| /* |
| * Copyright 2017 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkPolyUtils.h" |
| |
| #include <set> |
| #include "SkPointPriv.h" |
| #include "SkTArray.h" |
| #include "SkTemplates.h" |
| #include "SkTDPQueue.h" |
| #include "SkTInternalLList.h" |
| |
| ////////////////////////////////////////////////////////////////////////////////// |
| // Helper data structures and functions |
| |
| struct OffsetSegment { |
| SkPoint fP0; |
| SkPoint fP1; |
| }; |
| |
| // Computes perpDot for point compared to segment. |
| // A positive value means the point is to the left of the segment, |
| // negative is to the right, 0 is collinear. |
| static int compute_side(const SkPoint& s0, const SkPoint& s1, const SkPoint& p) { |
| SkVector v0 = s1 - s0; |
| SkVector v1 = p - s0; |
| SkScalar perpDot = v0.cross(v1); |
| if (!SkScalarNearlyZero(perpDot)) { |
| return ((perpDot > 0) ? 1 : -1); |
| } |
| |
| return 0; |
| } |
| |
| // Returns 1 for cw, -1 for ccw and 0 if zero signed area (either degenerate or self-intersecting) |
| int SkGetPolygonWinding(const SkPoint* polygonVerts, int polygonSize) { |
| if (polygonSize < 3) { |
| return 0; |
| } |
| |
| // compute area and use sign to determine winding |
| SkScalar quadArea = 0; |
| SkVector v0 = polygonVerts[1] - polygonVerts[0]; |
| for (int curr = 1; curr < polygonSize - 1; ++curr) { |
| int next = (curr + 1) % polygonSize; |
| SkVector v1 = polygonVerts[next] - polygonVerts[0]; |
| quadArea += v0.cross(v1); |
| v0 = v1; |
| } |
| if (SkScalarNearlyZero(quadArea)) { |
| return 0; |
| } |
| // 1 == ccw, -1 == cw |
| return (quadArea > 0) ? 1 : -1; |
| } |
| |
| // Helper function to compute the individual vector for non-equal offsets |
| inline void compute_offset(SkScalar d, const SkPoint& polyPoint, int side, |
| const SkPoint& outerTangentIntersect, SkVector* v) { |
| SkScalar dsq = d * d; |
| SkVector dP = outerTangentIntersect - polyPoint; |
| SkScalar dPlenSq = SkPointPriv::LengthSqd(dP); |
| if (SkScalarNearlyZero(dPlenSq)) { |
| v->set(0, 0); |
| } else { |
| SkScalar discrim = SkScalarSqrt(dPlenSq - dsq); |
| v->fX = (dsq*dP.fX - side * d*dP.fY*discrim) / dPlenSq; |
| v->fY = (dsq*dP.fY + side * d*dP.fX*discrim) / dPlenSq; |
| } |
| } |
| |
| // Compute difference vector to offset p0-p1 'd0' and 'd1' units in direction specified by 'side' |
| bool compute_offset_vectors(const SkPoint& p0, const SkPoint& p1, SkScalar d0, SkScalar d1, |
| int side, SkPoint* vector0, SkPoint* vector1) { |
| SkASSERT(side == -1 || side == 1); |
| if (SkScalarNearlyEqual(d0, d1)) { |
| // if distances are equal, can just outset by the perpendicular |
| SkVector perp = SkVector::Make(p0.fY - p1.fY, p1.fX - p0.fX); |
| perp.setLength(d0*side); |
| *vector0 = perp; |
| *vector1 = perp; |
| } else { |
| SkScalar d0abs = SkTAbs(d0); |
| SkScalar d1abs = SkTAbs(d1); |
| // Otherwise we need to compute the outer tangent. |
| // See: http://www.ambrsoft.com/TrigoCalc/Circles2/Circles2Tangent_.htm |
| if (d0abs < d1abs) { |
| side = -side; |
| } |
| SkScalar dD = d0abs - d1abs; |
| // if one circle is inside another, we can't compute an offset |
| if (dD*dD >= SkPointPriv::DistanceToSqd(p0, p1)) { |
| return false; |
| } |
| SkPoint outerTangentIntersect = SkPoint::Make((p1.fX*d0abs - p0.fX*d1abs) / dD, |
| (p1.fY*d0abs - p0.fY*d1abs) / dD); |
| |
| compute_offset(d0, p0, side, outerTangentIntersect, vector0); |
