blob: 4b372ef0db37f5eded4feb949beb6b560b03845c [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
// This is a GPU-backend specific test. It relies on static intializers to work
#include "include/core/SkTypes.h"
#include "include/core/SkSurface.h"
#include "include/gpu/GrTexture.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrGpu.h"
#include "src/gpu/GrResourceProvider.h"
#include "src/gpu/GrSurfaceProxy.h"
#include "src/gpu/SkGr.h"
#include "tests/Test.h"
#include "tests/TestUtils.h"
#include "tools/gpu/GrContextFactory.h"
using sk_gpu_test::GrContextFactory;
void fill_transfer_data(int left, int top, int width, int height, int bufferWidth,
GrColorType dstType, char* dst) {
size_t dstBpp = GrColorTypeBytesPerPixel(dstType);
auto dstLocation = [dst, dstBpp, bufferWidth](int x, int y) {
return dst + y * dstBpp * bufferWidth + x * dstBpp;
};
// build red-green gradient
for (int j = top; j < top + height; ++j) {
for (int i = left; i < left + width; ++i) {
auto r = (unsigned int)(256.f*((i - left) / (float)width));
auto g = (unsigned int)(256.f*((j - top) / (float)height));
r -= (r >> 8);
g -= (g >> 8);
// set b and a channels to be inverse of r and g just to have interesting values to
// test.
uint32_t srcPixel = GrColorPackRGBA(r, g, 0xff - r, 0xff - g);
GrPixelInfo srcInfo(GrColorType::kRGBA_8888, kUnpremul_SkAlphaType, nullptr, 1, 1);
GrPixelInfo dstInfo(dstType, kUnpremul_SkAlphaType, nullptr, 1, 1);
GrConvertPixels(dstInfo, dstLocation(i, j), dstBpp, srcInfo, &srcPixel, 4);
}
}
}
void determine_tolerances(GrColorType a, GrColorType b, float tolerances[4]) {
std::fill_n(tolerances, 4, 0);
auto descA = GrGetColorTypeDesc(a);
auto descB = GrGetColorTypeDesc(b);
// For each channel x set the tolerance to 1 / (2^min(bits_in_a, bits_in_b) - 1) unless
// one color type is missing the channel. In that case leave it at 0. If the other color
// has the channel then it better be exactly 1 for alpha or 0 for rgb.
for (int i = 0; i < 4; ++i) {
if (descA[i] != descB[i]) {
auto m = std::min(descA[i], descB[i]);
if (m) {
tolerances[i] = 1.f / (m - 1);
}
}
}
}
bool read_pixels_from_texture(GrTexture* texture, GrColorType colorType, char* dst,
float tolerances[4]) {
auto* context = texture->getContext();
auto* gpu = context->priv().getGpu();
auto* caps = context->priv().caps();
int w = texture->width();
int h = texture->height();
size_t rowBytes = GrColorTypeBytesPerPixel(colorType) * w;
GrColorType srcCT = GrPixelConfigToColorType(texture->config());
GrCaps::SupportedRead supportedRead =
caps->supportedReadPixelsColorType(srcCT, texture->backendFormat(), colorType);
std::fill_n(tolerances, 4, 0);
if (supportedRead.fColorType != colorType) {
size_t tmpRowBytes = GrColorTypeBytesPerPixel(supportedRead.fColorType) * w;
std::unique_ptr<char[]> tmpPixels(new char[tmpRowBytes * h]);
if (!gpu->readPixels(texture, 0, 0, w, h, colorType, supportedRead.fColorType,
tmpPixels.get(), tmpRowBytes)) {
return false;
}
GrPixelInfo tmpInfo(supportedRead.fColorType, kUnpremul_SkAlphaType, nullptr, w, h);
GrPixelInfo dstInfo(colorType, kUnpremul_SkAlphaType, nullptr, w, h);
determine_tolerances(tmpInfo.colorType(), dstInfo.colorType(), tolerances);
return GrConvertPixels(dstInfo, dst, rowBytes, tmpInfo, tmpPixels.get(), tmpRowBytes,
false);
}
return gpu->readPixels(texture, 0, 0, w, h, colorType, supportedRead.fColorType, dst, rowBytes);
}
void basic_transfer_to_test(skiatest::Reporter* reporter, GrContext* context, GrColorType colorType,
GrRenderable renderable) {
if (GrCaps::kNone_MapFlags == context->priv().caps()->mapBufferFlags()) {
return;
}
auto* caps = context->priv().caps();
auto backendFormat = caps->getDefaultBackendFormat(colorType, renderable);
if (!backendFormat.isValid()) {
return;
}
auto resourceProvider = context->priv().resourceProvider();
