blob: a6307e791422f7b2cfe7f42d7fd29948cfd041c4 [file] [log] [blame]
/*
* Copyright 2020 Google LLC.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkCanvas.h"
#include "include/core/SkImage.h"
#include "include/core/SkSurface.h"
#include "include/effects/SkGradientShader.h"
#include "include/gpu/GrDirectContext.h"
#include "src/core/SkAutoPixmapStorage.h"
#include "src/core/SkConvertPixels.h"
#include "src/gpu/GrDirectContextPriv.h"
#include "src/gpu/GrImageInfo.h"
#include "src/gpu/GrSurfaceContext.h"
#include "tests/Test.h"
#include "tests/TestUtils.h"
#include "tools/ToolUtils.h"
#include "tools/gpu/BackendSurfaceFactory.h"
#include "tools/gpu/BackendTextureImageFactory.h"
#include "tools/gpu/GrContextFactory.h"
#include "tools/gpu/ProxyUtils.h"
#include <initializer_list>
static constexpr int min_rgb_channel_bits(SkColorType ct) {
switch (ct) {
case kUnknown_SkColorType: return 0;
case kAlpha_8_SkColorType: return 0;
case kA16_unorm_SkColorType: return 0;
case kA16_float_SkColorType: return 0;
case kRGB_565_SkColorType: return 5;
case kARGB_4444_SkColorType: return 4;
case kR8G8_unorm_SkColorType: return 8;
case kR16G16_unorm_SkColorType: return 16;
case kR16G16_float_SkColorType: return 16;
case kRGBA_8888_SkColorType: return 8;
case kRGB_888x_SkColorType: return 8;
case kBGRA_8888_SkColorType: return 8;
case kRGBA_1010102_SkColorType: return 10;
case kRGB_101010x_SkColorType: return 10;
case kBGRA_1010102_SkColorType: return 10;
case kBGR_101010x_SkColorType: return 10;
case kGray_8_SkColorType: return 8; // counting gray as "rgb"
case kRGBA_F16Norm_SkColorType: return 10; // just counting the mantissa
case kRGBA_F16_SkColorType: return 10; // just counting the mantissa
case kRGBA_F32_SkColorType: return 23; // just counting the mantissa
case kR16G16B16A16_unorm_SkColorType: return 16;
}
SkUNREACHABLE;
}
static constexpr int alpha_channel_bits(SkColorType ct) {
switch (ct) {
case kUnknown_SkColorType: return 0;
case kAlpha_8_SkColorType: return 8;
case kA16_unorm_SkColorType: return 16;
case kA16_float_SkColorType: return 16;
case kRGB_565_SkColorType: return 0;
case kARGB_4444_SkColorType: return 4;
case kR8G8_unorm_SkColorType: return 0;
case kR16G16_unorm_SkColorType: return 0;
case kR16G16_float_SkColorType: return 0;
case kRGBA_8888_SkColorType: return 8;
case kRGB_888x_SkColorType: return 0;
case kBGRA_8888_SkColorType: return 8;
case kRGBA_1010102_SkColorType: return 2;
case kRGB_101010x_SkColorType: return 0;
case kBGRA_1010102_SkColorType: return 2;
case kBGR_101010x_SkColorType: return 0;
case kGray_8_SkColorType: return 0;
case kRGBA_F16Norm_SkColorType: return 10; // just counting the mantissa
case kRGBA_F16_SkColorType: return 10; // just counting the mantissa
case kRGBA_F32_SkColorType: return 23; // just counting the mantissa
case kR16G16B16A16_unorm_SkColorType: return 16;
}
SkUNREACHABLE;
}
namespace {
struct GpuReadPixelTestRules {
// Test unpremul sources? We could omit this and detect that creating the source of the read
// failed but having it lets us skip generating reference color data.
bool fAllowUnpremulSrc = true;
// Are reads that are overlapping but not contained by the src bounds expected to succeed?
bool fUncontainedRectSucceeds = true;
};
// Makes a src populated with the pixmap. The src should get its image info (or equivalent) from
// the pixmap.
template <typename T> using GpuSrcFactory = T(SkPixmap&);
enum class GpuReadResult {
kFail,
kSuccess,
kExcusedFailure,
};
// Does a read from the T into the pixmap.
template <typename T>
using GpuReadSrcFn = GpuReadResult(const T&, const SkIVector& offset, const SkPixmap&);
} // anonymous namespace
template <typename T>
static void gpu_read_pixels_test_driver(skiatest::Reporter* reporter,
const GpuReadPixelTestRules& rules,
const std::function<GpuSrcFactory<T>>& srcFactory,
const std::function<GpuReadSrcFn<T>>& read,
SkString label) {
if (!label.isEmpty()) {
// Add space for printing.
