blob: 88dd74f92d22ab71cdd56b41c5703cf960c8e6f8 [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <ctype.h>
#include "nanobench.h"
#include "AndroidCodecBench.h"
#include "Benchmark.h"
#include "BitmapRegionDecoderBench.h"
#include "CodecBench.h"
#include "CodecBenchPriv.h"
#include "CrashHandler.h"
#include "GMBench.h"
#include "ProcStats.h"
#include "ResultsWriter.h"
#include "RecordingBench.h"
#include "SKPAnimationBench.h"
#include "SKPBench.h"
#include "Stats.h"
#include "SkAndroidCodec.h"
#include "SkBitmapRegionDecoder.h"
#include "SkBBoxHierarchy.h"
#include "SkCanvas.h"
#include "SkCodec.h"
#include "SkCommonFlags.h"
#include "SkCommonFlagsConfig.h"
#include "SkData.h"
#include "SkForceLinking.h"
#include "SkGraphics.h"
#include "SkOSFile.h"
#include "SkPictureRecorder.h"
#include "SkPictureUtils.h"
#include "SkString.h"
#include "SkSurface.h"
#include "SkTaskGroup.h"
#include "SkThreadUtils.h"
#include "ThermalManager.h"
#include <stdlib.h>
#ifndef SK_BUILD_FOR_WIN32
#include <unistd.h>
#endif
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
#include "nanobenchAndroid.h"
#endif
#if SK_SUPPORT_GPU
#include "gl/GrGLDefines.h"
#include "GrCaps.h"
#include "GrContextFactory.h"
SkAutoTDelete<GrContextFactory> gGrFactory;
#endif
struct GrContextOptions;
__SK_FORCE_IMAGE_DECODER_LINKING;
static const int kAutoTuneLoops = 0;
static const int kDefaultLoops =
#ifdef SK_DEBUG
1;
#else
kAutoTuneLoops;
#endif
static SkString loops_help_txt() {
SkString help;
help.printf("Number of times to run each bench. Set this to %d to auto-"
"tune for each bench. Timings are only reported when auto-tuning.",
kAutoTuneLoops);
return help;
}
static SkString to_string(int n) {
SkString str;
str.appendS32(n);
return str;
}
DEFINE_int32(loops, kDefaultLoops, loops_help_txt().c_str());
DEFINE_int32(samples, 10, "Number of samples to measure for each bench.");
DEFINE_int32(ms, 0, "If >0, run each bench for this many ms instead of obeying --samples.");
DEFINE_int32(overheadLoops, 100000, "Loops to estimate timer overhead.");
DEFINE_double(overheadGoal, 0.0001,
"Loop until timer overhead is at most this fraction of our measurments.");
DEFINE_double(gpuMs, 5, "Target bench time in millseconds for GPU.");
DEFINE_int32(gpuFrameLag, 5, "If unknown, estimated maximum number of frames GPU allows to lag.");
DEFINE_bool(gpuCompressAlphaMasks, false, "Compress masks generated from falling back to "
"software path rendering.");
DEFINE_string(outResultsFile, "", "If given, write results here as JSON.");
DEFINE_int32(maxCalibrationAttempts, 3,
"Try up to this many times to guess loops for a bench, or skip the bench.");
DEFINE_int32(maxLoops, 1000000, "Never run a bench more times than this.");
DEFINE_string(clip, "0,0,1000,1000", "Clip for SKPs.");
DEFINE_string(scales, "1.0", "Space-separated scales for SKPs.");
DEFINE_string(zoom, "1.0,0", "Comma-separated zoomMax,zoomPeriodMs factors for a periodic SKP zoom "
"function that ping-pongs between 1.0 and zoomMax.");
DEFINE_bool(bbh, true, "Build a BBH for SKPs?");
DEFINE_bool(mpd, true, "Use MultiPictureDraw for the SKPs?");
DEFINE_bool(loopSKP, true, "Loop SKPs like we do for micro benches?");
DEFINE_int32(flushEvery, 10, "Flush --outResultsFile every Nth run.");
DEFINE_bool(resetGpuContext, true, "Reset the GrContext before running each test.");
DEFINE_bool(gpuStats, false, "Print GPU stats after each gpu benchmark?");
DEFINE_bool(gpuStatsDump, false, "Dump GPU states after each benchmark to json");
DEFINE_bool(keepAlive, false, "Print a message every so often so that we don't time out");
DEFINE_string(useThermalManager, "0,1,10,1000", "enabled,threshold,sleepTimeMs,TimeoutMs for "
"thermalManager\n");
DEFINE_string(sourceType, "",
"Apply usual --match rules to source type: bench, gm, skp, image, etc.");
DEFINE_string(benchType, "",
"Apply usual --match rules to bench type: micro, recording, playback, skcodec, etc.");
static double now_ms() { return SkTime::GetNSecs() * 1e-6; }
static SkString humanize(double ms) {
if (FLAGS_verbose) return SkStringPrintf("%llu", (uint64_t)(ms*1e6));
return HumanizeMs(ms);
}
#define HUMANIZE(ms) humanize(ms).c_str()
bool Target::init(SkImageInfo info, Benchmark* bench) {
if (Benchmark::kRaster_Backend == config.backend) {
this->surface.reset(SkSurface::NewRaster(info));
if (!this->surface.get()) {
return false;
}
}
return true;
}
bool Target::capturePixels(SkBitmap* bmp) {
SkCanvas* canvas = this->getCanvas();
if (!canvas) {
return false;
}
bmp->setInfo(canvas->imageInfo());
if (!canvas->readPixels(bmp, 0, 0)) {
SkDebugf("Can't read canvas pixels.\n");
return false;
}
return true;
}
#if SK_SUPPORT_GPU
struct GPUTarget : public Target {
explicit GPUTarget(const Config& c) : Target(c), gl(nullptr) { }
SkGLContext* gl;
void setup() override {
this->gl->makeCurrent();
// Make sure we're done with whatever came before.