GrGpu* gpu = context->priv().getGpu();
const int kTextureWidth = 16;
const int kTextureHeight = 16;
int srcBufferWidth = caps->writePixelsRowBytesSupport() ? 20 : 16;
const int kBufferHeight = 16;
GrSurfaceDesc desc;
desc.fWidth = kTextureWidth;
desc.fHeight = kTextureHeight;
desc.fConfig = GrColorTypeToPixelConfig(colorType);
sk_sp<GrTexture> tex =
resourceProvider->createTexture(desc, backendFormat, renderable, 1, GrMipMapped::kNo,
SkBudgeted::kNo, GrProtected::kNo);
if (!tex) {
ERRORF(reporter, "Could not create texture");
return;
}
// We validate the results using GrGpu::readPixels, so exit if this is not supported.
// TODO: Do this through GrSurfaceContext once it works for all color types or support
// kCopyToTexture2D here.
if (GrCaps::SurfaceReadPixelsSupport::kSupported !=
caps->surfaceSupportsReadPixels(tex.get())) {
return;
}
// GL requires a texture to be framebuffer bindable to call glReadPixels. However, we have not
// incorporated that test into surfaceSupportsReadPixels(). TODO: Remove this once we handle
// drawing to a bindable format.
if (!caps->isFormatAsColorTypeRenderable(colorType, tex->backendFormat())) {
return;
}
// The caps tell us what color type we are allowed to upload and read back from this texture,
// either of which may differ from 'colorType'.
GrCaps::SupportedWrite allowedSrc =
caps->supportedWritePixelsColorType(colorType, tex->backendFormat(), colorType);
size_t srcRowBytes = GrColorTypeBytesPerPixel(allowedSrc.fColorType) * srcBufferWidth;
std::unique_ptr<char[]> srcData(new char[kTextureHeight * srcRowBytes]);
fill_transfer_data(0, 0, kTextureWidth, kTextureHeight, srcBufferWidth, allowedSrc.fColorType,
srcData.get());
// create and fill transfer buffer
size_t size = srcRowBytes * kBufferHeight;
sk_sp<GrGpuBuffer> buffer(resourceProvider->createBuffer(size, GrGpuBufferType::kXferCpuToGpu,
kDynamic_GrAccessPattern));
if (!buffer) {
return;
}
void* data = buffer->map();
if (!buffer) {
ERRORF(reporter, "Could not map buffer");
return;
}
memcpy(data, srcData.get(), size);
buffer->unmap();
//////////////////////////
// transfer full data
bool result;
result = gpu->transferPixelsTo(tex.get(), 0, 0, kTextureWidth, kTextureHeight, colorType,
allowedSrc.fColorType, buffer.get(), 0, srcRowBytes);
REPORTER_ASSERT(reporter, result);
size_t dstRowBytes = GrColorTypeBytesPerPixel(colorType) * kTextureWidth;
std::unique_ptr<char[]> dstBuffer(new char[dstRowBytes * kTextureHeight]());
float compareTolerances[4] = {};
result = read_pixels_from_texture(tex.get(), colorType, dstBuffer.get(), compareTolerances);
if (!result) {
ERRORF(reporter, "Could not read pixels from texture, color type: %d",
static_cast<int>(colorType));
return;
}
auto error = std::function<ComparePixmapsErrorReporter>(
[reporter, colorType](int x, int y, const float diffs[4]) {
ERRORF(reporter,
"Error at (%d %d) in transfer, color type: %d, diffs: (%f, %f, %f, %f)", x,
y, colorType, diffs[0], diffs[1], diffs[2], diffs[3]);
});
GrPixelInfo srcInfo(allowedSrc.fColorType, kUnpremul_SkAlphaType, nullptr, tex->width(),
tex->height());
GrPixelInfo dstInfo(colorType, kUnpremul_SkAlphaType, nullptr, tex->width(), tex->height());
compare_pixels(srcInfo, srcData.get(), srcRowBytes, dstInfo, dstBuffer.get(), dstRowBytes,
compareTolerances, error);
//////////////////////////
// transfer partial data
// We're relying on this cap to write partial texture data
if (!caps->writePixelsRowBytesSupport()) {
return;
}
// We keep a 1 to 1 correspondence between pixels in the buffer and the entire texture. We
// update the contents of a sub-rect of the buffer and push that rect to the texture. We start
// with a left sub-rect inset of 2 but may adjust that so we can fulfill the transfer buffer
// offset alignment requirement.