label.append(" ");
}
// Separate this out just to give it some line width to breathe. Note 'srcPixels' should have
// the same image info as src. We will do a converting readPixels() on it to get the data
// to compare with the results of 'read'.
auto runTest = [&](const T& src,
const SkPixmap& srcPixels,
const SkImageInfo& readInfo,
const SkIVector& offset) {
const bool csConversion =
!SkColorSpace::Equals(readInfo.colorSpace(), srcPixels.info().colorSpace());
const auto readCT = readInfo.colorType();
const auto readAT = readInfo.alphaType();
const auto srcCT = srcPixels.info().colorType();
const auto srcAT = srcPixels.info().alphaType();
const auto rect = SkIRect::MakeWH(readInfo.width(), readInfo.height()).makeOffset(offset);
const auto surfBounds = SkIRect::MakeWH(srcPixels.width(), srcPixels.height());
const size_t readBpp = SkColorTypeBytesPerPixel(readCT);
// Make the row bytes in the dst be loose for extra stress.
const size_t dstRB = readBpp * readInfo.width() + 10 * readBpp;
// This will make the last row tight.
const size_t dstSize = readInfo.computeByteSize(dstRB);
std::unique_ptr<char[]> dstData(new char[dstSize]);
SkPixmap dstPixels(readInfo, dstData.get(), dstRB);
// Initialize with an arbitrary value for each byte. Later we will check that only the
// correct part of the destination gets overwritten by 'read'.
static constexpr auto kInitialByte = static_cast<char>(0x1B);
std::fill_n(static_cast<char*>(dstPixels.writable_addr()),
dstPixels.computeByteSize(),
kInitialByte);
const GpuReadResult result = read(src, offset, dstPixels);
if (!SkIRect::Intersects(rect, surfBounds)) {
REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess);
} else if (readCT == kUnknown_SkColorType) {
REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess);
} else if ((readAT == kUnknown_SkAlphaType) != (srcAT == kUnknown_SkAlphaType)) {
REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess);
} else if (!rules.fUncontainedRectSucceeds && !surfBounds.contains(rect)) {
REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess);
} else if (result == GpuReadResult::kFail) {
// TODO: Support RGB/BGR 101010x, BGRA 1010102 on the GPU.
if (SkColorTypeToGrColorType(readCT) != GrColorType::kUnknown) {
ERRORF(reporter,
"Read failed. %sSrc CT: %s, Src AT: %s Read CT: %s, Read AT: %s, "
"Rect [%d, %d, %d, %d], CS conversion: %d\n",
label.c_str(),
ToolUtils::colortype_name(srcCT), ToolUtils::alphatype_name(srcAT),
ToolUtils::colortype_name(readCT), ToolUtils::alphatype_name(readAT),
rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion);
}
return result;
}
bool guardOk = true;
auto guardCheck = [](char x) { return x == kInitialByte; };
// Considering the rect we tried to read and the surface bounds figure out which pixels in
// both src and dst space should actually have been read and written.
SkIRect srcReadRect;
if (result == GpuReadResult::kSuccess && srcReadRect.intersect(surfBounds, rect)) {
SkIRect dstWriteRect = srcReadRect.makeOffset(-rect.fLeft, -rect.fTop);
const bool lumConversion =
!(SkColorTypeChannelFlags(srcCT) & kGray_SkColorChannelFlag) &&
(SkColorTypeChannelFlags(readCT) & kGray_SkColorChannelFlag);
// A CS or luminance conversion allows a 3 value difference and otherwise a 2 value
// difference. Note that sometimes read back on GPU can be lossy even when there no
// conversion at all because GPU->CPU read may go to a lower bit depth format and then
// be promoted back to the original type. For example, GL ES cannot read to 1010102, so
// we go through 8888.
float numer = (lumConversion || csConversion) ? 3.f : 2.f;
// Allow some extra tolerance if unpremuling.
if (srcAT == kPremul_SkAlphaType && readAT == kUnpremul_SkAlphaType) {
numer += 1;
}
int rgbBits = std::min({min_rgb_channel_bits(readCT), min_rgb_channel_bits(srcCT), 8});
float tol = numer / (1 << rgbBits);
float alphaTol = 0;
if (readAT != kOpaque_SkAlphaType && srcAT != kOpaque_SkAlphaType) {
// Alpha can also get squashed down to 8 bits going through an intermediate
// color format.
