| /* |
| * Copyright 2020 Google LLC. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkCanvas.h" |
| #include "include/core/SkImage.h" |
| #include "include/core/SkSurface.h" |
| #include "include/effects/SkGradientShader.h" |
| #include "include/gpu/GrDirectContext.h" |
| #include "src/core/SkAutoPixmapStorage.h" |
| #include "src/core/SkConvertPixels.h" |
| #include "src/gpu/GrDirectContextPriv.h" |
| #include "src/gpu/GrImageInfo.h" |
| #include "src/gpu/GrSurfaceContext.h" |
| #include "tests/Test.h" |
| #include "tests/TestUtils.h" |
| #include "tools/ToolUtils.h" |
| #include "tools/gpu/BackendSurfaceFactory.h" |
| #include "tools/gpu/BackendTextureImageFactory.h" |
| #include "tools/gpu/GrContextFactory.h" |
| #include "tools/gpu/ProxyUtils.h" |
| |
| #include <initializer_list> |
| |
| static constexpr int min_rgb_channel_bits(SkColorType ct) { |
| switch (ct) { |
| case kUnknown_SkColorType: return 0; |
| case kAlpha_8_SkColorType: return 0; |
| case kA16_unorm_SkColorType: return 0; |
| case kA16_float_SkColorType: return 0; |
| case kRGB_565_SkColorType: return 5; |
| case kARGB_4444_SkColorType: return 4; |
| case kR8G8_unorm_SkColorType: return 8; |
| case kR16G16_unorm_SkColorType: return 16; |
| case kR16G16_float_SkColorType: return 16; |
| case kRGBA_8888_SkColorType: return 8; |
| case kRGB_888x_SkColorType: return 8; |
| case kBGRA_8888_SkColorType: return 8; |
| case kRGBA_1010102_SkColorType: return 10; |
| case kRGB_101010x_SkColorType: return 10; |
| case kBGRA_1010102_SkColorType: return 10; |
| case kBGR_101010x_SkColorType: return 10; |
| case kGray_8_SkColorType: return 8; // counting gray as "rgb" |
| case kRGBA_F16Norm_SkColorType: return 10; // just counting the mantissa |
| case kRGBA_F16_SkColorType: return 10; // just counting the mantissa |
| case kRGBA_F32_SkColorType: return 23; // just counting the mantissa |
| case kR16G16B16A16_unorm_SkColorType: return 16; |
| } |
| SkUNREACHABLE; |
| } |
| |
| static constexpr int alpha_channel_bits(SkColorType ct) { |
| switch (ct) { |
| case kUnknown_SkColorType: return 0; |
| case kAlpha_8_SkColorType: return 8; |
| case kA16_unorm_SkColorType: return 16; |
| case kA16_float_SkColorType: return 16; |
| case kRGB_565_SkColorType: return 0; |
| case kARGB_4444_SkColorType: return 4; |
| case kR8G8_unorm_SkColorType: return 0; |
| case kR16G16_unorm_SkColorType: return 0; |
| case kR16G16_float_SkColorType: return 0; |
| case kRGBA_8888_SkColorType: return 8; |
| case kRGB_888x_SkColorType: return 0; |
| case kBGRA_8888_SkColorType: return 8; |
| case kRGBA_1010102_SkColorType: return 2; |
| case kRGB_101010x_SkColorType: return 0; |
| case kBGRA_1010102_SkColorType: return 2; |
| case kBGR_101010x_SkColorType: return 0; |
| case kGray_8_SkColorType: return 0; |
| case kRGBA_F16Norm_SkColorType: return 10; // just counting the mantissa |
| case kRGBA_F16_SkColorType: return 10; // just counting the mantissa |
| case kRGBA_F32_SkColorType: return 23; // just counting the mantissa |
| case kR16G16B16A16_unorm_SkColorType: return 16; |
| } |
| SkUNREACHABLE; |
| } |
| |
| namespace { |
| |
| struct GpuReadPixelTestRules { |
| // Test unpremul sources? We could omit this and detect that creating the source of the read |
| // failed but having it lets us skip generating reference color data. |
| bool fAllowUnpremulSrc = true; |
| // Are reads that are overlapping but not contained by the src bounds expected to succeed? |
| bool fUncontainedRectSucceeds = true; |
| }; |
| |
| // Makes a src populated with the pixmap. The src should get its image info (or equivalent) from |
| // the pixmap. |
| template <typename T> using GpuSrcFactory = T(SkPixmap&); |
| |
| enum class GpuReadResult { |
| kFail, |
| kSuccess, |
| kExcusedFailure, |
| }; |
| |
| // Does a read from the T into the pixmap. |
| template <typename T> |
| using GpuReadSrcFn = GpuReadResult(const T&, const SkIVector& offset, const SkPixmap&); |
| |
| } // anonymous namespace |
| |
| template <typename T> |
| static void gpu_read_pixels_test_driver(skiatest::Reporter* reporter, |
| const GpuReadPixelTestRules& rules, |
| const std::function<GpuSrcFactory<T>>& srcFactory, |
