quadsB count");
std::vector<GrQuad> quadsA = generate_quads(1.f, kQuadCount, kTypesA);
std::vector<GrQuad> quadsB = generate_quads(2.f, kQuadCount, kTypesB);
// Make two buffers, the first uses 'quadsA' for device quads and 'quadsB' for local quads
// on even indices. The second uses 'quadsB' for device quads and 'quadsA' for local quads
// on odd indices.
GrQuadBuffer<TestData> buffer1;
GrQuadBuffer<TestData> buffer2;
for (int i = 0; i < kQuadCount; ++i) {
buffer1.append(quadsA[i], {i, 2.f * i}, i % 2 == 0 ? &quadsB[i] : nullptr);
buffer2.append(quadsB[i], {2 * i, 0.5f * i}, i % 2 == 0 ? nullptr : &quadsA[i]);
}
ASSERT(kQuadCount == buffer1.count());
ASSERT(kQuadCount == buffer2.count());
// Perform the concatenation and then confirm the new state of buffer1
buffer1.concat(buffer2);
ASSERT(2 * kQuadCount == buffer1.count());
int i = 0;
auto iter = buffer1.iterator();
while(iter.next()) {
if (i < kQuadCount) {
// First half should match original buffer1
assert_quad_eq(r, quadsA[i], *iter.deviceQuad());
assert_metadata_eq(r, {i, 2.f * i}, iter.metadata());
if (i % 2 == 0) {
ASSERT(iter.isLocalValid());
assert_quad_eq(r, quadsB[i], *iter.localQuad());
} else {
ASSERT(!iter.isLocalValid());
ASSERT(!iter.localQuad());
}
} else {
// Second half should match buffer2
int j = i - kQuadCount;
assert_quad_eq(r, quadsB[j], *iter.deviceQuad());
assert_metadata_eq(r, {2 * j, 0.5f * j}, iter.metadata());
if (j % 2 == 0) {
ASSERT(!iter.isLocalValid());
ASSERT(!iter.localQuad());
} else {
ASSERT(iter.isLocalValid());
assert_quad_eq(r, quadsA[j], *iter.localQuad());
}
}
i++;
}
ASSERTF(i == 2 * kQuadCount, "Expected %d iterations, got: %d",2 * kQuadCount, i);
}
TEST(Metadata) {
static const int kQuadCount = 3;
// This test doesn't really care about the quad coordinates (except that they aren't modified
// when mutating the metadata)
GrQuad quad(SkRect::MakeLTRB(1.f, 2.f, 3.f, 4.f));
GrQuadBuffer<TestData> buffer;
for (int i = 0; i < kQuadCount; ++i) {
buffer.append(quad, {i, 2.f * i}, i % 2 == 0 ? &quad : nullptr);
}
// Iterate once using the metadata iterator, confirm the test data and rewrite
int i = 0;
auto meta = buffer.metadata();
while(meta.next()) {
// Confirm initial state
assert_metadata_eq(r, {i, 2.f * i}, *meta);
// Rewrite
*meta = {2 * i, 0.5f * i};
i++;
}
ASSERTF(i == kQuadCount, "Expected %d iterations, got: %d", kQuadCount, i);
// Now that all metadata has been touched, read with regular iterator and confirm updated state
// and that no quad coordinates have been changed.
i = 0;
auto iter = buffer.iterator();
while(iter.next()) {
// New metadata
assert_metadata_eq(r, {2 * i, 0.5f * i}, iter.metadata());
// Quad coordinates are unchanged
assert_quad_eq(r, quad, *iter.deviceQuad());
if (i % 2 == 0) {
ASSERT(iter.isLocalValid());
assert_quad_eq(r, quad, *iter.localQuad());
} else {
ASSERT(!iter.isLocalValid());
ASSERT(!iter.localQuad());
}
i++;
}
ASSERTF(i == kQuadCount, "Expected %d iterations, got: %d", kQuadCount, i);
}