| /* |
| * Copyright 2017 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrCCCoverageProcessor.h" |
| |
| #include "SkMakeUnique.h" |
| #include "ccpr/GrCCCubicShader.h" |
| #include "ccpr/GrCCQuadraticShader.h" |
| #include "ccpr/GrCCTriangleShader.h" |
| #include "glsl/GrGLSLVertexGeoBuilder.h" |
| #include "glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "glsl/GrGLSLVertexGeoBuilder.h" |
| |
| void GrCCCoverageProcessor::Shader::emitFragmentCode(const GrCCCoverageProcessor& proc, |
| GrGLSLFPFragmentBuilder* f, |
| const char* skOutputColor, |
| const char* skOutputCoverage) const { |
| f->codeAppendf("half coverage = 0;"); |
| this->onEmitFragmentCode(f, "coverage"); |
| f->codeAppendf("%s.a = coverage;", skOutputColor); |
| f->codeAppendf("%s = half4(1);", skOutputCoverage); |
| #ifdef SK_DEBUG |
| if (proc.debugVisualizationsEnabled()) { |
| f->codeAppendf("%s = half4(-%s.a, %s.a, 0, 1);", |
| skOutputColor, skOutputColor, skOutputColor); |
| } |
| #endif |
| } |
| |
| void GrCCCoverageProcessor::Shader::EmitEdgeDistanceEquation(GrGLSLVertexGeoBuilder* s, |
| const char* leftPt, |
| const char* rightPt, |
| const char* outputDistanceEquation) { |
| s->codeAppendf("float2 n = float2(%s.y - %s.y, %s.x - %s.x);", |
| rightPt, leftPt, leftPt, rightPt); |
| s->codeAppend ("float nwidth = (abs(n.x) + abs(n.y)) * (bloat * 2);"); |
| // When nwidth=0, wind must also be 0 (and coverage * wind = 0). So it doesn't matter what we |
| // come up with here as long as it isn't NaN or Inf. |
| s->codeAppend ("n /= (0 != nwidth) ? nwidth : 1;"); |
| s->codeAppendf("%s = float3(-n, dot(n, %s) - .5);", outputDistanceEquation, leftPt); |
| } |
| |
| void GrCCCoverageProcessor::Shader::CalcEdgeCoverageAtBloatVertex(GrGLSLVertexGeoBuilder* s, |
| const char* leftPt, |
| const char* rightPt, |
| const char* rasterVertexDir, |
| const char* outputCoverage) { |
| // Here we find an edge's coverage at one corner of a conservative raster bloat box whose center |
| // falls on the edge in question. (A bloat box is axis-aligned and the size of one pixel.) We |
| // always set up coverage so it is -1 at the outermost corner, 0 at the innermost, and -.5 at |
| // the center. Interpolated, these coverage values convert jagged conservative raster edges into |
| // smooth antialiased edges. |
| // |
| // d1 == (P + sign(n) * bloat) dot n (Distance at the bloat box vertex whose |
| // == P dot n + (abs(n.x) + abs(n.y)) * bloatSize coverage=-1, where the bloat box is |
| // centered on P.) |
| // |
| // d0 == (P - sign(n) * bloat) dot n (Distance at the bloat box vertex whose |
| // == P dot n - (abs(n.x) + abs(n.y)) * bloatSize coverage=0, where the bloat box is |
| // centered on P.) |
| // |
| // d == (P + rasterVertexDir * bloatSize) dot n (Distance at the bloat box vertex whose |
| // == P dot n + (rasterVertexDir dot n) * bloatSize coverage we wish to calculate.) |
| // |
| // coverage == -(d - d0) / (d1 - d0) (coverage=-1 at d=d1; coverage=0 at d=d0) |
| // |
| // == (rasterVertexDir dot n) / (abs(n.x) + abs(n.y)) * -.5 - .5 |
| // |
| s->codeAppendf("float2 n = float2(%s.y - %s.y, %s.x - %s.x);", |
| rightPt, leftPt, leftPt, rightPt); |
| s->codeAppend ("float nwidth = abs(n.x) + abs(n.y);"); |
| s->codeAppendf("float t = dot(%s, n);", rasterVertexDir); |
| // The below conditional guarantees we get exactly 1 on the divide when nwidth=t (in case the |
| // GPU divides by multiplying by the reciprocal?) It also guards against NaN when nwidth=0. |
| s->codeAppendf("%s = (abs(t) != nwidth ? t / nwidth : sign(t)) * -.5 - .5;", outputCoverage); |
| } |
| |
| int GrCCCoverageProcessor::Shader::DefineSoftSampleLocations(GrGLSLFPFragmentBuilder* f, |
| const char* samplesName) { |
| // Standard DX11 sample locations. |
| #if defined(SK_BUILD_FOR_ANDROID) || defined(SK_BUILD_FOR_IOS) |
| f->defineConstant("float2[8]", samplesName, "float2[8](" |
| "float2(+1, -3)/16, float2(-1, +3)/16, float2(+5, +1)/16, float2(-3, -5)/16, " |
| "float2(-5, +5)/16, float2(-7, -1)/16, float2(+3, +7)/16, float2(+7, -7)/16." |
| ")"); |
| return 8; |
| #else |
| f->defineConstant("float2[16]", samplesName, "float2[16](" |
| "float2(+1, +1)/16, float2(-1, -3)/16, float2(-3, +2)/16, float2(+4, -1)/16, " |
| "float2(-5, -2)/16, float2(+2, +5)/16, float2(+5, +3)/16, float2(+3, -5)/16, " |
| "float2(-2, +6)/16, float2( 0, -7)/16, float2(-4, -6)/16, float2(-6, +4)/16, " |
| "float2(-8, 0)/16, float2(+7, -4)/16, float2(+6, +7)/16, float2(-7, -8)/16." |
| ")"); |
| return 16; |
| #endif |
| } |
| |
| void GrCCCoverageProcessor::getGLSLProcessorKey(const GrShaderCaps&, |
| GrProcessorKeyBuilder* b) const { |
| int key = (int)fRenderPass << 2; |
| if (WindMethod::kInstanceData == fWindMethod) { |
| key |= 2; |
| } |
| if (Impl::kVertexShader == fImpl) { |
| key |= 1; |
| } |
| #ifdef SK_DEBUG |
| uint32_t bloatBits; |
| memcpy(&bloatBits, &fDebugBloat, 4); |
| b->add32(bloatBits); |
| #endif |
| b->add32(key); |
| } |
| |
| GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGLSLInstance(const GrShaderCaps&) const { |
| std::unique_ptr<Shader> shader; |
| switch (fRenderPass) { |
| case RenderPass::kTriangleHulls: |
| case RenderPass::kTriangleEdges: |
| shader = skstd::make_unique<GrCCTriangleShader>(); |
| break; |
| case RenderPass::kTriangleCorners: |
| shader = skstd::make_unique<GrCCTriangleCornerShader>(); |
| break; |
| case RenderPass::kQuadraticHulls: |
| shader = skstd::make_unique<GrCCQuadraticHullShader>(); |
| break; |
| case RenderPass::kQuadraticCorners: |
| shader = skstd::make_unique<GrCCQuadraticCornerShader>(); |
| break; |
| case RenderPass::kCubicHulls: |
| shader = skstd::make_unique<GrCCCubicHullShader>(); |
| break; |
| case RenderPass::kCubicCorners: |
| shader = skstd::make_unique<GrCCCubicCornerShader>(); |
| break; |
| } |
| return Impl::kGeometryShader == fImpl ? this->createGSImpl(std::move(shader)) |
| : this->createVSImpl(std::move(shader)); |
| } |