| const std::function<GpuReadSrcFn<T>>& read, |
| SkString label) { |
| if (!label.isEmpty()) { |
| // Add space for printing. |
| label.append(" "); |
| } |
| // Separate this out just to give it some line width to breathe. Note 'srcPixels' should have |
| // the same image info as src. We will do a converting readPixels() on it to get the data |
| // to compare with the results of 'read'. |
| auto runTest = [&](const T& src, |
| const SkPixmap& srcPixels, |
| const SkImageInfo& readInfo, |
| const SkIVector& offset) { |
| const bool csConversion = |
| !SkColorSpace::Equals(readInfo.colorSpace(), srcPixels.info().colorSpace()); |
| const auto readCT = readInfo.colorType(); |
| const auto readAT = readInfo.alphaType(); |
| const auto srcCT = srcPixels.info().colorType(); |
| const auto srcAT = srcPixels.info().alphaType(); |
| const auto rect = SkIRect::MakeWH(readInfo.width(), readInfo.height()).makeOffset(offset); |
| const auto surfBounds = SkIRect::MakeWH(srcPixels.width(), srcPixels.height()); |
| const size_t readBpp = SkColorTypeBytesPerPixel(readCT); |
| |
| // Make the row bytes in the dst be loose for extra stress. |
| const size_t dstRB = readBpp * readInfo.width() + 10 * readBpp; |
| // This will make the last row tight. |
| const size_t dstSize = readInfo.computeByteSize(dstRB); |
| std::unique_ptr<char[]> dstData(new char[dstSize]); |
| SkPixmap dstPixels(readInfo, dstData.get(), dstRB); |
| // Initialize with an arbitrary value for each byte. Later we will check that only the |
| // correct part of the destination gets overwritten by 'read'. |
| static constexpr auto kInitialByte = static_cast<char>(0x1B); |
| std::fill_n(static_cast<char*>(dstPixels.writable_addr()), |
| dstPixels.computeByteSize(), |
| kInitialByte); |
| |
| const GpuReadResult result = read(src, offset, dstPixels); |
| |
| if (!SkIRect::Intersects(rect, surfBounds)) { |
| REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess); |
| } else if (readCT == kUnknown_SkColorType) { |
| REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess); |
| } else if ((readAT == kUnknown_SkAlphaType) != (srcAT == kUnknown_SkAlphaType)) { |
| REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess); |
| } else if (!rules.fUncontainedRectSucceeds && !surfBounds.contains(rect)) { |
| REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess); |
| } else if (result == GpuReadResult::kFail) { |
| // TODO: Support RGB/BGR 101010x, BGRA 1010102 on the GPU. |
| if (SkColorTypeToGrColorType(readCT) != GrColorType::kUnknown) { |
| ERRORF(reporter, |
| "Read failed. %sSrc CT: %s, Src AT: %s Read CT: %s, Read AT: %s, " |
| "Rect [%d, %d, %d, %d], CS conversion: %d\n", |
| label.c_str(), |
| ToolUtils::colortype_name(srcCT), ToolUtils::alphatype_name(srcAT), |
| ToolUtils::colortype_name(readCT), ToolUtils::alphatype_name(readAT), |
| rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion); |
| } |
| return result; |
| } |
| |
| bool guardOk = true; |
| auto guardCheck = [](char x) { return x == kInitialByte; }; |
| |
| // Considering the rect we tried to read and the surface bounds figure out which pixels in |
| // both src and dst space should actually have been read and written. |
| SkIRect srcReadRect; |
| if (result == GpuReadResult::kSuccess && srcReadRect.intersect(surfBounds, rect)) { |
| SkIRect dstWriteRect = srcReadRect.makeOffset(-rect.fLeft, -rect.fTop); |
| |
| const bool lumConversion = |
| !(SkColorTypeChannelFlags(srcCT) & kGray_SkColorChannelFlag) && |
| (SkColorTypeChannelFlags(readCT) & kGray_SkColorChannelFlag); |
| // A CS or luminance conversion allows a 3 value difference and otherwise a 2 value |
| // difference. Note that sometimes read back on GPU can be lossy even when there no |
| // conversion at all because GPU->CPU read may go to a lower bit depth format and then |
| // be promoted back to the original type. For example, GL ES cannot read to 1010102, so |
| // we go through 8888. |
| float numer = (lumConversion || csConversion) ? 3.f : 2.f; |
| // Allow some extra tolerance if unpremuling. |
| if (srcAT == kPremul_SkAlphaType && readAT == kUnpremul_SkAlphaType) { |
| numer += 1; |
| } |
| int rgbBits = std::min({min_rgb_channel_bits(readCT), min_rgb_channel_bits(srcCT), 8}); |