SK_GL(*this->gl, Finish());
}
void endTiming() override {
if (this->gl) {
SK_GL(*this->gl, Flush());
this->gl->waitOnSyncOrSwap();
}
}
void fence() override {
SK_GL(*this->gl, Finish());
}
bool needsFrameTiming(int* maxFrameLag) const override {
if (!this->gl->getMaxGpuFrameLag(maxFrameLag)) {
// Frame lag is unknown.
*maxFrameLag = FLAGS_gpuFrameLag;
}
return true;
}
bool init(SkImageInfo info, Benchmark* bench) override {
uint32_t flags = this->config.useDFText ? SkSurfaceProps::kUseDeviceIndependentFonts_Flag :
0;
SkSurfaceProps props(flags, SkSurfaceProps::kLegacyFontHost_InitType);
this->surface.reset(SkSurface::NewRenderTarget(gGrFactory->get(this->config.ctxType,
this->config.ctxOptions),
SkBudgeted::kNo, info,
this->config.samples, &props));
this->gl = gGrFactory->getContextInfo(this->config.ctxType,
this->config.ctxOptions).fGLContext;
if (!this->surface.get()) {
return false;
}
if (!this->gl->fenceSyncSupport()) {
SkDebugf("WARNING: GL context for config \"%s\" does not support fence sync. "
"Timings might not be accurate.\n", this->config.name.c_str());
}
return true;
}
void fillOptions(ResultsWriter* log) override {
const GrGLubyte* version;
SK_GL_RET(*this->gl, version, GetString(GR_GL_VERSION));
log->configOption("GL_VERSION", (const char*)(version));
SK_GL_RET(*this->gl, version, GetString(GR_GL_RENDERER));
log->configOption("GL_RENDERER", (const char*) version);
SK_GL_RET(*this->gl, version, GetString(GR_GL_VENDOR));
log->configOption("GL_VENDOR", (const char*) version);
SK_GL_RET(*this->gl, version, GetString(GR_GL_SHADING_LANGUAGE_VERSION));
log->configOption("GL_SHADING_LANGUAGE_VERSION", (const char*) version);
}
};
#endif
static double time(int loops, Benchmark* bench, Target* target) {
SkCanvas* canvas = target->getCanvas();
if (canvas) {
canvas->clear(SK_ColorWHITE);
}
bench->preDraw(canvas);
double start = now_ms();
canvas = target->beginTiming(canvas);
bench->draw(loops, canvas);
if (canvas) {
canvas->flush();
}
target->endTiming();
double elapsed = now_ms() - start;
bench->postDraw(canvas);
return elapsed;
}
static double estimate_timer_overhead() {
double overhead = 0;
for (int i = 0; i < FLAGS_overheadLoops; i++) {
double start = now_ms();
overhead += now_ms() - start;
}
return overhead / FLAGS_overheadLoops;
}
static int detect_forever_loops(int loops) {
// look for a magic run-forever value
if (loops < 0) {
loops = SK_MaxS32;
}
return loops;
}
static int clamp_loops(int loops) {
if (loops < 1) {
SkDebugf("ERROR: clamping loops from %d to 1. "
"There's probably something wrong with the bench.\n", loops);
return 1;
}
if (loops > FLAGS_maxLoops) {
SkDebugf("WARNING: clamping loops from %d to FLAGS_maxLoops, %d.\n", loops, FLAGS_maxLoops);
return FLAGS_maxLoops;
}
return loops;
}
static bool write_canvas_png(Target* target, const SkString& filename) {
if (filename.isEmpty()) {
return false;
}
if (target->getCanvas() &&
kUnknown_SkColorType == target->getCanvas()->imageInfo().colorType()) {
return false;
}
SkBitmap bmp;
if (!target->capturePixels(&bmp)) {
return false;
}
SkString dir = SkOSPath::Dirname(filename.c_str());
if (!sk_mkdir(dir.c_str())) {
SkDebugf("Can't make dir %s.\n", dir.c_str());
return false;
}
SkFILEWStream stream(filename.c_str());
if (!stream.isValid()) {
SkDebugf("Can't write %s.\n", filename.c_str());
return false;
}
if (!SkImageEncoder::EncodeStream(&stream, bmp, SkImageEncoder::kPNG_Type, 100)) {
SkDebugf("Can't encode a PNG.\n");
return false;
}
return true;
}
static int kFailedLoops = -2;
static int setup_cpu_bench(const double overhead, Target* target, Benchmark* bench) {
// First figure out approximately how many loops of bench it takes to make overhead negligible.
double bench_plus_overhead = 0.0;
int round = 0;
int loops = bench->calculateLoops(FLAGS_loops);
if (kAutoTuneLoops == loops) {
while (bench_plus_overhead < overhead) {
if (round++ == FLAGS_maxCalibrationAttempts) {
SkDebugf("WARNING: Can't estimate loops for %s (%s vs. %s); skipping.\n",
bench->getUniqueName(), HUMANIZE(bench_plus_overhead), HUMANIZE(overhead));
return kFailedLoops;
}
bench_plus_overhead = time(1, bench, target);
}
}
// Later we'll just start and stop the timer once but loop N times.
// We'll pick N to make timer overhead negligible:
//
// overhead
// ------------------------- < FLAGS_overheadGoal
// overhead + N * Bench Time
//
// where bench_plus_overhead ≈ overhead + Bench Time.