| compute_offset(d1, p1, side, outerTangentIntersect, vector1); |
| } |
| |
| return true; |
| } |
| |
| // Offset line segment p0-p1 'd0' and 'd1' units in the direction specified by 'side' |
| bool SkOffsetSegment(const SkPoint& p0, const SkPoint& p1, SkScalar d0, SkScalar d1, |
| int side, SkPoint* offset0, SkPoint* offset1) { |
| SkVector v0, v1; |
| if (!compute_offset_vectors(p0, p1, d0, d1, side, &v0, &v1)) { |
| return false; |
| } |
| *offset0 = p0 + v0; |
| *offset1 = p1 + v1; |
| |
| return true; |
| } |
| |
| // compute fraction of d along v |
| static inline SkScalar compute_param(const SkVector& v, const SkVector& d) { |
| if (SkScalarNearlyZero(v.fX)) { |
| return d.fY / v.fY; |
| } else { |
| return d.fX / v.fX; |
| } |
| } |
| |
| // Compute the intersection 'p' between segments s0 and s1, if any. |
| // 's' is the parametric value for the intersection along 's0' & 't' is the same for 's1'. |
| // Returns false if there is no intersection. |
| static bool compute_intersection(const OffsetSegment& s0, const OffsetSegment& s1, |
| SkPoint* p, SkScalar* s, SkScalar* t) { |
| // Common cases for polygon chains -- check if endpoints are touching |
| if (SkPointPriv::EqualsWithinTolerance(s0.fP1, s1.fP0)) { |
| *p = s0.fP1; |
| *s = SK_Scalar1; |
| *t = 0; |
| return true; |
| } |
| if (SkPointPriv::EqualsWithinTolerance(s1.fP1, s0.fP0)) { |
| *p = s1.fP1; |
| *s = 0; |
| *t = SK_Scalar1; |
| return true; |
| } |
| |
| SkVector v0 = s0.fP1 - s0.fP0; |
| SkVector v1 = s1.fP1 - s1.fP0; |
| SkVector d = s1.fP0 - s0.fP0; |
| SkScalar perpDot = v0.cross(v1); |
| SkScalar localS, localT; |
| if (SkScalarNearlyZero(perpDot)) { |
| // segments are parallel, but not collinear |
| if (!SkScalarNearlyZero(d.cross(v0)) || !SkScalarNearlyZero(d.cross(v1))) { |
| return false; |
| } |
| |
| // Check for degenerate segments |
| if (!SkPointPriv::CanNormalize(v0.fX, v0.fY)) { |
| // Both are degenerate |
| if (!SkPointPriv::CanNormalize(v1.fX, v1.fY)) { |
| // Check if they're the same point |
| if (!SkPointPriv::CanNormalize(d.fX, d.fY)) { |
| *p = s0.fP0; |
| *s = 0; |
| *t = 0; |
| return true; |
| } else { |
| return false; |
| } |
| } |
| // Otherwise project onto segment1 |
| localT = compute_param(v1, -d); |
| if (localT < 0 || localT > SK_Scalar1) { |
| return false; |
| } |
| localS = 0; |
| } else { |
| // Project segment1's endpoints onto segment0 |
| localS = compute_param(v0, d); |
| localT = 0; |
| if (localS < 0 || localS > SK_Scalar1) { |
| // The first endpoint doesn't lie on segment0 |
| // If segment1 is degenerate, then there's no collision |
| if (!SkPointPriv::CanNormalize(v1.fX, v1.fY)) { |
| return false; |
| } |
| |
| // Otherwise try the other one |
| SkScalar oldLocalS = localS; |
| localS = compute_param(v0, s1.fP1 - s0.fP0); |
| localT = SK_Scalar1; |
| if (localS < 0 || localS > SK_Scalar1) { |
| // it's possible that segment1's interval surrounds segment0 |
| // this is false if params have the same signs, and in that case no collision |
| if (localS*oldLocalS > 0) { |
| return false; |
| } |
| // otherwise project segment0's endpoint onto segment1 instead |
| localS = 0; |
| localT = compute_param(v1, -d); |
| } |
| } |
| } |
| } else { |
| localS = d.cross(v1) / perpDot; |
| if (localS < 0 || localS > SK_Scalar1) { |
| return false; |
| } |
| localT = d.cross(v0) / perpDot; |