| float tol = numer / (1 << rgbBits); |
| float alphaTol = 0; |
| if (readAT != kOpaque_SkAlphaType && srcAT != kOpaque_SkAlphaType) { |
| // Alpha can also get squashed down to 8 bits going through an intermediate |
| // color format. |
| const int alphaBits = std::min({alpha_channel_bits(readCT), |
| alpha_channel_bits(srcCT), |
| 8}); |
| alphaTol = 2.f / (1 << alphaBits); |
| } |
| |
| const float tols[4] = {tol, tol, tol, alphaTol}; |
| auto error = std::function<ComparePixmapsErrorReporter>([&](int x, int y, |
| const float diffs[4]) { |
| SkASSERT(x >= 0 && y >= 0); |
| ERRORF(reporter, |
| "%sSrc CT: %s, Src AT: %s, Read CT: %s, Read AT: %s, Rect [%d, %d, %d, %d]" |
| ", CS conversion: %d\n" |
| "Error at %d, %d. Diff in floats: (%f, %f, %f %f)", |
| label.c_str(), |
| ToolUtils::colortype_name(srcCT), ToolUtils::alphatype_name(srcAT), |
| ToolUtils::colortype_name(readCT), ToolUtils::alphatype_name(readAT), |
| rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion, x, y, |
| diffs[0], diffs[1], diffs[2], diffs[3]); |
| }); |
| SkAutoPixmapStorage ref; |
| SkImageInfo refInfo = readInfo.makeDimensions(dstWriteRect.size()); |
| ref.alloc(refInfo); |
| if (readAT == kUnknown_SkAlphaType) { |
| // Do a spoofed read where src and dst alpha type are both kUnpremul. This will |
| // allow SkPixmap readPixels to succeed and won't do any alpha type conversion. |
| SkPixmap unpremulRef(refInfo.makeAlphaType(kUnpremul_SkAlphaType), |
| ref.addr(), |
| ref.rowBytes()); |
| SkPixmap unpremulSRc(srcPixels.info().makeAlphaType(kUnpremul_SkAlphaType), |
| srcPixels.addr(), |
| srcPixels.rowBytes()); |
| |
| unpremulSRc.readPixels(unpremulRef, srcReadRect.x(), srcReadRect.y()); |
| } else { |
| srcPixels.readPixels(ref, srcReadRect.x(), srcReadRect.y()); |
| } |
| // This is the part of dstPixels that should have been updated. |
| SkPixmap actual; |
| SkAssertResult(dstPixels.extractSubset(&actual, dstWriteRect)); |
| ComparePixels(ref, actual, tols, error); |
| |
| const auto* v = dstData.get(); |
| const auto* end = dstData.get() + dstSize; |
| guardOk = std::all_of(v, v + dstWriteRect.top() * dstPixels.rowBytes(), guardCheck); |
| v += dstWriteRect.top() * dstPixels.rowBytes(); |
| for (int y = dstWriteRect.top(); y < dstWriteRect.bottom(); ++y) { |
| guardOk |= std::all_of(v, v + dstWriteRect.left() * readBpp, guardCheck); |
| auto pad = v + dstWriteRect.right() * readBpp; |
| auto rowEnd = std::min(end, v + dstPixels.rowBytes()); |
| // min protects against reading past the end of the tight last row. |
| guardOk |= std::all_of(pad, rowEnd, guardCheck); |
| v = rowEnd; |
| } |
| guardOk |= std::all_of(v, end, guardCheck); |
| } else { |
| guardOk = std::all_of(dstData.get(), dstData.get() + dstSize, guardCheck); |
| } |
| if (!guardOk) { |
| ERRORF(reporter, |
| "Result pixels modified result outside read rect [%d, %d, %d, %d]. " |
| "%sSrc CT: %s, Read CT: %s, CS conversion: %d", |
| rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, label.c_str(), |
| ToolUtils::colortype_name(srcCT), ToolUtils::colortype_name(readCT), |
| csConversion); |
| } |
| return result; |
| }; |
| |
| static constexpr int kW = 16; |
| static constexpr int kH = 16; |
| |
| // Makes the reference data that is used to populate the src. Always F32 regardless of srcCT. |
| auto make_ref_f32_data = [](SkAlphaType srcAT, SkColorType srcCT) -> SkAutoPixmapStorage { |
| // Make src data in F32 with srcAT. We will convert it to each color type we test to |
| // initialize the src. |
| auto surfInfo = SkImageInfo::Make(kW, kH, |
| kRGBA_F32_SkColorType, |
| srcAT, |
| SkColorSpace::MakeSRGB()); |
| // Can't make a kUnknown_SkAlphaType surface. |
| if (srcAT == kUnknown_SkAlphaType) { |
| surfInfo = surfInfo.makeAlphaType(kUnpremul_SkAlphaType); |
| } |
| auto refSurf = SkSurface::MakeRaster(surfInfo); |
| static constexpr SkPoint kPts1[] = {{0, 0}, {kW, kH}}; |
| static constexpr SkColor kColors1[] = {SK_ColorGREEN, SK_ColorRED}; |
| SkPaint paint; |
| paint.setShader( |
| SkGradientShader::MakeLinear(kPts1, kColors1, nullptr, 2, SkTileMode::kClamp)); |
| refSurf->getCanvas()->drawPaint(paint); |