const int alphaBits = std::min({alpha_channel_bits(readCT),
alpha_channel_bits(srcCT),
8});
alphaTol = 2.f / (1 << alphaBits);
}
const float tols[4] = {tol, tol, tol, alphaTol};
auto error = std::function<ComparePixmapsErrorReporter>([&](int x, int y,
const float diffs[4]) {
SkASSERT(x >= 0 && y >= 0);
ERRORF(reporter,
"%sSrc CT: %s, Src AT: %s, Read CT: %s, Read AT: %s, Rect [%d, %d, %d, %d]"
", CS conversion: %d\n"
"Error at %d, %d. Diff in floats: (%f, %f, %f %f)",
label.c_str(),
ToolUtils::colortype_name(srcCT), ToolUtils::alphatype_name(srcAT),
ToolUtils::colortype_name(readCT), ToolUtils::alphatype_name(readAT),
rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion, x, y,
diffs[0], diffs[1], diffs[2], diffs[3]);
});
SkAutoPixmapStorage ref;
SkImageInfo refInfo = readInfo.makeDimensions(dstWriteRect.size());
ref.alloc(refInfo);
if (readAT == kUnknown_SkAlphaType) {
// Do a spoofed read where src and dst alpha type are both kUnpremul. This will
// allow SkPixmap readPixels to succeed and won't do any alpha type conversion.
SkPixmap unpremulRef(refInfo.makeAlphaType(kUnpremul_SkAlphaType),
ref.addr(),
ref.rowBytes());
SkPixmap unpremulSRc(srcPixels.info().makeAlphaType(kUnpremul_SkAlphaType),
srcPixels.addr(),
srcPixels.rowBytes());
unpremulSRc.readPixels(unpremulRef, srcReadRect.x(), srcReadRect.y());
} else {
srcPixels.readPixels(ref, srcReadRect.x(), srcReadRect.y());
}
// This is the part of dstPixels that should have been updated.
SkPixmap actual;
SkAssertResult(dstPixels.extractSubset(&actual, dstWriteRect));
ComparePixels(ref, actual, tols, error);
const auto* v = dstData.get();
const auto* end = dstData.get() + dstSize;
guardOk = std::all_of(v, v + dstWriteRect.top() * dstPixels.rowBytes(), guardCheck);
v += dstWriteRect.top() * dstPixels.rowBytes();
for (int y = dstWriteRect.top(); y < dstWriteRect.bottom(); ++y) {
guardOk |= std::all_of(v, v + dstWriteRect.left() * readBpp, guardCheck);
auto pad = v + dstWriteRect.right() * readBpp;
auto rowEnd = std::min(end, v + dstPixels.rowBytes());
// min protects against reading past the end of the tight last row.
guardOk |= std::all_of(pad, rowEnd, guardCheck);
v = rowEnd;
}
guardOk |= std::all_of(v, end, guardCheck);
} else {
guardOk = std::all_of(dstData.get(), dstData.get() + dstSize, guardCheck);
}
if (!guardOk) {
ERRORF(reporter,
"Result pixels modified result outside read rect [%d, %d, %d, %d]. "
"%sSrc CT: %s, Read CT: %s, CS conversion: %d",
rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, label.c_str(),
ToolUtils::colortype_name(srcCT), ToolUtils::colortype_name(readCT),
csConversion);
}
return result;
};
static constexpr int kW = 16;
static constexpr int kH = 16;
// Makes the reference data that is used to populate the src. Always F32 regardless of srcCT.
auto make_ref_f32_data = [](SkAlphaType srcAT, SkColorType srcCT) -> SkAutoPixmapStorage {
// Make src data in F32 with srcAT. We will convert it to each color type we test to
// initialize the src.
auto surfInfo = SkImageInfo::Make(kW, kH,
kRGBA_F32_SkColorType,
srcAT,
SkColorSpace::MakeSRGB());
// Can't make a kUnknown_SkAlphaType surface.