| if (localT < 0 || localT > SK_Scalar1) { |
| return false; |
| } |
| } |
| |
| *p = s0.fP0 + v0*localS; |
| *s = localS; |
| *t = localT; |
| |
| return true; |
| } |
| |
| // computes the line intersection and then the distance to s0's endpoint |
| static SkScalar compute_crossing_distance(const OffsetSegment& s0, const OffsetSegment& s1) { |
| SkVector v0 = s0.fP1 - s0.fP0; |
| SkVector v1 = s1.fP1 - s1.fP0; |
| |
| SkScalar perpDot = v0.cross(v1); |
| if (SkScalarNearlyZero(perpDot)) { |
| // segments are parallel |
| return SK_ScalarMax; |
| } |
| |
| SkVector d = s1.fP0 - s0.fP0; |
| SkScalar localS = d.cross(v1) / perpDot; |
| if (localS < 0) { |
| localS = -localS; |
| } else { |
| localS -= SK_Scalar1; |
| } |
| |
| localS *= v0.length(); |
| |
| return localS; |
| } |
| |
| bool SkIsConvexPolygon(const SkPoint* polygonVerts, int polygonSize) { |
| if (polygonSize < 3) { |
| return false; |
| } |
| |
| SkScalar lastArea = 0; |
| SkScalar lastPerpDot = 0; |
| |
| int prevIndex = polygonSize - 1; |
| int currIndex = 0; |
| int nextIndex = 1; |
| SkPoint origin = polygonVerts[0]; |
| SkVector v0 = polygonVerts[currIndex] - polygonVerts[prevIndex]; |
| SkVector v1 = polygonVerts[nextIndex] - polygonVerts[currIndex]; |
| SkVector w0 = polygonVerts[currIndex] - origin; |
| SkVector w1 = polygonVerts[nextIndex] - origin; |
| for (int i = 0; i < polygonSize; ++i) { |
| if (!polygonVerts[i].isFinite()) { |
| return false; |
| } |
| |
| // Check that winding direction is always the same (otherwise we have a reflex vertex) |
| SkScalar perpDot = v0.cross(v1); |
| if (lastPerpDot*perpDot < 0) { |
| return false; |
| } |
| if (0 != perpDot) { |
| lastPerpDot = perpDot; |
| } |
| |
| // If the signed area ever flips it's concave |
| // TODO: see if we can verify convexity only with signed area |
| SkScalar quadArea = w0.cross(w1); |
| if (quadArea*lastArea < 0) { |
| return false; |
| } |
| if (0 != quadArea) { |
| lastArea = quadArea; |
| } |
| |
| prevIndex = currIndex; |
| currIndex = nextIndex; |
| nextIndex = (currIndex + 1) % polygonSize; |
| v0 = v1; |
| v1 = polygonVerts[nextIndex] - polygonVerts[currIndex]; |
| w0 = w1; |
| w1 = polygonVerts[nextIndex] - origin; |
| } |
| |
| return true; |
| } |
| |
| struct OffsetEdge { |
| OffsetEdge* fPrev; |
| OffsetEdge* fNext; |
| OffsetSegment fInset; |
| SkPoint fIntersection; |
| SkScalar fTValue; |
| uint16_t fEnd; |
| uint16_t fIndex; |
| |
| void init(uint16_t start = 0, uint16_t end = 0) { |
| fIntersection = fInset.fP0; |
| fTValue = SK_ScalarMin; |
| fEnd = end; |
| fIndex = start; |
| } |
| }; |
| |
| static void remove_node(const OffsetEdge* node, OffsetEdge** head) { |
| // remove from linked list |
| node->fPrev->fNext = node->fNext; |
| node->fNext->fPrev = node->fPrev; |
| if (node == *head) { |
| *head = (node->fNext == node) ? nullptr : node->fNext; |
| } |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////////// |
| |
| // The objective here is to inset all of the edges by the given distance, and then |
| // remove any invalid inset edges by detecting right-hand turns. In a ccw polygon, |
| // we should only be making left-hand turns (for cw polygons, we use the winding |
| // parameter to reverse this). We detect this by checking whether the second intersection |
| // on an edge is closer to its tail than the first one. |
| // |