int left = 2;
const int top = 10;
const int width = 10;
const int height = 2;
size_t offset = top * srcRowBytes + left * GrColorTypeBytesPerPixel(allowedSrc.fColorType);
while (offset % allowedSrc.fOffsetAlignmentForTransferBuffer) {
offset += GrColorTypeBytesPerPixel(allowedSrc.fColorType);
++left;
// We're assuming that the required alignment is 1 or a small multiple of the bpp, which
// it is currently for all color types across all backends.
SkASSERT(left + width <= tex->width());
}
// change color of subrectangle
fill_transfer_data(left, top, width, height, srcBufferWidth, allowedSrc.fColorType,
srcData.get());
data = buffer->map();
memcpy(data, srcData.get(), size);
buffer->unmap();
result = gpu->transferPixelsTo(tex.get(), left, top, width, height, colorType,
allowedSrc.fColorType, buffer.get(), offset, srcRowBytes);
if (!result) {
gpu->transferPixelsTo(tex.get(), left, top, width, height, colorType, allowedSrc.fColorType,
buffer.get(), offset, srcRowBytes);
ERRORF(reporter, "Could not transfer pixels to texture, color type: %d",
static_cast<int>(colorType));
return;
}
result = read_pixels_from_texture(tex.get(), colorType, dstBuffer.get(), compareTolerances);
if (!result) {
ERRORF(reporter, "Could not read pixels from texture, color type: %d",
static_cast<int>(colorType));
return;
}
compare_pixels(srcInfo, srcData.get(), srcRowBytes, dstInfo, dstBuffer.get(), dstRowBytes,
compareTolerances, error);
}
void basic_transfer_from_test(skiatest::Reporter* reporter, const sk_gpu_test::ContextInfo& ctxInfo,
GrColorType colorType, GrRenderable renderable) {
auto context = ctxInfo.grContext();
auto caps = context->priv().caps();
if (GrCaps::kNone_MapFlags == caps->mapBufferFlags()) {
return;
}
auto resourceProvider = context->priv().resourceProvider();
GrGpu* gpu = context->priv().getGpu();
const int kTextureWidth = 16;
const int kTextureHeight = 16;
// We'll do a full texture read into the buffer followed by a partial read. These values
// describe the partial read subrect.
const int kPartialLeft = 2;
const int kPartialTop = 10;
const int kPartialWidth = 10;
const int kPartialHeight = 2;
// create texture
GrSurfaceDesc desc;
desc.fWidth = kTextureWidth;
desc.fHeight = kTextureHeight;
desc.fConfig = GrColorTypeToPixelConfig(colorType);
auto format = context->priv().caps()->getDefaultBackendFormat(colorType, renderable);
if (!format.isValid()) {
return;
}
size_t textureDataBpp = GrColorTypeBytesPerPixel(colorType);
size_t textureDataRowBytes = kTextureWidth * textureDataBpp;
std::unique_ptr<char[]> textureData(new char[kTextureHeight * textureDataRowBytes]);
fill_transfer_data(0, 0, kTextureWidth, kTextureHeight, kTextureWidth, colorType,
textureData.get());
GrMipLevel data;
data.fPixels = textureData.get();
data.fRowBytes = textureDataRowBytes;
sk_sp<GrTexture> tex = resourceProvider->createTexture(
desc, format, colorType, renderable, 1, SkBudgeted::kNo, GrProtected::kNo, &data, 1);
if (!tex) {
return;
}
if (GrCaps::SurfaceReadPixelsSupport::kSupported !=
caps->surfaceSupportsReadPixels(tex.get())) {
return;
}
// GL requires a texture to be framebuffer bindable to call glReadPixels. However, we have not
// incorporated that test into surfaceSupportsReadPixels(). TODO: Remove this once we handle
// drawing to a bindable format.