//
// Doing some math, we get:
//
// (overhead / FLAGS_overheadGoal) - overhead
// ------------------------------------------ < N
// bench_plus_overhead - overhead)
//
// Luckily, this also works well in practice. :)
if (kAutoTuneLoops == loops) {
const double numer = overhead / FLAGS_overheadGoal - overhead;
const double denom = bench_plus_overhead - overhead;
loops = (int)ceil(numer / denom);
loops = clamp_loops(loops);
} else {
loops = detect_forever_loops(loops);
}
return loops;
}
static int setup_gpu_bench(Target* target, Benchmark* bench, int maxGpuFrameLag) {
// First, figure out how many loops it'll take to get a frame up to FLAGS_gpuMs.
int loops = bench->calculateLoops(FLAGS_loops);
if (kAutoTuneLoops == loops) {
loops = 1;
double elapsed = 0;
do {
if (1<<30 == loops) {
// We're about to wrap. Something's wrong with the bench.
loops = 0;
break;
}
loops *= 2;
// If the GPU lets frames lag at all, we need to make sure we're timing
// _this_ round, not still timing last round.
for (int i = 0; i < maxGpuFrameLag; i++) {
elapsed = time(loops, bench, target);
}
} while (elapsed < FLAGS_gpuMs);
// We've overshot at least a little. Scale back linearly.
loops = (int)ceil(loops * FLAGS_gpuMs / elapsed);
loops = clamp_loops(loops);
// Make sure we're not still timing our calibration.
target->fence();
} else {
loops = detect_forever_loops(loops);
}
// Pretty much the same deal as the calibration: do some warmup to make
// sure we're timing steady-state pipelined frames.
for (int i = 0; i < maxGpuFrameLag - 1; i++) {
time(loops, bench, target);
}
return loops;
}
#if SK_SUPPORT_GPU
#define kBogusGLContextType GrContextFactory::kNative_GLContextType
#define kBogusGLContextOptions GrContextFactory::kNone_GLContextOptions
#else
#define kBogusGLContextType 0
#define kBogusGLContextOptions 0
#endif
static void create_config(const SkCommandLineConfig* config, SkTArray<Config>* configs) {
#if SK_SUPPORT_GPU
if (const auto* gpuConfig = config->asConfigGpu()) {
if (!FLAGS_gpu)
return;
const auto ctxOptions = gpuConfig->getUseNVPR() ? GrContextFactory::kEnableNVPR_GLContextOptions
: GrContextFactory::kNone_GLContextOptions;
const auto ctxType = gpuConfig->getContextType();
const auto sampleCount = gpuConfig->getSamples();
if (const GrContext* ctx = gGrFactory->get(ctxType, ctxOptions)) {
const auto maxSampleCount = ctx->caps()->maxSampleCount();
if (sampleCount > ctx->caps()->maxSampleCount()) {
SkDebugf("Configuration sample count %d exceeds maximum %d.\n",
sampleCount, maxSampleCount);
return;
}
} else {
SkDebugf("No context was available matching config type and options.\n");
return;
}
Config target = {
gpuConfig->getTag(),
Benchmark::kGPU_Backend,
kN32_SkColorType,
kPremul_SkAlphaType,
kLinear_SkColorProfileType,
sampleCount,
ctxType,
ctxOptions,
gpuConfig->getUseDIText()
};
configs->push_back(target);
return;
}
#endif
#define CPU_CONFIG(name, backend, color, alpha, profile) \
if (config->getTag().equals(#name)) { \
Config config = { \
SkString(#name), Benchmark::backend, color, alpha, profile, \
0, kBogusGLContextType, kBogusGLContextOptions, false \
}; \
configs->push_back(config); \
return; \
}
if (FLAGS_cpu) {
CPU_CONFIG(nonrendering, kNonRendering_Backend,
kUnknown_SkColorType, kUnpremul_SkAlphaType, kLinear_SkColorProfileType);
CPU_CONFIG(8888, kRaster_Backend,
kN32_SkColorType, kPremul_SkAlphaType, kLinear_SkColorProfileType)
CPU_CONFIG(565, kRaster_Backend,
kRGB_565_SkColorType, kOpaque_SkAlphaType, kLinear_SkColorProfileType)
CPU_CONFIG(srgb, kRaster_Backend,
kN32_SkColorType, kPremul_SkAlphaType, kSRGB_SkColorProfileType)
CPU_CONFIG(f16, kRaster_Backend,
kRGBA_F16_SkColorType, kPremul_SkAlphaType, kLinear_SkColorProfileType)
}
#undef CPU_CONFIG
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
if (config->getTag().equals("hwui")) {
Config config = { SkString("hwui"), Benchmark::kHWUI_Backend,
kRGBA_8888_SkColorType, kPremul_SkAlphaType, kLinear_SkColorProfileType,
0, kBogusGLContextType, kBogusGLContextOptions, false };
configs->push_back(config);
}
#endif
}
// Append all configs that are enabled and supported.
void create_configs(SkTArray<Config>* configs) {
SkCommandLineConfigArray array;
ParseConfigs(FLAGS_config, &array);
for (int i = 0; i < array.count(); ++i) {
create_config(array[i], configs);
}
}
// If bench is enabled for config, returns a Target* for it, otherwise nullptr.