if (srcAT == kUnknown_SkAlphaType) {
surfInfo = surfInfo.makeAlphaType(kUnpremul_SkAlphaType);
}
auto refSurf = SkSurface::MakeRaster(surfInfo);
static constexpr SkPoint kPts1[] = {{0, 0}, {kW, kH}};
static constexpr SkColor kColors1[] = {SK_ColorGREEN, SK_ColorRED};
SkPaint paint;
paint.setShader(
SkGradientShader::MakeLinear(kPts1, kColors1, nullptr, 2, SkTileMode::kClamp));
refSurf->getCanvas()->drawPaint(paint);
static constexpr SkPoint kPts2[] = {{kW, 0}, {0, kH}};
static constexpr SkColor kColors2[] = {SK_ColorBLUE, SK_ColorBLACK};
paint.setShader(
SkGradientShader::MakeLinear(kPts2, kColors2, nullptr, 2, SkTileMode::kClamp));
paint.setBlendMode(SkBlendMode::kPlus);
refSurf->getCanvas()->drawPaint(paint);
// Keep everything opaque if the src alpha type is opaque. Also, there is an issue with
// 1010102 (the only color type where the number of alpha bits is non-zero and not the
// same as r, g, and b). Because of the different precisions the draw below can create
// data that isn't strictly premul (e.g. alpha is 1/3 but green is .4). SW will clamp
// r, g, b to a if the dst is premul and a different color type. GPU doesn't do this.
// We could but 1010102 premul is kind of dubious anyway. So for now just keep the data
// opaque.
if (srcAT != kOpaque_SkAlphaType &&
(srcAT == kPremul_SkAlphaType && srcCT != kRGBA_1010102_SkColorType &&
srcCT != kBGRA_1010102_SkColorType)) {
static constexpr SkColor kColors3[] = {SK_ColorWHITE,
SK_ColorWHITE,
0x60FFFFFF,
SK_ColorWHITE,
SK_ColorWHITE};
static constexpr SkScalar kPos3[] = {0.f, 0.15f, 0.5f, 0.85f, 1.f};
paint.setShader(SkGradientShader::MakeRadial({kW / 2.f, kH / 2.f}, (kW + kH) / 10.f,
kColors3, kPos3, 5, SkTileMode::kMirror));
paint.setBlendMode(SkBlendMode::kDstIn);
refSurf->getCanvas()->drawPaint(paint);
}
const auto srcInfo = SkImageInfo::Make(kW, kH, srcCT, srcAT, SkColorSpace::MakeSRGB());
SkAutoPixmapStorage srcPixels;
srcPixels.alloc(srcInfo);
SkPixmap readPixmap = srcPixels;
// Spoof the alpha type to kUnpremul so the read will succeed without doing any conversion
// (because we made our surface also be kUnpremul).
if (srcAT == kUnknown_SkAlphaType) {
readPixmap.reset(srcPixels.info().makeAlphaType(kUnpremul_SkAlphaType),
srcPixels.addr(),
srcPixels.rowBytes());
}
refSurf->readPixels(readPixmap, 0, 0);
return srcPixels;
};
const std::vector<SkIRect> longRectArray = {
// entire thing
SkIRect::MakeWH(kW, kH),
// larger on all sides
SkIRect::MakeLTRB(-10, -10, kW + 10, kH + 10),
// fully contained
SkIRect::MakeLTRB(kW / 4, kH / 4, 3 * kW / 4, 3 * kH / 4),
// outside top left
SkIRect::MakeLTRB(-10, -10, -1, -1),
// touching top left corner
SkIRect::MakeLTRB(-10, -10, 0, 0),
// overlapping top left corner
SkIRect::MakeLTRB(-10, -10, kW / 4, kH / 4),
// overlapping top left and top right corners
SkIRect::MakeLTRB(-10, -10, kW + 10, kH / 4),
// touching entire top edge
SkIRect::MakeLTRB(-10, -10, kW + 10, 0),
// overlapping top right corner
SkIRect::MakeLTRB(3 * kW / 4, -10, kW + 10, kH / 4),
// contained in x, overlapping top edge
SkIRect::MakeLTRB(kW / 4, -10, 3 * kW / 4, kH / 4),
// outside top right corner
SkIRect::MakeLTRB(kW + 1, -10, kW + 10, -1),
// touching top right corner
SkIRect::MakeLTRB(kW, -10, kW + 10, 0),
// overlapping top left and bottom left corners
SkIRect::MakeLTRB(-10, -10, kW / 4, kH + 10),
// touching entire left edge
SkIRect::MakeLTRB(-10, -10, 0, kH + 10),
// overlapping bottom left corner
SkIRect::MakeLTRB(-10, 3 * kH / 4, kW / 4, kH + 10),
// contained in y, overlapping left edge
SkIRect::MakeLTRB(-10, kH / 4, kW / 4, 3 * kH / 4),
// outside bottom left corner
SkIRect::MakeLTRB(-10, kH + 1, -1, kH + 10),
// touching bottom left corner
SkIRect::MakeLTRB(-10, kH, 0, kH + 10),
// overlapping bottom left and bottom right corners
SkIRect::MakeLTRB(-10, 3 * kH / 4, kW + 10, kH + 10),
// touching entire left edge
SkIRect::MakeLTRB(0, kH, kW, kH + 10),
// overlapping bottom right corner
SkIRect::MakeLTRB(3 * kW / 4, 3 * kH / 4, kW + 10, kH + 10),
// overlapping top right and bottom right corners
SkIRect::MakeLTRB(3 * kW / 4, -10, kW + 10, kH + 10),
};
const std::vector<SkIRect> shortRectArray = {
// entire thing
SkIRect::MakeWH(kW, kH),
// fully contained
SkIRect::MakeLTRB(kW / 4, kH / 4, 3 * kW / 4, 3 * kH / 4),
// overlapping top right corner
SkIRect::MakeLTRB(3 * kW / 4, -10, kW + 10, kH / 4),
};
// We ensure we use the long array once per src and read color type and otherwise use the
// short array to improve test run time.