if (!caps->isFormatAsColorTypeRenderable(colorType, tex->backendFormat())) {
return;
}
// Create the transfer buffer.
auto allowedRead =
caps->supportedReadPixelsColorType(colorType, tex->backendFormat(), colorType);
GrPixelInfo readInfo(allowedRead.fColorType, kUnpremul_SkAlphaType, nullptr, kTextureWidth,
kTextureHeight);
size_t bpp = GrColorTypeBytesPerPixel(allowedRead.fColorType);
size_t fullBufferRowBytes = kTextureWidth * bpp;
size_t partialBufferRowBytes = kPartialWidth * bpp;
size_t offsetAlignment = allowedRead.fOffsetAlignmentForTransferBuffer;
SkASSERT(offsetAlignment);
size_t bufferSize = fullBufferRowBytes * kTextureHeight;
// Arbitrary starting offset for the partial read.
size_t partialReadOffset = GrSizeAlignUp(11, offsetAlignment);
bufferSize = SkTMax(bufferSize, partialReadOffset + partialBufferRowBytes * kPartialHeight);
sk_sp<GrGpuBuffer> buffer(resourceProvider->createBuffer(
bufferSize, GrGpuBufferType::kXferGpuToCpu, kDynamic_GrAccessPattern));
REPORTER_ASSERT(reporter, buffer);
if (!buffer) {
return;
}
int expectedTransferCnt = 0;
gpu->stats()->reset();
//////////////////////////
// transfer full data
bool result = gpu->transferPixelsFrom(tex.get(), 0, 0, kTextureWidth, kTextureHeight, colorType,
allowedRead.fColorType, buffer.get(), 0);
if (!result) {
ERRORF(reporter, "transferPixelsFrom failed.");
return;
}
++expectedTransferCnt;
GrFlushInfo flushInfo;
flushInfo.fFlags = kSyncCpu_GrFlushFlag;
if (context->priv().caps()->mapBufferFlags() & GrCaps::kAsyncRead_MapFlag) {
gpu->finishFlush(nullptr, 0, SkSurface::BackendSurfaceAccess::kNoAccess, flushInfo,
GrPrepareForExternalIORequests());
}
// Copy the transfer buffer contents to a temporary so we can manipulate it.
const auto* map = reinterpret_cast<const char*>(buffer->map());
REPORTER_ASSERT(reporter, map);
if (!map) {
ERRORF(reporter, "Failed to map transfer buffer.");
return;
}
std::unique_ptr<char[]> transferData(new char[kTextureHeight * fullBufferRowBytes]);
memcpy(transferData.get(), map, fullBufferRowBytes * kTextureHeight);
buffer->unmap();
GrPixelInfo transferInfo(allowedRead.fColorType, kUnpremul_SkAlphaType, nullptr, kTextureWidth,
kTextureHeight);
float tol[4];
determine_tolerances(allowedRead.fColorType, colorType, tol);
auto error = std::function<ComparePixmapsErrorReporter>(
[reporter, colorType](int x, int y, const float diffs[4]) {
ERRORF(reporter,
"Error at (%d %d) in transfer, color type: %d, diffs: (%f, %f, %f, %f)", x,
y, colorType, diffs[0], diffs[1], diffs[2], diffs[3]);
});
GrPixelInfo textureDataInfo(colorType, kUnpremul_SkAlphaType, nullptr, kTextureWidth,
kTextureHeight);
compare_pixels(textureDataInfo, textureData.get(), textureDataRowBytes, transferInfo,
transferData.get(), fullBufferRowBytes, tol, error);
///////////////////////
// Now test a partial read at an offset into the buffer.