static Target* is_enabled(Benchmark* bench, const Config& config) {
if (!bench->isSuitableFor(config.backend)) {
return nullptr;
}
SkImageInfo info = SkImageInfo::Make(bench->getSize().fX, bench->getSize().fY,
config.color, config.alpha, config.profile);
Target* target = nullptr;
switch (config.backend) {
#if SK_SUPPORT_GPU
case Benchmark::kGPU_Backend:
target = new GPUTarget(config);
break;
#endif
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
case Benchmark::kHWUI_Backend:
target = new HWUITarget(config, bench);
break;
#endif
default:
target = new Target(config);
break;
}
if (!target->init(info, bench)) {
delete target;
return nullptr;
}
return target;
}
static bool valid_brd_bench(SkData* encoded, SkBitmapRegionDecoder::Strategy strategy,
SkColorType colorType, uint32_t sampleSize, uint32_t minOutputSize, int* width,
int* height) {
SkAutoTDelete<SkBitmapRegionDecoder> brd(
SkBitmapRegionDecoder::Create(encoded, strategy));
if (nullptr == brd.get()) {
// This is indicates that subset decoding is not supported for a particular image format.
return false;
}
SkBitmap bitmap;
if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(0, 0, brd->width(), brd->height()),
1, colorType, false)) {
return false;
}
if (sampleSize * minOutputSize > (uint32_t) brd->width() || sampleSize * minOutputSize >
(uint32_t) brd->height()) {
// This indicates that the image is not large enough to decode a
// minOutputSize x minOutputSize subset at the given sampleSize.
return false;
}
// Set the image width and height. The calling code will use this to choose subsets to decode.
*width = brd->width();
*height = brd->height();
return true;
}
static void cleanup_run(Target* target) {
delete target;
#if SK_SUPPORT_GPU
if (FLAGS_abandonGpuContext) {
gGrFactory->abandonContexts();
}
if (FLAGS_resetGpuContext || FLAGS_abandonGpuContext) {
gGrFactory->destroyContexts();
}
#endif
}
class BenchmarkStream {
public:
BenchmarkStream() : fBenches(BenchRegistry::Head())
, fGMs(skiagm::GMRegistry::Head())
, fCurrentRecording(0)
, fCurrentScale(0)
, fCurrentSKP(0)
, fCurrentUseMPD(0)
, fCurrentCodec(0)
, fCurrentAndroidCodec(0)
, fCurrentBRDImage(0)
, fCurrentColorType(0)
, fCurrentAlphaType(0)
, fCurrentSubsetType(0)
, fCurrentBRDStrategy(0)
, fCurrentSampleSize(0)
, fCurrentAnimSKP(0) {
for (int i = 0; i < FLAGS_skps.count(); i++) {
if (SkStrEndsWith(FLAGS_skps[i], ".skp")) {
fSKPs.push_back() = FLAGS_skps[i];
} else {
SkOSFile::Iter it(FLAGS_skps[i], ".skp");
SkString path;
while (it.next(&path)) {
fSKPs.push_back() = SkOSPath::Join(FLAGS_skps[0], path.c_str());
}
}
}
if (4 != sscanf(FLAGS_clip[0], "%d,%d,%d,%d",
&fClip.fLeft, &fClip.fTop, &fClip.fRight, &fClip.fBottom)) {
SkDebugf("Can't parse %s from --clip as an SkIRect.\n", FLAGS_clip[0]);
exit(1);
}
for (int i = 0; i < FLAGS_scales.count(); i++) {
if (1 != sscanf(FLAGS_scales[i], "%f", &fScales.push_back())) {
SkDebugf("Can't parse %s from --scales as an SkScalar.\n", FLAGS_scales[i]);
exit(1);
}
}
if (2 != sscanf(FLAGS_zoom[0], "%f,%lf", &fZoomMax, &fZoomPeriodMs)) {
SkDebugf("Can't parse %s from --zoom as a zoomMax,zoomPeriodMs.\n", FLAGS_zoom[0]);
exit(1);
}
if (FLAGS_mpd) {
fUseMPDs.push_back() = true;
}
fUseMPDs.push_back() = false;
// Prepare the images for decoding
if (!CollectImages(&fImages)) {
exit(1);
}
// Choose the candidate color types for image decoding
const SkColorType colorTypes[] =
{ kN32_SkColorType,
kRGB_565_SkColorType,
kAlpha_8_SkColorType,
kIndex_8_SkColorType,
kGray_8_SkColorType };
fColorTypes.reset(colorTypes, SK_ARRAY_COUNT(colorTypes));
}
static bool ReadPicture(const char* path, SkAutoTUnref<SkPicture>* pic) {
// Not strictly necessary, as it will be checked again later,
// but helps to avoid a lot of pointless work if we're going to skip it.
if (SkCommandLineFlags::ShouldSkip(FLAGS_match, SkOSPath::Basename(path).c_str())) {
return false;
}
SkAutoTDelete<SkStream> stream(SkStream::NewFromFile(path));
if (stream.get() == nullptr) {
SkDebugf("Could not read %s.\n", path);
return false;
}
pic->reset(SkPicture::CreateFromStream(stream.get()));
if (pic->get() == nullptr) {
SkDebugf("Could not read %s as an SkPicture.\n", path);
return false;
}
return true;
}
Benchmark* next() {
SkAutoTDelete<Benchmark> bench;
do {
bench.reset(this->rawNext());
if (!bench) {
return nullptr;
}
} while(SkCommandLineFlags::ShouldSkip(FLAGS_sourceType, fSourceType) ||
SkCommandLineFlags::ShouldSkip(FLAGS_benchType, fBenchType));
return bench.release();
}
Benchmark* rawNext() {
if (fBenches) {
Benchmark* bench = fBenches->factory()(nullptr);
fBenches = fBenches->next();
fSourceType = "bench";
fBenchType = "micro";
return bench;
}
while (fGMs) {
SkAutoTDelete<skiagm::GM> gm(fGMs->factory()(nullptr));
fGMs = fGMs->next();
if (gm->runAsBench()) {
fSourceType = "gm";
fBenchType = "micro";
return new GMBench(gm.release());
}
}
// First add all .skps as RecordingBenches.