// Also, some color types have no alpha values and thus Opaque Premul and Unpremul are
// equivalent. Just ensure each redundant AT is tested once with each CT (src and read).
// Similarly, alpha-only color types behave the same for all alpha types so just test premul
// after one iter.
// We consider a src or read CT thoroughly tested once it has run through the short rect array
// and full complement of alpha types with one successful read in the loop.
std::array<bool, kLastEnum_SkColorType + 1> srcCTTestedThoroughly = {},
readCTTestedThoroughly = {};
for (int sat = 0; sat < kLastEnum_SkAlphaType; ++sat) {
const auto srcAT = static_cast<SkAlphaType>(sat);
if (srcAT == kUnpremul_SkAlphaType && !rules.fAllowUnpremulSrc) {
continue;
}
for (int sct = 0; sct <= kLastEnum_SkColorType; ++sct) {
const auto srcCT = static_cast<SkColorType>(sct);
// Note that we only currently use srcCT for a 1010102 workaround. If we remove this we
// can also put the ref data setup above the srcCT loop.
SkAutoPixmapStorage srcPixels = make_ref_f32_data(srcAT, srcCT);
auto src = srcFactory(srcPixels);
if (!src) {
continue;
}
if (SkColorTypeIsAlwaysOpaque(srcCT) && srcCTTestedThoroughly[srcCT] &&
(kPremul_SkAlphaType == srcAT || kUnpremul_SkAlphaType == srcAT)) {
continue;
}
if (SkColorTypeIsAlphaOnly(srcCT) && srcCTTestedThoroughly[srcCT] &&
(kUnpremul_SkAlphaType == srcAT ||
kOpaque_SkAlphaType == srcAT ||
kUnknown_SkAlphaType == srcAT)) {
continue;
}
for (int rct = 0; rct <= kLastEnum_SkColorType; ++rct) {
const auto readCT = static_cast<SkColorType>(rct);
for (const sk_sp<SkColorSpace>& readCS :
{SkColorSpace::MakeSRGB(), SkColorSpace::MakeSRGBLinear()}) {
for (int at = 0; at <= kLastEnum_SkAlphaType; ++at) {
const auto readAT = static_cast<SkAlphaType>(at);
if (srcAT != kOpaque_SkAlphaType && readAT == kOpaque_SkAlphaType) {
// This doesn't make sense.
continue;
}
if (SkColorTypeIsAlwaysOpaque(readCT) && readCTTestedThoroughly[readCT] &&
(kPremul_SkAlphaType == readAT || kUnpremul_SkAlphaType == readAT)) {
continue;
}
if (SkColorTypeIsAlphaOnly(readCT) && readCTTestedThoroughly[readCT] &&
(kUnpremul_SkAlphaType == readAT ||
kOpaque_SkAlphaType == readAT ||
kUnknown_SkAlphaType == readAT)) {
continue;
}
const auto& rects =
srcCTTestedThoroughly[sct] && readCTTestedThoroughly[rct]
? shortRectArray
: longRectArray;
for (const auto& rect : rects) {
const auto readInfo = SkImageInfo::Make(rect.width(), rect.height(),
readCT, readAT, readCS);
const SkIVector offset = rect.topLeft();
GpuReadResult r = runTest(src, srcPixels, readInfo, offset);
if (r == GpuReadResult::kSuccess) {
srcCTTestedThoroughly[sct] = true;
readCTTestedThoroughly[rct] = true;
}
}
}
}
}
}
}
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SurfaceContextReadPixels, reporter, ctxInfo) {
using Surface = std::unique_ptr<GrSurfaceContext>;
GrDirectContext* direct = ctxInfo.directContext();
auto reader = std::function<GpuReadSrcFn<Surface>>(
[direct](const Surface& surface, const SkIVector& offset, const SkPixmap& pixels) {
if (surface->readPixels(direct, pixels, {offset.fX, offset.fY})) {
return GpuReadResult::kSuccess;
} else {
// Reading from a non-renderable format is not guaranteed to work on GL.