| static constexpr SkPoint kPts2[] = {{kW, 0}, {0, kH}}; |
| static constexpr SkColor kColors2[] = {SK_ColorBLUE, SK_ColorBLACK}; |
| paint.setShader( |
| SkGradientShader::MakeLinear(kPts2, kColors2, nullptr, 2, SkTileMode::kClamp)); |
| paint.setBlendMode(SkBlendMode::kPlus); |
| refSurf->getCanvas()->drawPaint(paint); |
| // Keep everything opaque if the src alpha type is opaque. Also, there is an issue with |
| // 1010102 (the only color type where the number of alpha bits is non-zero and not the |
| // same as r, g, and b). Because of the different precisions the draw below can create |
| // data that isn't strictly premul (e.g. alpha is 1/3 but green is .4). SW will clamp |
| // r, g, b to a if the dst is premul and a different color type. GPU doesn't do this. |
| // We could but 1010102 premul is kind of dubious anyway. So for now just keep the data |
| // opaque. |
| if (srcAT != kOpaque_SkAlphaType && |
| (srcAT == kPremul_SkAlphaType && srcCT != kRGBA_1010102_SkColorType && |
| srcCT != kBGRA_1010102_SkColorType)) { |
| static constexpr SkColor kColors3[] = {SK_ColorWHITE, |
| SK_ColorWHITE, |
| 0x60FFFFFF, |
| SK_ColorWHITE, |
| SK_ColorWHITE}; |
| static constexpr SkScalar kPos3[] = {0.f, 0.15f, 0.5f, 0.85f, 1.f}; |
| paint.setShader(SkGradientShader::MakeRadial({kW / 2.f, kH / 2.f}, (kW + kH) / 10.f, |
| kColors3, kPos3, 5, SkTileMode::kMirror)); |
| paint.setBlendMode(SkBlendMode::kDstIn); |
| refSurf->getCanvas()->drawPaint(paint); |
| } |
| |
| const auto srcInfo = SkImageInfo::Make(kW, kH, srcCT, srcAT, SkColorSpace::MakeSRGB()); |
| SkAutoPixmapStorage srcPixels; |
| srcPixels.alloc(srcInfo); |
| SkPixmap readPixmap = srcPixels; |
| // Spoof the alpha type to kUnpremul so the read will succeed without doing any conversion |
| // (because we made our surface also be kUnpremul). |
| if (srcAT == kUnknown_SkAlphaType) { |
| readPixmap.reset(srcPixels.info().makeAlphaType(kUnpremul_SkAlphaType), |
| srcPixels.addr(), |
| srcPixels.rowBytes()); |
| } |
| refSurf->readPixels(readPixmap, 0, 0); |
| return srcPixels; |
| }; |
| const std::vector<SkIRect> longRectArray = { |
| // entire thing |
| SkIRect::MakeWH(kW, kH), |
| // larger on all sides |
| SkIRect::MakeLTRB(-10, -10, kW + 10, kH + 10), |
| // fully contained |
| SkIRect::MakeLTRB(kW / 4, kH / 4, 3 * kW / 4, 3 * kH / 4), |
| // outside top left |
| SkIRect::MakeLTRB(-10, -10, -1, -1), |
| // touching top left corner |
| SkIRect::MakeLTRB(-10, -10, 0, 0), |
| // overlapping top left corner |
| SkIRect::MakeLTRB(-10, -10, kW / 4, kH / 4), |
| // overlapping top left and top right corners |
| SkIRect::MakeLTRB(-10, -10, kW + 10, kH / 4), |
| // touching entire top edge |
| SkIRect::MakeLTRB(-10, -10, kW + 10, 0), |
| // overlapping top right corner |
| SkIRect::MakeLTRB(3 * kW / 4, -10, kW + 10, kH / 4), |
| // contained in x, overlapping top edge |
| SkIRect::MakeLTRB(kW / 4, -10, 3 * kW / 4, kH / 4), |
| // outside top right corner |
| SkIRect::MakeLTRB(kW + 1, -10, kW + 10, -1), |
| // touching top right corner |
| SkIRect::MakeLTRB(kW, -10, kW + 10, 0), |
| // overlapping top left and bottom left corners |
| SkIRect::MakeLTRB(-10, -10, kW / 4, kH + 10), |
| // touching entire left edge |
| SkIRect::MakeLTRB(-10, -10, 0, kH + 10), |
| // overlapping bottom left corner |
| SkIRect::MakeLTRB(-10, 3 * kH / 4, kW / 4, kH + 10), |
| // contained in y, overlapping left edge |
| SkIRect::MakeLTRB(-10, kH / 4, kW / 4, 3 * kH / 4), |
| // outside bottom left corner |
| SkIRect::MakeLTRB(-10, kH + 1, -1, kH + 10), |
| // touching bottom left corner |
| SkIRect::MakeLTRB(-10, kH, 0, kH + 10), |
| // overlapping bottom left and bottom right corners |
| SkIRect::MakeLTRB(-10, 3 * kH / 4, kW + 10, kH + 10), |
| // touching entire left edge |
| SkIRect::MakeLTRB(0, kH, kW, kH + 10), |
| // overlapping bottom right corner |
| SkIRect::MakeLTRB(3 * kW / 4, 3 * kH / 4, kW + 10, kH + 10), |
| // overlapping top right and bottom right corners |
| SkIRect::MakeLTRB(3 * kW / 4, -10, kW + 10, kH + 10), |
| }; |
| const std::vector<SkIRect> shortRectArray = { |
| // entire thing |
| SkIRect::MakeWH(kW, kH), |
| // fully contained |
| SkIRect::MakeLTRB(kW / 4, kH / 4, 3 * kW / 4, 3 * kH / 4), |