while (fCurrentRecording < fSKPs.count()) {
const SkString& path = fSKPs[fCurrentRecording++];
SkAutoTUnref<SkPicture> pic;
if (!ReadPicture(path.c_str(), &pic)) {
continue;
}
SkString name = SkOSPath::Basename(path.c_str());
fSourceType = "skp";
fBenchType = "recording";
fSKPBytes = static_cast<double>(SkPictureUtils::ApproximateBytesUsed(pic));
fSKPOps = pic->approximateOpCount();
return new RecordingBench(name.c_str(), pic.get(), FLAGS_bbh);
}
// Then once each for each scale as SKPBenches (playback).
while (fCurrentScale < fScales.count()) {
while (fCurrentSKP < fSKPs.count()) {
const SkString& path = fSKPs[fCurrentSKP];
SkAutoTUnref<SkPicture> pic;
if (!ReadPicture(path.c_str(), &pic)) {
fCurrentSKP++;
continue;
}
while (fCurrentUseMPD < fUseMPDs.count()) {
if (FLAGS_bbh) {
// The SKP we read off disk doesn't have a BBH. Re-record so it grows one.
SkRTreeFactory factory;
SkPictureRecorder recorder;
static const int kFlags = SkPictureRecorder::kComputeSaveLayerInfo_RecordFlag;
pic->playback(recorder.beginRecording(pic->cullRect().width(),
pic->cullRect().height(),
&factory,
fUseMPDs[fCurrentUseMPD] ? kFlags : 0));
pic.reset(recorder.endRecording());
}
SkString name = SkOSPath::Basename(path.c_str());
fSourceType = "skp";
fBenchType = "playback";
return new SKPBench(name.c_str(), pic.get(), fClip, fScales[fCurrentScale],
fUseMPDs[fCurrentUseMPD++], FLAGS_loopSKP);
}
fCurrentUseMPD = 0;
fCurrentSKP++;
}
fCurrentSKP = 0;
fCurrentScale++;
}
// Now loop over each skp again if we have an animation
if (fZoomMax != 1.0f && fZoomPeriodMs > 0) {
while (fCurrentAnimSKP < fSKPs.count()) {
const SkString& path = fSKPs[fCurrentAnimSKP];
SkAutoTUnref<SkPicture> pic;
if (!ReadPicture(path.c_str(), &pic)) {
fCurrentAnimSKP++;
continue;
}
fCurrentAnimSKP++;
SkString name = SkOSPath::Basename(path.c_str());
SkAutoTUnref<SKPAnimationBench::Animation> animation(
SKPAnimationBench::CreateZoomAnimation(fZoomMax, fZoomPeriodMs));
return new SKPAnimationBench(name.c_str(), pic.get(), fClip, animation,
FLAGS_loopSKP);
}
}
for (; fCurrentCodec < fImages.count(); fCurrentCodec++) {
fSourceType = "image";
fBenchType = "skcodec";
const SkString& path = fImages[fCurrentCodec];
if (SkCommandLineFlags::ShouldSkip(FLAGS_match, path.c_str())) {
continue;
}
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(path.c_str()));
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded));
if (!codec) {
// Nothing to time.
SkDebugf("Cannot find codec for %s\n", path.c_str());
continue;
}
while (fCurrentColorType < fColorTypes.count()) {
const SkColorType colorType = fColorTypes[fCurrentColorType];
SkAlphaType alphaType = codec->getInfo().alphaType();
switch (alphaType) {
case kOpaque_SkAlphaType:
// We only need to test one alpha type (opaque).
fCurrentColorType++;
break;
case kUnpremul_SkAlphaType:
case kPremul_SkAlphaType:
if (0 == fCurrentAlphaType) {
// Test unpremul first.
alphaType = kUnpremul_SkAlphaType;
fCurrentAlphaType++;
} else {
// Test premul.
alphaType = kPremul_SkAlphaType;
fCurrentAlphaType = 0;
fCurrentColorType++;
}
break;
default:
SkASSERT(false);
fCurrentColorType++;
break;
}
// Make sure we can decode to this color type and alpha type.
SkImageInfo info =
codec->getInfo().makeColorType(colorType).makeAlphaType(alphaType);
const size_t rowBytes = info.minRowBytes();
SkAutoMalloc storage(info.getSafeSize(rowBytes));
// Used if fCurrentColorType is kIndex_8_SkColorType
int colorCount = 256;
SkPMColor colors[256];
const SkCodec::Result result = codec->getPixels(
info, storage.get(), rowBytes, nullptr, colors,
&colorCount);
switch (result) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput:
return new CodecBench(SkOSPath::Basename(path.c_str()),
encoded, colorType, alphaType);
case SkCodec::kInvalidConversion:
// This is okay. Not all conversions are valid.
break;
default:
// This represents some sort of failure.
SkASSERT(false);
break;
}
}
fCurrentColorType = 0;
}
// Run AndroidCodecBenches
const int sampleSizes[] = { 2, 4, 8 };
for (; fCurrentAndroidCodec < fImages.count(); fCurrentAndroidCodec++) {
fSourceType = "image";
fBenchType = "skandroidcodec";
const SkString& path = fImages[fCurrentAndroidCodec];
if (SkCommandLineFlags::ShouldSkip(FLAGS_match, path.c_str())) {
continue;
}
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(path.c_str()));
SkAutoTDelete<SkAndroidCodec> codec(SkAndroidCodec::NewFromData(encoded));
if (!codec) {
// Nothing to time.