// We'd have to be able to force a copy or draw draw to a renderable format.
const auto& caps = *direct->priv().caps();
if (direct->backend() == GrBackendApi::kOpenGL &&
!caps.isFormatRenderable(surface->asSurfaceProxy()->backendFormat(), 1)) {
return GpuReadResult::kExcusedFailure;
}
return GpuReadResult::kFail;
}
});
GpuReadPixelTestRules rules;
rules.fAllowUnpremulSrc = true;
rules.fUncontainedRectSucceeds = true;
for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) {
for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) {
auto factory = std::function<GpuSrcFactory<Surface>>(
[direct, origin, renderable](const SkPixmap& src) {
if (src.colorType() == kRGB_888x_SkColorType) {
return Surface();
}
auto surfContext = GrSurfaceContext::Make(
direct, src.info(), SkBackingFit::kExact, origin, renderable);
if (surfContext) {
surfContext->writePixels(direct, src, {0, 0});
}
return surfContext;
});
auto label = SkStringPrintf("Renderable: %d, Origin: %d", (int)renderable, origin);
gpu_read_pixels_test_driver(reporter, rules, factory, reader, label);
}
}
}
DEF_GPUTEST_FOR_ALL_CONTEXTS(ReadPixels_InvalidRowBytes_Gpu, reporter, ctxInfo) {
auto srcII = SkImageInfo::Make({10, 10}, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
auto surf = SkSurface::MakeRenderTarget(ctxInfo.directContext(), SkBudgeted::kYes, srcII);
for (int ct = 0; ct < kLastEnum_SkColorType + 1; ++ct) {
auto colorType = static_cast<SkColorType>(ct);
size_t bpp = SkColorTypeBytesPerPixel(colorType);
if (bpp <= 1) {
continue;
}
auto dstII = srcII.makeColorType(colorType);
size_t badRowBytes = (surf->width() + 1)*bpp - 1;
auto storage = std::make_unique<char[]>(badRowBytes*surf->height());
REPORTER_ASSERT(reporter, !surf->readPixels(dstII, storage.get(), badRowBytes, 0, 0));
}
}
DEF_GPUTEST_FOR_ALL_CONTEXTS(WritePixels_InvalidRowBytes_Gpu, reporter, ctxInfo) {
auto dstII = SkImageInfo::Make({10, 10}, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
auto surf = SkSurface::MakeRenderTarget(ctxInfo.directContext(), SkBudgeted::kYes, dstII);
for (int ct = 0; ct < kLastEnum_SkColorType + 1; ++ct) {
auto colorType = static_cast<SkColorType>(ct);
size_t bpp = SkColorTypeBytesPerPixel(colorType);
if (bpp <= 1) {
continue;
}
auto srcII = dstII.makeColorType(colorType);
size_t badRowBytes = (surf->width() + 1)*bpp - 1;
auto storage = std::make_unique<char[]>(badRowBytes*surf->height());
memset(storage.get(), 0, badRowBytes * surf->height());
// SkSurface::writePixels doesn't report bool, SkCanvas's does.
REPORTER_ASSERT(reporter,
!surf->getCanvas()->writePixels(srcII, storage.get(), badRowBytes, 0, 0));
}
}
namespace {
struct AsyncContext {
bool fCalled = false;
std::unique_ptr<const SkImage::AsyncReadResult> fResult;
};
} // anonymous namespace
// Making this a lambda in the test functions caused:
// "error: cannot compile this forwarded non-trivially copyable parameter yet"
// on x86/Win/Clang bot, referring to 'result'.
static void async_callback(void* c, std::unique_ptr<const SkImage::AsyncReadResult> result) {
auto context = static_cast<AsyncContext*>(c);
context->fResult = std::move(result);
context->fCalled = true;
};
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SurfaceAsyncReadPixels, reporter, ctxInfo) {
using Surface = sk_sp<SkSurface>;
auto reader = std::function<GpuReadSrcFn<Surface>>(
[](const Surface& surface, const SkIVector& offset, const SkPixmap& pixels) {
auto direct = surface->recordingContext()->asDirectContext();
SkASSERT(direct);
AsyncContext context;
auto rect = SkIRect::MakeSize(pixels.dimensions()).makeOffset(offset);
// Rescale quality and linearity don't matter since we're doing a non-scaling
// readback.