| // overlapping top right corner |
| SkIRect::MakeLTRB(3 * kW / 4, -10, kW + 10, kH / 4), |
| }; |
| // We ensure we use the long array once per src and read color type and otherwise use the |
| // short array to improve test run time. |
| // Also, some color types have no alpha values and thus Opaque Premul and Unpremul are |
| // equivalent. Just ensure each redundant AT is tested once with each CT (src and read). |
| // Similarly, alpha-only color types behave the same for all alpha types so just test premul |
| // after one iter. |
| // We consider a src or read CT thoroughly tested once it has run through the short rect array |
| // and full complement of alpha types with one successful read in the loop. |
| std::array<bool, kLastEnum_SkColorType + 1> srcCTTestedThoroughly = {}, |
| readCTTestedThoroughly = {}; |
| for (int sat = 0; sat < kLastEnum_SkAlphaType; ++sat) { |
| const auto srcAT = static_cast<SkAlphaType>(sat); |
| if (srcAT == kUnpremul_SkAlphaType && !rules.fAllowUnpremulSrc) { |
| continue; |
| } |
| for (int sct = 0; sct <= kLastEnum_SkColorType; ++sct) { |
| const auto srcCT = static_cast<SkColorType>(sct); |
| // Note that we only currently use srcCT for a 1010102 workaround. If we remove this we |
| // can also put the ref data setup above the srcCT loop. |
| SkAutoPixmapStorage srcPixels = make_ref_f32_data(srcAT, srcCT); |
| auto src = srcFactory(srcPixels); |
| if (!src) { |
| continue; |
| } |
| if (SkColorTypeIsAlwaysOpaque(srcCT) && srcCTTestedThoroughly[srcCT] && |
| (kPremul_SkAlphaType == srcAT || kUnpremul_SkAlphaType == srcAT)) { |
| continue; |
| } |
| if (SkColorTypeIsAlphaOnly(srcCT) && srcCTTestedThoroughly[srcCT] && |
| (kUnpremul_SkAlphaType == srcAT || |
| kOpaque_SkAlphaType == srcAT || |
| kUnknown_SkAlphaType == srcAT)) { |
| continue; |
| } |
| for (int rct = 0; rct <= kLastEnum_SkColorType; ++rct) { |
| const auto readCT = static_cast<SkColorType>(rct); |
| for (const sk_sp<SkColorSpace>& readCS : |
| {SkColorSpace::MakeSRGB(), SkColorSpace::MakeSRGBLinear()}) { |
| for (int at = 0; at <= kLastEnum_SkAlphaType; ++at) { |
| const auto readAT = static_cast<SkAlphaType>(at); |
| if (srcAT != kOpaque_SkAlphaType && readAT == kOpaque_SkAlphaType) { |
| // This doesn't make sense. |
| continue; |
| } |
| if (SkColorTypeIsAlwaysOpaque(readCT) && readCTTestedThoroughly[readCT] && |
| (kPremul_SkAlphaType == readAT || kUnpremul_SkAlphaType == readAT)) { |
| continue; |
| } |
| if (SkColorTypeIsAlphaOnly(readCT) && readCTTestedThoroughly[readCT] && |
| (kUnpremul_SkAlphaType == readAT || |
| kOpaque_SkAlphaType == readAT || |
| kUnknown_SkAlphaType == readAT)) { |
| continue; |
| } |
| const auto& rects = |
| srcCTTestedThoroughly[sct] && readCTTestedThoroughly[rct] |
| ? shortRectArray |
| : longRectArray; |
| for (const auto& rect : rects) { |
| const auto readInfo = SkImageInfo::Make(rect.width(), rect.height(), |
| readCT, readAT, readCS); |
| const SkIVector offset = rect.topLeft(); |
| GpuReadResult r = runTest(src, srcPixels, readInfo, offset); |
| if (r == GpuReadResult::kSuccess) { |
| srcCTTestedThoroughly[sct] = true; |
| readCTTestedThoroughly[rct] = true; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SurfaceContextReadPixels, reporter, ctxInfo) { |
| using Surface = std::unique_ptr<GrSurfaceContext>; |
| GrDirectContext* direct = ctxInfo.directContext(); |
| auto reader = std::function<GpuReadSrcFn<Surface>>( |
| [direct](const Surface& surface, const SkIVector& offset, const SkPixmap& pixels) { |
| if (surface->readPixels(direct, pixels, {offset.fX, offset.fY})) { |
| return GpuReadResult::kSuccess; |
| } else { |
| // Reading from a non-renderable format is not guaranteed to work on GL. |
| // We'd have to be able to force a copy or draw draw to a renderable format. |
| const auto& caps = *direct->priv().caps(); |
| if (direct->backend() == GrBackendApi::kOpenGL && |
| !caps.isFormatRenderable(surface->asSurfaceProxy()->backendFormat(), 1)) { |
| return GpuReadResult::kExcusedFailure; |
| } |
| return GpuReadResult::kFail; |
| } |
| }); |
| GpuReadPixelTestRules rules; |
| rules.fAllowUnpremulSrc = true; |
| rules.fUncontainedRectSucceeds = true; |
| |