result = gpu->transferPixelsFrom(tex.get(), kPartialLeft, kPartialTop, kPartialWidth,
kPartialHeight, colorType, allowedRead.fColorType,
buffer.get(), partialReadOffset);
if (!result) {
ERRORF(reporter, "transferPixelsFrom failed.");
return;
}
++expectedTransferCnt;
if (context->priv().caps()->mapBufferFlags() & GrCaps::kAsyncRead_MapFlag) {
gpu->finishFlush(nullptr, 0, SkSurface::BackendSurfaceAccess::kNoAccess, flushInfo,
GrPrepareForExternalIORequests());
}
map = reinterpret_cast<const char*>(buffer->map());
REPORTER_ASSERT(reporter, map);
if (!map) {
ERRORF(reporter, "Failed to map transfer buffer.");
return;
}
const char* bufferStart = reinterpret_cast<const char*>(map) + partialReadOffset;
memcpy(transferData.get(), bufferStart, partialBufferRowBytes * kTextureHeight);
buffer->unmap();
transferInfo = transferInfo.makeWH(kPartialWidth, kPartialHeight);
const char* textureDataStart =
textureData.get() + textureDataRowBytes * kPartialTop + textureDataBpp * kPartialLeft;
textureDataInfo = textureDataInfo.makeWH(kPartialWidth, kPartialHeight);
compare_pixels(textureDataInfo, textureDataStart, textureDataRowBytes, transferInfo,
transferData.get(), partialBufferRowBytes, tol, error);
#if GR_GPU_STATS
REPORTER_ASSERT(reporter, gpu->stats()->transfersFromSurface() == expectedTransferCnt);
#else
(void)expectedTransferCnt;
#endif
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(TransferPixelsToTest, reporter, ctxInfo) {
if (!ctxInfo.grContext()->priv().caps()->transferBufferSupport()) {
return;
}
for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) {
for (auto colorType : {
GrColorType::kAlpha_8,
GrColorType::kBGR_565,
GrColorType::kABGR_4444,
GrColorType::kRGBA_8888,
GrColorType::kRGBA_8888_SRGB,
// GrColorType::kRGB_888x, Broken in GL until we have kRGB_888
GrColorType::kRG_88,
GrColorType::kBGRA_8888,
GrColorType::kRGBA_1010102,
// GrColorType::kGray_8, Reading back to kGray is busted.
GrColorType::kAlpha_F16,
GrColorType::kRGBA_F16,
GrColorType::kRGBA_F16_Clamped,
GrColorType::kRGBA_F32,
GrColorType::kAlpha_16,
GrColorType::kRG_1616,
GrColorType::kRGBA_16161616,
GrColorType::kRG_F16,
}) {
basic_transfer_to_test(reporter, ctxInfo.grContext(), colorType, renderable);
}
}
}
// TODO(bsalomon): Metal
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(TransferPixelsFromTest, reporter, ctxInfo) {
if (!ctxInfo.grContext()->priv().caps()->transferBufferSupport()) {
return;
}
for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) {
for (auto colorType : {
GrColorType::kAlpha_8,
GrColorType::kAlpha_16,
GrColorType::kBGR_565,
GrColorType::kABGR_4444,
GrColorType::kRGBA_8888,
GrColorType::kRGBA_8888_SRGB,
// GrColorType::kRGB_888x, Broken in GL until we have kRGB_888
GrColorType::kRG_88,
GrColorType::kBGRA_8888,
GrColorType::kRGBA_1010102,
// GrColorType::kGray_8, Reading back to kGray is busted.
GrColorType::kAlpha_F16,
GrColorType::kRGBA_F16,
GrColorType::kRGBA_F16_Clamped,
GrColorType::kRGBA_F32,
GrColorType::kRG_1616,
GrColorType::kRGBA_16161616,
GrColorType::kRG_F16,
}) {
basic_transfer_from_test(reporter, ctxInfo, colorType, renderable);
}
}
}