surface->asyncRescaleAndReadPixels(pixels.info(), rect,
SkImage::RescaleGamma::kSrc,
SkImage::RescaleMode::kNearest,
async_callback, &context);
direct->submit();
while (!context.fCalled) {
direct->checkAsyncWorkCompletion();
}
if (!context.fResult) {
return GpuReadResult::kFail;
}
SkRectMemcpy(pixels.writable_addr(), pixels.rowBytes(), context.fResult->data(0),
context.fResult->rowBytes(0), pixels.info().minRowBytes(),
pixels.height());
return GpuReadResult::kSuccess;
});
GpuReadPixelTestRules rules;
rules.fAllowUnpremulSrc = false;
rules.fUncontainedRectSucceeds = false;
for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) {
auto factory = std::function<GpuSrcFactory<Surface>>(
[context = ctxInfo.directContext(), origin](const SkPixmap& src) {
if (src.colorType() == kRGB_888x_SkColorType) {
return Surface();
}
auto surf = SkSurface::MakeRenderTarget(context,
SkBudgeted::kYes,
src.info(),
1,
origin,
nullptr);
if (surf) {
surf->writePixels(src, 0, 0);
}
return surf;
});
auto label = SkStringPrintf("Origin: %d", origin);
gpu_read_pixels_test_driver(reporter, rules, factory, reader, label);
auto backendRTFactory = std::function<GpuSrcFactory<Surface>>(
[context = ctxInfo.directContext(), origin](const SkPixmap& src) {
if (src.colorType() == kRGB_888x_SkColorType) {
return Surface();
}
// Dawn backend implementation of backend render targets doesn't support reading.
if (context->backend() == GrBackendApi::kDawn) {
return Surface();
}
auto surf = sk_gpu_test::MakeBackendRenderTargetSurface(context,
src.info(),
origin,
1);
if (surf) {
surf->writePixels(src, 0, 0);
}
return surf;
});
label = SkStringPrintf("BERT Origin: %d", origin);
gpu_read_pixels_test_driver(reporter, rules, backendRTFactory, reader, label);
}
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageAsyncReadPixels, reporter, ctxInfo) {
using Image = sk_sp<SkImage>;
auto context = ctxInfo.directContext();
auto reader = std::function<GpuReadSrcFn<Image>>([context](const Image& image,
const SkIVector& offset,
const SkPixmap& pixels) {
AsyncContext asyncContext;
auto rect = SkIRect::MakeSize(pixels.dimensions()).makeOffset(offset);
// The GPU implementation is based on rendering and will fail for non-renderable color
// types.
auto ct = SkColorTypeToGrColorType(image->colorType());
auto format = context->priv().caps()->getDefaultBackendFormat(ct, GrRenderable::kYes);
if (!context->priv().caps()->isFormatAsColorTypeRenderable(ct, format)) {
return GpuReadResult::kExcusedFailure;
}
// Rescale quality and linearity don't matter since we're doing a non-scaling readback.
image->asyncRescaleAndReadPixels(pixels.info(), rect,
SkImage::RescaleGamma::kSrc,
SkImage::RescaleMode::kNearest,
async_callback, &asyncContext);
context->submit();
while (!asyncContext.fCalled) {
context->checkAsyncWorkCompletion();
}
if (!asyncContext.fResult) {
return GpuReadResult::kFail;
}
SkRectMemcpy(pixels.writable_addr(), pixels.rowBytes(), asyncContext.fResult->data(0),
asyncContext.fResult->rowBytes(0), pixels.info().minRowBytes(),
pixels.height());
return GpuReadResult::kSuccess;
});
GpuReadPixelTestRules rules;
rules.fAllowUnpremulSrc = true;
rules.fUncontainedRectSucceeds = false;
for (auto origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) {
for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) {
auto factory = std::function<GpuSrcFactory<Image>>([&](const SkPixmap& src) {
if (src.colorType() == kRGB_888x_SkColorType) {
return Image();
}
return sk_gpu_test::MakeBackendTextureImage(ctxInfo.directContext(), src,
renderable, origin);
});
auto label = SkStringPrintf("Renderable: %d, Origin: %d", (int)renderable, origin);
gpu_read_pixels_test_driver(reporter, rules, factory, reader, label);
}
}
}
DEF_GPUTEST(AsyncReadPixelsContextShutdown, reporter, options) {
const auto ii = SkImageInfo::Make(10, 10, kRGBA_8888_SkColorType, kPremul_SkAlphaType,
SkColorSpace::MakeSRGB());
enum class ShutdownSequence {
kFreeResult_DestroyContext,
kDestroyContext_FreeResult,
kFreeResult_ReleaseAndAbandon_DestroyContext,
kFreeResult_Abandon_DestroyContext,
kReleaseAndAbandon_FreeResult_DestroyContext,
kAbandon_FreeResult_DestroyContext,
kReleaseAndAbandon_DestroyContext_FreeResult,
kAbandon_DestroyContext_FreeResult,
};
for (int t = 0; t < sk_gpu_test::GrContextFactory::kContextTypeCnt; ++t) {
auto type = static_cast<sk_gpu_test::GrContextFactory::ContextType>(t);
for (auto sequence : {ShutdownSequence::kFreeResult_DestroyContext,
ShutdownSequence::kDestroyContext_FreeResult,
ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext,
ShutdownSequence::kFreeResult_Abandon_DestroyContext,
ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext,
ShutdownSequence::kAbandon_FreeResult_DestroyContext,
ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult,
ShutdownSequence::kAbandon_DestroyContext_FreeResult}) {
// Vulkan context abandoning without resource release has issues outside of the scope of
// this test.