| for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) { |
| for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) { |
| auto factory = std::function<GpuSrcFactory<Surface>>( |
| [direct, origin, renderable](const SkPixmap& src) { |
| if (src.colorType() == kRGB_888x_SkColorType) { |
| return Surface(); |
| } |
| auto surfContext = GrSurfaceContext::Make( |
| direct, src.info(), SkBackingFit::kExact, origin, renderable); |
| if (surfContext) { |
| surfContext->writePixels(direct, src, {0, 0}); |
| } |
| return surfContext; |
| }); |
| auto label = SkStringPrintf("Renderable: %d, Origin: %d", (int)renderable, origin); |
| gpu_read_pixels_test_driver(reporter, rules, factory, reader, label); |
| } |
| } |
| } |
| |
| DEF_GPUTEST_FOR_ALL_CONTEXTS(ReadPixels_InvalidRowBytes_Gpu, reporter, ctxInfo) { |
| auto srcII = SkImageInfo::Make({10, 10}, kRGBA_8888_SkColorType, kPremul_SkAlphaType); |
| auto surf = SkSurface::MakeRenderTarget(ctxInfo.directContext(), SkBudgeted::kYes, srcII); |
| for (int ct = 0; ct < kLastEnum_SkColorType + 1; ++ct) { |
| auto colorType = static_cast<SkColorType>(ct); |
| size_t bpp = SkColorTypeBytesPerPixel(colorType); |
| if (bpp <= 1) { |
| continue; |
| } |
| auto dstII = srcII.makeColorType(colorType); |
| size_t badRowBytes = (surf->width() + 1)*bpp - 1; |
| auto storage = std::make_unique<char[]>(badRowBytes*surf->height()); |
| REPORTER_ASSERT(reporter, !surf->readPixels(dstII, storage.get(), badRowBytes, 0, 0)); |
| } |
| } |
| |
| DEF_GPUTEST_FOR_ALL_CONTEXTS(WritePixels_InvalidRowBytes_Gpu, reporter, ctxInfo) { |
| auto dstII = SkImageInfo::Make({10, 10}, kRGBA_8888_SkColorType, kPremul_SkAlphaType); |
| auto surf = SkSurface::MakeRenderTarget(ctxInfo.directContext(), SkBudgeted::kYes, dstII); |
| for (int ct = 0; ct < kLastEnum_SkColorType + 1; ++ct) { |
| auto colorType = static_cast<SkColorType>(ct); |
| size_t bpp = SkColorTypeBytesPerPixel(colorType); |
| if (bpp <= 1) { |
| continue; |
| } |
| auto srcII = dstII.makeColorType(colorType); |
| size_t badRowBytes = (surf->width() + 1)*bpp - 1; |
| auto storage = std::make_unique<char[]>(badRowBytes*surf->height()); |
| memset(storage.get(), 0, badRowBytes * surf->height()); |
| // SkSurface::writePixels doesn't report bool, SkCanvas's does. |
| REPORTER_ASSERT(reporter, |
| !surf->getCanvas()->writePixels(srcII, storage.get(), badRowBytes, 0, 0)); |
| } |
| } |
| |
| namespace { |
| struct AsyncContext { |
| bool fCalled = false; |
| std::unique_ptr<const SkImage::AsyncReadResult> fResult; |
| }; |
| } // anonymous namespace |
| |
| // Making this a lambda in the test functions caused: |
| // "error: cannot compile this forwarded non-trivially copyable parameter yet" |
| // on x86/Win/Clang bot, referring to 'result'. |
| static void async_callback(void* c, std::unique_ptr<const SkImage::AsyncReadResult> result) { |
| auto context = static_cast<AsyncContext*>(c); |
| context->fResult = std::move(result); |
| context->fCalled = true; |
| }; |
| |
| DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SurfaceAsyncReadPixels, reporter, ctxInfo) { |
| using Surface = sk_sp<SkSurface>; |
| auto reader = std::function<GpuReadSrcFn<Surface>>( |
| [](const Surface& surface, const SkIVector& offset, const SkPixmap& pixels) { |
| auto direct = surface->recordingContext()->asDirectContext(); |
| SkASSERT(direct); |
| |
| AsyncContext context; |
| auto rect = SkIRect::MakeSize(pixels.dimensions()).makeOffset(offset); |
| |
| // Rescale quality and linearity don't matter since we're doing a non-scaling |
| // readback. |
| surface->asyncRescaleAndReadPixels(pixels.info(), rect, |
| SkImage::RescaleGamma::kSrc, |
| SkImage::RescaleMode::kNearest, |
| async_callback, &context); |
| direct->submit(); |
| while (!context.fCalled) { |
| direct->checkAsyncWorkCompletion(); |
| } |
| if (!context.fResult) { |
| return GpuReadResult::kFail; |
| } |
| SkRectMemcpy(pixels.writable_addr(), pixels.rowBytes(), context.fResult->data(0), |
| context.fResult->rowBytes(0), pixels.info().minRowBytes(), |
| pixels.height()); |
| return GpuReadResult::kSuccess; |
| }); |
| GpuReadPixelTestRules rules; |
| rules.fAllowUnpremulSrc = false; |
| rules.fUncontainedRectSucceeds = false; |
| |