SkDebugf("Cannot find codec for %s\n", path.c_str());
continue;
}
while (fCurrentSampleSize < (int) SK_ARRAY_COUNT(sampleSizes)) {
int sampleSize = sampleSizes[fCurrentSampleSize];
fCurrentSampleSize++;
if (10 * sampleSize > SkTMin(codec->getInfo().width(), codec->getInfo().height())) {
// Avoid benchmarking scaled decodes of already small images.
break;
}
return new AndroidCodecBench(SkOSPath::Basename(path.c_str()), encoded, sampleSize);
}
fCurrentSampleSize = 0;
}
// Run the BRDBenches
// We will benchmark multiple BRD strategies.
static const struct {
SkBitmapRegionDecoder::Strategy fStrategy;
const char* fName;
} strategies[] = {
{ SkBitmapRegionDecoder::kCanvas_Strategy, "BRD_canvas" },
{ SkBitmapRegionDecoder::kAndroidCodec_Strategy, "BRD_android_codec" },
};
// We intend to create benchmarks that model the use cases in
// android/libraries/social/tiledimage. In this library, an image is decoded in 512x512
// tiles. The image can be translated freely, so the location of a tile may be anywhere in
// the image. For that reason, we will benchmark decodes in five representative locations
// in the image. Additionally, this use case utilizes power of two scaling, so we will
// test on power of two sample sizes. The output tile is always 512x512, so, when a
// sampleSize is used, the size of the subset that is decoded is always
// (sampleSize*512)x(sampleSize*512).
// There are a few good reasons to only test on power of two sample sizes at this time:
// All use cases we are aware of only scale by powers of two.
// PNG decodes use the indicated sampling strategy regardless of the sample size, so
// these tests are sufficient to provide good coverage of our scaling options.
const uint32_t brdSampleSizes[] = { 1, 2, 4, 8, 16 };
const uint32_t minOutputSize = 512;
for (; fCurrentBRDImage < fImages.count(); fCurrentBRDImage++) {
const SkString& path = fImages[fCurrentBRDImage];
if (SkCommandLineFlags::ShouldSkip(FLAGS_match, path.c_str())) {
continue;
}
while (fCurrentBRDStrategy < (int) SK_ARRAY_COUNT(strategies)) {
fSourceType = "image";
fBenchType = strategies[fCurrentBRDStrategy].fName;
const SkBitmapRegionDecoder::Strategy strategy =
strategies[fCurrentBRDStrategy].fStrategy;
while (fCurrentColorType < fColorTypes.count()) {
while (fCurrentSampleSize < (int) SK_ARRAY_COUNT(brdSampleSizes)) {
while (fCurrentSubsetType <= kLastSingle_SubsetType) {
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(path.c_str()));
const SkColorType colorType = fColorTypes[fCurrentColorType];
uint32_t sampleSize = brdSampleSizes[fCurrentSampleSize];
int currentSubsetType = fCurrentSubsetType++;
int width = 0;
int height = 0;
if (!valid_brd_bench(encoded.get(), strategy, colorType, sampleSize,
minOutputSize, &width, &height)) {
break;
}
SkString basename = SkOSPath::Basename(path.c_str());
SkIRect subset;
const uint32_t subsetSize = sampleSize * minOutputSize;
switch (currentSubsetType) {
case kTopLeft_SubsetType:
basename.append("_TopLeft");
subset = SkIRect::MakeXYWH(0, 0, subsetSize, subsetSize);
break;
case kTopRight_SubsetType:
basename.append("_TopRight");
subset = SkIRect::MakeXYWH(width - subsetSize, 0, subsetSize,
subsetSize);
break;
case kMiddle_SubsetType:
basename.append("_Middle");
subset = SkIRect::MakeXYWH((width - subsetSize) / 2,
(height - subsetSize) / 2, subsetSize, subsetSize);
break;
case kBottomLeft_SubsetType:
basename.append("_BottomLeft");
subset = SkIRect::MakeXYWH(0, height - subsetSize, subsetSize,
subsetSize);
break;
case kBottomRight_SubsetType:
basename.append("_BottomRight");
subset = SkIRect::MakeXYWH(width - subsetSize,
height - subsetSize, subsetSize, subsetSize);
break;
default:
SkASSERT(false);
}
return new BitmapRegionDecoderBench(basename.c_str(), encoded.get(),
strategy, colorType, sampleSize, subset);
}
fCurrentSubsetType = 0;
fCurrentSampleSize++;
}
fCurrentSampleSize = 0;
fCurrentColorType++;
}
fCurrentColorType = 0;
fCurrentBRDStrategy++;
}
fCurrentBRDStrategy = 0;
}
return nullptr;
}
void fillCurrentOptions(ResultsWriter* log) const {
log->configOption("source_type", fSourceType);
log->configOption("bench_type", fBenchType);
if (0 == strcmp(fSourceType, "skp")) {
log->configOption("clip",
SkStringPrintf("%d %d %d %d", fClip.fLeft, fClip.fTop,
fClip.fRight, fClip.fBottom).c_str());
SkASSERT_RELEASE(fCurrentScale < fScales.count()); // debugging paranoia
log->configOption("scale", SkStringPrintf("%.2g", fScales[fCurrentScale]).c_str());
if (fCurrentUseMPD > 0) {
SkASSERT(1 == fCurrentUseMPD || 2 == fCurrentUseMPD);
log->configOption("multi_picture_draw", fUseMPDs[fCurrentUseMPD-1] ? "true" : "false");
}
}
if (0 == strcmp(fBenchType, "recording")) {
log->metric("bytes", fSKPBytes);
log->metric("ops", fSKPOps);
}
}
private:
enum SubsetType {
kTopLeft_SubsetType = 0,
kTopRight_SubsetType = 1,
kMiddle_SubsetType = 2,
kBottomLeft_SubsetType = 3,
kBottomRight_SubsetType = 4,
kTranslate_SubsetType = 5,
kZoom_SubsetType = 6,
kLast_SubsetType = kZoom_SubsetType,
kLastSingle_SubsetType = kBottomRight_SubsetType,
};
const BenchRegistry* fBenches;
const skiagm::GMRegistry* fGMs;
SkIRect fClip;
SkTArray<SkScalar> fScales;
SkTArray<SkString> fSKPs;
SkTArray<bool> fUseMPDs;
SkTArray<SkString> fImages;
SkTArray<SkColorType, true> fColorTypes;
SkScalar fZoomMax;
double fZoomPeriodMs;
double fSKPBytes, fSKPOps;
const char* fSourceType; // What we're benching: bench, GM, SKP, ...