| // We might also have the case that there is no intersection between two neighboring inset edges. |
| // In this case, one edge will lie to the right of the other and should be discarded along with |
| // its previous intersection (if any). |
| // |
| // Note: the assumption is that inputPolygon is convex and has no coincident points. |
| // |
| bool SkInsetConvexPolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize, |
| std::function<SkScalar(const SkPoint&)> insetDistanceFunc, |
| SkTDArray<SkPoint>* insetPolygon) { |
| if (inputPolygonSize < 3) { |
| return false; |
| } |
| |
| // get winding direction |
| int winding = SkGetPolygonWinding(inputPolygonVerts, inputPolygonSize); |
| if (0 == winding) { |
| return false; |
| } |
| |
| // set up |
| SkAutoSTMalloc<64, OffsetEdge> edgeData(inputPolygonSize); |
| int prev = inputPolygonSize - 1; |
| for (int curr = 0; curr < inputPolygonSize; prev = curr, ++curr) { |
| int next = (curr + 1) % inputPolygonSize; |
| if (!inputPolygonVerts[curr].isFinite()) { |
| return false; |
| } |
| // check for convexity just to be sure |
| if (compute_side(inputPolygonVerts[prev], inputPolygonVerts[curr], |
| inputPolygonVerts[next])*winding < 0) { |
| return false; |
| } |
| edgeData[curr].fPrev = &edgeData[prev]; |
| edgeData[curr].fNext = &edgeData[next]; |
| if (!SkOffsetSegment(inputPolygonVerts[curr], inputPolygonVerts[next], |
| insetDistanceFunc(inputPolygonVerts[curr]), |
| insetDistanceFunc(inputPolygonVerts[next]), |
| winding, |
| &edgeData[curr].fInset.fP0, &edgeData[curr].fInset.fP1)) { |
| return false; |
| } |
| edgeData[curr].init(); |
| } |
| |
| OffsetEdge* head = &edgeData[0]; |
| OffsetEdge* currEdge = head; |
| OffsetEdge* prevEdge = currEdge->fPrev; |
| int insetVertexCount = inputPolygonSize; |
| int iterations = 0; |
| while (head && prevEdge != currEdge) { |
| ++iterations; |
| // we should check each edge against each other edge at most once |
| if (iterations > inputPolygonSize*inputPolygonSize) { |
| return false; |
| } |
| |
| SkScalar s, t; |
| SkPoint intersection; |
| if (compute_intersection(prevEdge->fInset, currEdge->fInset, |
| &intersection, &s, &t)) { |
| // if new intersection is further back on previous inset from the prior intersection |
| if (s < prevEdge->fTValue) { |
| // no point in considering this one again |
| remove_node(prevEdge, &head); |
| --insetVertexCount; |
| // go back one segment |
| prevEdge = prevEdge->fPrev; |
| // we've already considered this intersection, we're done |
| } else if (currEdge->fTValue > SK_ScalarMin && |
| SkPointPriv::EqualsWithinTolerance(intersection, |
| currEdge->fIntersection, |
| 1.0e-6f)) { |
| break; |
| } else { |
| // add intersection |
| currEdge->fIntersection = intersection; |
| currEdge->fTValue = t; |
| |
| // go to next segment |
| prevEdge = currEdge; |
| currEdge = currEdge->fNext; |
| } |
| } else { |
| // if prev to right side of curr |
| int side = winding*compute_side(currEdge->fInset.fP0, |
| currEdge->fInset.fP1, |
| prevEdge->fInset.fP1); |
| if (side < 0 && side == winding*compute_side(currEdge->fInset.fP0, |
| currEdge->fInset.fP1, |
| prevEdge->fInset.fP0)) { |
| // no point in considering this one again |
| remove_node(prevEdge, &head); |
| --insetVertexCount; |
| // go back one segment |
| prevEdge = prevEdge->fPrev; |
| } else { |
| // move to next segment |