| for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) { |
| auto factory = std::function<GpuSrcFactory<Surface>>( |
| [context = ctxInfo.directContext(), origin](const SkPixmap& src) { |
| if (src.colorType() == kRGB_888x_SkColorType) { |
| return Surface(); |
| } |
| auto surf = SkSurface::MakeRenderTarget(context, |
| SkBudgeted::kYes, |
| src.info(), |
| 1, |
| origin, |
| nullptr); |
| if (surf) { |
| surf->writePixels(src, 0, 0); |
| } |
| return surf; |
| }); |
| auto label = SkStringPrintf("Origin: %d", origin); |
| gpu_read_pixels_test_driver(reporter, rules, factory, reader, label); |
| auto backendRTFactory = std::function<GpuSrcFactory<Surface>>( |
| [context = ctxInfo.directContext(), origin](const SkPixmap& src) { |
| if (src.colorType() == kRGB_888x_SkColorType) { |
| return Surface(); |
| } |
| // Dawn backend implementation of backend render targets doesn't support reading. |
| if (context->backend() == GrBackendApi::kDawn) { |
| return Surface(); |
| } |
| auto surf = sk_gpu_test::MakeBackendRenderTargetSurface(context, |
| src.info(), |
| origin, |
| 1); |
| if (surf) { |
| surf->writePixels(src, 0, 0); |
| } |
| return surf; |
| }); |
| label = SkStringPrintf("BERT Origin: %d", origin); |
| gpu_read_pixels_test_driver(reporter, rules, backendRTFactory, reader, label); |
| } |
| } |
| |
| DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageAsyncReadPixels, reporter, ctxInfo) { |
| using Image = sk_sp<SkImage>; |
| auto context = ctxInfo.directContext(); |
| auto reader = std::function<GpuReadSrcFn<Image>>([context](const Image& image, |
| const SkIVector& offset, |
| const SkPixmap& pixels) { |
| AsyncContext asyncContext; |
| auto rect = SkIRect::MakeSize(pixels.dimensions()).makeOffset(offset); |
| // The GPU implementation is based on rendering and will fail for non-renderable color |
| // types. |
| auto ct = SkColorTypeToGrColorType(image->colorType()); |
| auto format = context->priv().caps()->getDefaultBackendFormat(ct, GrRenderable::kYes); |
| if (!context->priv().caps()->isFormatAsColorTypeRenderable(ct, format)) { |
| return GpuReadResult::kExcusedFailure; |
| } |
| |
| // Rescale quality and linearity don't matter since we're doing a non-scaling readback. |
| image->asyncRescaleAndReadPixels(pixels.info(), rect, |
| SkImage::RescaleGamma::kSrc, |
| SkImage::RescaleMode::kNearest, |
| async_callback, &asyncContext); |
| context->submit(); |
| while (!asyncContext.fCalled) { |
| context->checkAsyncWorkCompletion(); |
| } |
| if (!asyncContext.fResult) { |
| return GpuReadResult::kFail; |
| } |
| SkRectMemcpy(pixels.writable_addr(), pixels.rowBytes(), asyncContext.fResult->data(0), |
| asyncContext.fResult->rowBytes(0), pixels.info().minRowBytes(), |
| pixels.height()); |
| return GpuReadResult::kSuccess; |
| }); |
| |
| GpuReadPixelTestRules rules; |
| rules.fAllowUnpremulSrc = true; |
| rules.fUncontainedRectSucceeds = false; |
| |
| for (auto origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) { |
| for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) { |
| auto factory = std::function<GpuSrcFactory<Image>>([&](const SkPixmap& src) { |
| if (src.colorType() == kRGB_888x_SkColorType) { |
| return Image(); |
| } |
| return sk_gpu_test::MakeBackendTextureImage(ctxInfo.directContext(), src, |
| renderable, origin); |
| }); |
| auto label = SkStringPrintf("Renderable: %d, Origin: %d", (int)renderable, origin); |
| gpu_read_pixels_test_driver(reporter, rules, factory, reader, label); |
| } |
| } |
| } |
| |
| DEF_GPUTEST(AsyncReadPixelsContextShutdown, reporter, options) { |
| const auto ii = SkImageInfo::Make(10, 10, kRGBA_8888_SkColorType, kPremul_SkAlphaType, |
| SkColorSpace::MakeSRGB()); |
| enum class ShutdownSequence { |
| kFreeResult_DestroyContext, |
| kDestroyContext_FreeResult, |
| kFreeResult_ReleaseAndAbandon_DestroyContext, |
| kFreeResult_Abandon_DestroyContext, |
| kReleaseAndAbandon_FreeResult_DestroyContext, |
| kAbandon_FreeResult_DestroyContext, |
| kReleaseAndAbandon_DestroyContext_FreeResult, |
| kAbandon_DestroyContext_FreeResult, |
| }; |
| for (int t = 0; t < sk_gpu_test::GrContextFactory::kContextTypeCnt; ++t) { |
| auto type = static_cast<sk_gpu_test::GrContextFactory::ContextType>(t); |