const char* fBenchType; // How we bench it: micro, recording, playback, ...
int fCurrentRecording;
int fCurrentScale;
int fCurrentSKP;
int fCurrentUseMPD;
int fCurrentCodec;
int fCurrentAndroidCodec;
int fCurrentBRDImage;
int fCurrentColorType;
int fCurrentAlphaType;
int fCurrentSubsetType;
int fCurrentBRDStrategy;
int fCurrentSampleSize;
int fCurrentAnimSKP;
};
// Some runs (mostly, Valgrind) are so slow that the bot framework thinks we've hung.
// This prints something every once in a while so that it knows we're still working.
static void start_keepalive() {
struct Loop {
static void forever(void*) {
for (;;) {
static const int kSec = 1200;
#if defined(SK_BUILD_FOR_WIN)
Sleep(kSec * 1000);
#else
sleep(kSec);
#endif
SkDebugf("\nBenchmarks still running...\n");
}
}
};
static SkThread* intentionallyLeaked = new SkThread(Loop::forever);
intentionallyLeaked->start();
}
int nanobench_main();
int nanobench_main() {
SetupCrashHandler();
SkAutoGraphics ag;
SkTaskGroup::Enabler enabled(FLAGS_threads);
#if SK_SUPPORT_GPU
GrContextOptions grContextOpts;
grContextOpts.fDrawPathToCompressedTexture = FLAGS_gpuCompressAlphaMasks;
gGrFactory.reset(new GrContextFactory(grContextOpts));
#endif
if (FLAGS_veryVerbose) {
FLAGS_verbose = true;
}
if (kAutoTuneLoops != FLAGS_loops) {
FLAGS_samples = 1;
FLAGS_gpuFrameLag = 0;
}
if (!FLAGS_writePath.isEmpty()) {
SkDebugf("Writing files to %s.\n", FLAGS_writePath[0]);
if (!sk_mkdir(FLAGS_writePath[0])) {
SkDebugf("Could not create %s. Files won't be written.\n", FLAGS_writePath[0]);
FLAGS_writePath.set(0, nullptr);
}
}
SkAutoTDelete<ResultsWriter> log(new ResultsWriter);
if (!FLAGS_outResultsFile.isEmpty()) {
#if defined(SK_RELEASE)
log.reset(new NanoJSONResultsWriter(FLAGS_outResultsFile[0]));
#else
SkDebugf("I'm ignoring --outResultsFile because this is a Debug build.");
return 1;
#endif
}
if (1 == FLAGS_properties.count() % 2) {
SkDebugf("ERROR: --properties must be passed with an even number of arguments.\n");
return 1;
}
for (int i = 1; i < FLAGS_properties.count(); i += 2) {
log->property(FLAGS_properties[i-1], FLAGS_properties[i]);
}
if (1 == FLAGS_key.count() % 2) {
SkDebugf("ERROR: --key must be passed with an even number of arguments.\n");
return 1;
}
for (int i = 1; i < FLAGS_key.count(); i += 2) {
log->key(FLAGS_key[i-1], FLAGS_key[i]);
}
const double overhead = estimate_timer_overhead();
SkDebugf("Timer overhead: %s\n", HUMANIZE(overhead));
SkTArray<double> samples;
if (kAutoTuneLoops != FLAGS_loops) {
SkDebugf("Fixed number of loops; times would only be misleading so we won't print them.\n");
} else if (FLAGS_quiet) {
SkDebugf("! -> high variance, ? -> moderate variance\n");
SkDebugf(" micros \tbench\n");
} else if (FLAGS_ms) {
SkDebugf("curr/maxrss\tloops\tmin\tmedian\tmean\tmax\tstddev\tsamples\tconfig\tbench\n");
} else {
SkDebugf("curr/maxrss\tloops\tmin\tmedian\tmean\tmax\tstddev\t%-*s\tconfig\tbench\n",
FLAGS_samples, "samples");
}
SkTArray<Config> configs;
create_configs(&configs);
#ifdef THERMAL_MANAGER_SUPPORTED
int tmEnabled, tmThreshold, tmSleepTimeMs, tmTimeoutMs;
if (4 != sscanf(FLAGS_useThermalManager[0], "%d,%d,%d,%d",
&tmEnabled, &tmThreshold, &tmSleepTimeMs, &tmTimeoutMs)) {
SkDebugf("Can't parse %s from --useThermalManager.\n", FLAGS_useThermalManager[0]);
exit(1);
}
ThermalManager tm(tmThreshold, tmSleepTimeMs, tmTimeoutMs);
#endif
if (FLAGS_keepAlive) {
start_keepalive();
}
int runs = 0;
BenchmarkStream benchStream;
while (Benchmark* b = benchStream.next()) {
SkAutoTDelete<Benchmark> bench(b);
if (SkCommandLineFlags::ShouldSkip(FLAGS_match, bench->getUniqueName())) {
continue;
}
if (!configs.empty()) {
log->bench(bench->getUniqueName(), bench->getSize().fX, bench->getSize().fY);
bench->delayedSetup();
}
for (int i = 0; i < configs.count(); ++i) {
#ifdef THERMAL_MANAGER_SUPPORTED
if (tmEnabled && !tm.coolOffIfNecessary()) {
SkDebugf("Could not cool off, timings will be throttled\n");
}
#endif
Target* target = is_enabled(b, configs[i]);
if (!target) {
continue;
}
// During HWUI output this canvas may be nullptr.