| remove_node(currEdge, &head); |
| --insetVertexCount; |
| currEdge = currEdge->fNext; |
| } |
| } |
| } |
| |
| // store all the valid intersections that aren't nearly coincident |
| // TODO: look at the main algorithm and see if we can detect these better |
| insetPolygon->reset(); |
| if (head) { |
| static constexpr SkScalar kCleanupTolerance = 0.01f; |
| if (insetVertexCount >= 0) { |
| insetPolygon->setReserve(insetVertexCount); |
| } |
| int currIndex = 0; |
| OffsetEdge* currEdge = head; |
| *insetPolygon->push() = currEdge->fIntersection; |
| currEdge = currEdge->fNext; |
| while (currEdge != head) { |
| if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection, |
| (*insetPolygon)[currIndex], |
| kCleanupTolerance)) { |
| *insetPolygon->push() = currEdge->fIntersection; |
| currIndex++; |
| } |
| currEdge = currEdge->fNext; |
| } |
| // make sure the first and last points aren't coincident |
| if (currIndex >= 1 && |
| SkPointPriv::EqualsWithinTolerance((*insetPolygon)[0], (*insetPolygon)[currIndex], |
| kCleanupTolerance)) { |
| insetPolygon->pop(); |
| } |
| } |
| |
| return SkIsConvexPolygon(insetPolygon->begin(), insetPolygon->count()); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////// |
| |
| // compute the number of points needed for a circular join when offsetting a reflex vertex |
| bool SkComputeRadialSteps(const SkVector& v1, const SkVector& v2, SkScalar r, |
| SkScalar* rotSin, SkScalar* rotCos, int* n) { |
| const SkScalar kRecipPixelsPerArcSegment = 0.25f; |
| |
| SkScalar rCos = v1.dot(v2); |
| if (!SkScalarIsFinite(rCos)) { |
| return false; |
| } |
| SkScalar rSin = v1.cross(v2); |
| if (!SkScalarIsFinite(rSin)) { |
| return false; |
| } |
| SkScalar theta = SkScalarATan2(rSin, rCos); |
| |
| int steps = SkScalarRoundToInt(SkScalarAbs(r*theta*kRecipPixelsPerArcSegment)); |
| |
| SkScalar dTheta = steps > 0 ? theta / steps : 0; |
| *rotSin = SkScalarSinCos(dTheta, rotCos); |
| *n = steps; |
| return true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////// |
| |
| // a point is "left" to another if its x coordinate is less, or if equal, its y coordinate |
| static bool left(const SkPoint& p0, const SkPoint& p1) { |
| return p0.fX < p1.fX || (!(p0.fX > p1.fX) && p0.fY < p1.fY); |
| } |
| |
| struct Vertex { |
| static bool Left(const Vertex& qv0, const Vertex& qv1) { |
| return left(qv0.fPosition, qv1.fPosition); |
| } |
| |
| // packed to fit into 16 bytes (one cache line) |
| SkPoint fPosition; |
| uint16_t fIndex; // index in unsorted polygon |
| uint16_t fPrevIndex; // indices for previous and next vertex in unsorted polygon |
| uint16_t fNextIndex; |
| uint16_t fFlags; |
| }; |
| |
| enum VertexFlags { |
| kPrevLeft_VertexFlag = 0x1, |
| kNextLeft_VertexFlag = 0x2, |
| }; |
| |
| struct ActiveEdge { |
| ActiveEdge(const SkPoint& p0, const SkPoint& p1, int32_t index0, int32_t index1) |
| : fSegment({p0, p1}) |
| , fIndex0(index0) |
| , fIndex1(index1) {} |
| |
| // returns true if "this" is above "that" |
| bool above(const ActiveEdge& that) const { |
| SkASSERT(this->fSegment.fP0.fX <= that.fSegment.fP0.fX); |
| const SkScalar kTolerance = SK_ScalarNearlyZero * SK_ScalarNearlyZero; |
| SkVector u = this->fSegment.fP1 - this->fSegment.fP0; |
| // The idea here is that if the vector between the origins of the two segments (dv) |