if (type == sk_gpu_test::GrContextFactory::kVulkan_ContextType &&
(sequence == ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext ||
sequence == ShutdownSequence::kFreeResult_Abandon_DestroyContext ||
sequence == ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext ||
sequence == ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult ||
sequence == ShutdownSequence::kAbandon_FreeResult_DestroyContext ||
sequence == ShutdownSequence::kAbandon_DestroyContext_FreeResult)) {
continue;
}
for (bool yuv : {false, true}) {
sk_gpu_test::GrContextFactory factory(options);
auto direct = factory.get(type);
if (!direct) {
continue;
}
// This test is only meaningful for contexts that support transfer buffers for
// reads.
if (!direct->priv().caps()->transferFromSurfaceToBufferSupport()) {
continue;
}
auto surf = SkSurface::MakeRenderTarget(direct, SkBudgeted::kYes, ii, 1, nullptr);
if (!surf) {
continue;
}
AsyncContext cbContext;
if (yuv) {
surf->asyncRescaleAndReadPixelsYUV420(
kIdentity_SkYUVColorSpace, SkColorSpace::MakeSRGB(), ii.bounds(),
ii.dimensions(), SkImage::RescaleGamma::kSrc,
SkImage::RescaleMode::kNearest, &async_callback, &cbContext);
} else {
surf->asyncRescaleAndReadPixels(ii, ii.bounds(), SkImage::RescaleGamma::kSrc,
SkImage::RescaleMode::kNearest, &async_callback,
&cbContext);
}
direct->submit();
while (!cbContext.fCalled) {
direct->checkAsyncWorkCompletion();
}
if (!cbContext.fResult) {
ERRORF(reporter, "Callback failed on %s. is YUV: %d",
sk_gpu_test::GrContextFactory::ContextTypeName(type), yuv);
continue;
}
// For vulkan we need to release all refs to the GrDirectContext before trying to
// destroy the test context. The surface here is holding a ref.
surf.reset();
// The real test is that we don't crash, get Vulkan validation errors, etc, during
// this shutdown sequence.
switch (sequence) {
case ShutdownSequence::kFreeResult_DestroyContext:
case ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext:
case ShutdownSequence::kFreeResult_Abandon_DestroyContext:
break;
case ShutdownSequence::kDestroyContext_FreeResult:
factory.destroyContexts();
break;
case ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext:
factory.releaseResourcesAndAbandonContexts();
break;
case ShutdownSequence::kAbandon_FreeResult_DestroyContext:
factory.abandonContexts();
break;
case ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult:
factory.releaseResourcesAndAbandonContexts();
factory.destroyContexts();
break;
case ShutdownSequence::kAbandon_DestroyContext_FreeResult:
factory.abandonContexts();
factory.destroyContexts();
break;
}
cbContext.fResult.reset();
switch (sequence) {
case ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext:
factory.releaseResourcesAndAbandonContexts();
break;
case ShutdownSequence::kFreeResult_Abandon_DestroyContext:
factory.abandonContexts();
break;
case ShutdownSequence::kFreeResult_DestroyContext:
case ShutdownSequence::kDestroyContext_FreeResult:
case ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext:
case ShutdownSequence::kAbandon_FreeResult_DestroyContext:
case ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult:
case ShutdownSequence::kAbandon_DestroyContext_FreeResult:
break;
}
}
}
}
}