SkCanvas* canvas = target->getCanvas();
const char* config = target->config.name.c_str();
if (FLAGS_pre_log || FLAGS_dryRun) {
SkDebugf("Running %s\t%s\n"
, bench->getUniqueName()
, config);
if (FLAGS_dryRun) {
continue;
}
}
target->setup();
bench->perCanvasPreDraw(canvas);
int maxFrameLag;
int loops = target->needsFrameTiming(&maxFrameLag)
? setup_gpu_bench(target, bench.get(), maxFrameLag)
: setup_cpu_bench(overhead, target, bench.get());
if (FLAGS_ms) {
samples.reset();
auto stop = now_ms() + FLAGS_ms;
do {
samples.push_back(time(loops, bench, target) / loops);
} while (now_ms() < stop);
} else {
samples.reset(FLAGS_samples);
for (int s = 0; s < FLAGS_samples; s++) {
samples[s] = time(loops, bench, target) / loops;
}
}
#if SK_SUPPORT_GPU
SkTArray<SkString> keys;
SkTArray<double> values;
bool gpuStatsDump = FLAGS_gpuStatsDump && Benchmark::kGPU_Backend == configs[i].backend;
if (gpuStatsDump) {
// TODO cache stats
bench->getGpuStats(canvas, &keys, &values);
}
#endif
bench->perCanvasPostDraw(canvas);
if (Benchmark::kNonRendering_Backend != target->config.backend &&
!FLAGS_writePath.isEmpty() && FLAGS_writePath[0]) {
SkString pngFilename = SkOSPath::Join(FLAGS_writePath[0], config);
pngFilename = SkOSPath::Join(pngFilename.c_str(), bench->getUniqueName());
pngFilename.append(".png");
write_canvas_png(target, pngFilename);
}
if (kFailedLoops == loops) {
// Can't be timed. A warning note has already been printed.
cleanup_run(target);
continue;
}
Stats stats(samples);
log->config(config);
log->configOption("name", bench->getName());
benchStream.fillCurrentOptions(log.get());
target->fillOptions(log.get());
log->metric("min_ms", stats.min);
log->metric("median_ms", stats.median);
#if SK_SUPPORT_GPU
if (gpuStatsDump) {
// dump to json, only SKPBench currently returns valid keys / values
SkASSERT(keys.count() == values.count());
for (int i = 0; i < keys.count(); i++) {
log->metric(keys[i].c_str(), values[i]);
}
}
#endif
if (runs++ % FLAGS_flushEvery == 0) {
log->flush();
}
if (kAutoTuneLoops != FLAGS_loops) {
if (configs.count() == 1) {
config = ""; // Only print the config if we run the same bench on more than one.
}
SkDebugf("%4d/%-4dMB\t%s\t%s\n"
, sk_tools::getCurrResidentSetSizeMB()
, sk_tools::getMaxResidentSetSizeMB()
, bench->getUniqueName()
, config);
} else if (FLAGS_quiet) {
const char* mark = " ";
const double stddev_percent = 100 * sqrt(stats.var) / stats.mean;
if (stddev_percent > 5) mark = "?";
if (stddev_percent > 10) mark = "!";
SkDebugf("%10.2f %s\t%s\t%s\n",
stats.median*1e3, mark, bench->getUniqueName(), config);
} else {
const double stddev_percent = 100 * sqrt(stats.var) / stats.mean;
SkDebugf("%4d/%-4dMB\t%d\t%s\t%s\t%s\t%s\t%.0f%%\t%s\t%s\t%s\n"
, sk_tools::getCurrResidentSetSizeMB()
, sk_tools::getMaxResidentSetSizeMB()
, loops
, HUMANIZE(stats.min)
, HUMANIZE(stats.median)
, HUMANIZE(stats.mean)
, HUMANIZE(stats.max)
, stddev_percent
, FLAGS_ms ? to_string(samples.count()).c_str() : stats.plot.c_str()
, config
, bench->getUniqueName()
);
}
#if SK_SUPPORT_GPU
if (FLAGS_gpuStats && Benchmark::kGPU_Backend == configs[i].backend) {
GrContext* context = gGrFactory->get(configs[i].ctxType,
configs[i].ctxOptions);
context->printCacheStats();
context->printGpuStats();
}
#endif
if (FLAGS_verbose) {
SkDebugf("Samples: ");
for (int i = 0; i < samples.count(); i++) {
SkDebugf("%s ", HUMANIZE(samples[i]));
}
SkDebugf("%s\n", bench->getUniqueName());
}
cleanup_run(target);
}
}
log->bench("memory_usage", 0,0);
log->config("meta");
log->metric("max_rss_mb", sk_tools::getMaxResidentSetSizeMB());
#if SK_SUPPORT_GPU
// Make sure we clean up the global GrContextFactory here, otherwise we might race with the
// SkEventTracer destructor
gGrFactory.reset(nullptr);
#endif
return 0;
}
#if !defined SK_BUILD_FOR_IOS
int main(int argc, char** argv) {
SkCommandLineFlags::Parse(argc, argv);
return nanobench_main();
}
#endif