| for (auto sequence : {ShutdownSequence::kFreeResult_DestroyContext, |
| ShutdownSequence::kDestroyContext_FreeResult, |
| ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext, |
| ShutdownSequence::kFreeResult_Abandon_DestroyContext, |
| ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext, |
| ShutdownSequence::kAbandon_FreeResult_DestroyContext, |
| ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult, |
| ShutdownSequence::kAbandon_DestroyContext_FreeResult}) { |
| // Vulkan context abandoning without resource release has issues outside of the scope of |
| // this test. |
| if (type == sk_gpu_test::GrContextFactory::kVulkan_ContextType && |
| (sequence == ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext || |
| sequence == ShutdownSequence::kFreeResult_Abandon_DestroyContext || |
| sequence == ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext || |
| sequence == ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult || |
| sequence == ShutdownSequence::kAbandon_FreeResult_DestroyContext || |
| sequence == ShutdownSequence::kAbandon_DestroyContext_FreeResult)) { |
| continue; |
| } |
| for (bool yuv : {false, true}) { |
| sk_gpu_test::GrContextFactory factory(options); |
| auto direct = factory.get(type); |
| if (!direct) { |
| continue; |
| } |
| // This test is only meaningful for contexts that support transfer buffers for |
| // reads. |
| if (!direct->priv().caps()->transferFromSurfaceToBufferSupport()) { |
| continue; |
| } |
| auto surf = SkSurface::MakeRenderTarget(direct, SkBudgeted::kYes, ii, 1, nullptr); |
| if (!surf) { |
| continue; |
| } |
| AsyncContext cbContext; |
| if (yuv) { |
| surf->asyncRescaleAndReadPixelsYUV420( |
| kIdentity_SkYUVColorSpace, SkColorSpace::MakeSRGB(), ii.bounds(), |
| ii.dimensions(), SkImage::RescaleGamma::kSrc, |
| SkImage::RescaleMode::kNearest, &async_callback, &cbContext); |
| } else { |
| surf->asyncRescaleAndReadPixels(ii, ii.bounds(), SkImage::RescaleGamma::kSrc, |
| SkImage::RescaleMode::kNearest, &async_callback, |
| &cbContext); |
| } |
| direct->submit(); |
| while (!cbContext.fCalled) { |
| direct->checkAsyncWorkCompletion(); |
| } |
| if (!cbContext.fResult) { |
| ERRORF(reporter, "Callback failed on %s. is YUV: %d", |
| sk_gpu_test::GrContextFactory::ContextTypeName(type), yuv); |
| continue; |
| } |
| // For vulkan we need to release all refs to the GrDirectContext before trying to |
| // destroy the test context. The surface here is holding a ref. |
| surf.reset(); |
| |
| // The real test is that we don't crash, get Vulkan validation errors, etc, during |
| // this shutdown sequence. |
| switch (sequence) { |
| case ShutdownSequence::kFreeResult_DestroyContext: |
| case ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext: |
| case ShutdownSequence::kFreeResult_Abandon_DestroyContext: |
| break; |
| case ShutdownSequence::kDestroyContext_FreeResult: |
| factory.destroyContexts(); |
| break; |
| case ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext: |
| factory.releaseResourcesAndAbandonContexts(); |
| break; |
| case ShutdownSequence::kAbandon_FreeResult_DestroyContext: |
| factory.abandonContexts(); |
| break; |
| case ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult: |
| factory.releaseResourcesAndAbandonContexts(); |
| factory.destroyContexts(); |
| break; |
| case ShutdownSequence::kAbandon_DestroyContext_FreeResult: |
| factory.abandonContexts(); |
| factory.destroyContexts(); |
| break; |
| } |
| cbContext.fResult.reset(); |
| switch (sequence) { |
| case ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext: |
| factory.releaseResourcesAndAbandonContexts(); |
| break; |
| case ShutdownSequence::kFreeResult_Abandon_DestroyContext: |
| factory.abandonContexts(); |
| break; |
| case ShutdownSequence::kFreeResult_DestroyContext: |
| case ShutdownSequence::kDestroyContext_FreeResult: |
| case ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext: |
| case ShutdownSequence::kAbandon_FreeResult_DestroyContext: |
| case ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult: |
| case ShutdownSequence::kAbandon_DestroyContext_FreeResult: |
| break; |
| } |
| } |
| } |
| } |
| } |