| // rotates counterclockwise up to the vector representing the "this" segment (u), |
| // then we know that "this" is above that. If the result is clockwise we say it's below. |
| if (this->fIndex0 != that.fIndex0) { |
| SkVector dv = that.fSegment.fP0 - this->fSegment.fP0; |
| SkScalar cross = dv.cross(u); |
| if (cross > kTolerance) { |
| return true; |
| } else if (cross < -kTolerance) { |
| return false; |
| } |
| } else if (this->fIndex1 == that.fIndex1) { |
| // they're the same edge |
| return false; |
| } |
| // At this point either the two origins are nearly equal or the origin of "that" |
| // lies on dv. So then we try the same for the vector from the tail of "this" |
| // to the head of "that". Again, ccw means "this" is above "that". |
| SkVector dv = that.fSegment.fP1 - this->fSegment.fP0; |
| SkScalar cross = dv.cross(u); |
| if (cross > kTolerance) { |
| return true; |
| } else if (cross < -kTolerance) { |
| return false; |
| } |
| // If the previous check fails, the two segments are nearly collinear |
| // First check y-coord of first endpoints |
| if (this->fSegment.fP0.fX < that.fSegment.fP0.fX) { |
| return (this->fSegment.fP0.fY >= that.fSegment.fP0.fY); |
| } else if (this->fSegment.fP0.fY > that.fSegment.fP0.fY) { |
| return true; |
| } else if (this->fSegment.fP0.fY < that.fSegment.fP0.fY) { |
| return false; |
| } |
| // The first endpoints are the same, so check the other endpoint |
| if (this->fSegment.fP1.fX < that.fSegment.fP1.fX) { |
| return (this->fSegment.fP1.fY >= that.fSegment.fP1.fY); |
| } else { |
| return (this->fSegment.fP1.fY > that.fSegment.fP1.fY); |
| } |
| } |
| |
| bool intersect(const ActiveEdge& that) const { |
| SkPoint intersection; |
| SkScalar s, t; |
| // check first to see if these edges are neighbors in the polygon |
| if (this->fIndex0 == that.fIndex0 || this->fIndex1 == that.fIndex0 || |
| this->fIndex0 == that.fIndex1 || this->fIndex1 == that.fIndex1) { |
| return false; |
| } |
| return compute_intersection(this->fSegment, that.fSegment, &intersection, &s, &t); |
| } |
| |
| bool operator==(const ActiveEdge& that) const { |
| return (this->fIndex0 == that.fIndex0 && this->fIndex1 == that.fIndex1); |
| } |
| |
| bool operator!=(const ActiveEdge& that) const { |
| return !operator==(that); |
| } |
| |
| bool lessThan(const ActiveEdge& that) const { |
| if (this->fSegment.fP0.fX > that.fSegment.fP0.fX || |
| (this->fSegment.fP0.fX == that.fSegment.fP0.fX && |
| this->fSegment.fP0.fY < that.fSegment.fP0.fY)) { |
| return !that.above(*this); |
| } |
| return this->above(that); |
| } |
| |
| bool operator<(const ActiveEdge& that) const { |
| SkASSERT(!this->lessThan(*this)); |
| SkASSERT(!that.lessThan(that)); |
| SkASSERT(!(this->lessThan(that) && that.lessThan(*this))); |
| return this->lessThan(that); |
| } |
| |
| OffsetSegment fSegment; |
| int32_t fIndex0; // indices for previous and next vertex |
| int32_t fIndex1; |
| }; |
| |
| class ActiveEdgeList { |
| public: |
| void reserve(int count) { } |
| |
| bool insert(const SkPoint& p0, const SkPoint& p1, int32_t index0, int32_t index1) { |
| std::pair<Iterator, bool> result = fEdgeTree.emplace(p0, p1, index0, index1); |
| if (!result.second) { |
| return false; |
| } |
| |
| Iterator& curr = result.first; |
| if (curr != fEdgeTree.begin() && curr->intersect(*std::prev(curr))) { |
| return false; |
| } |
| Iterator next = std::next(curr); |
| if (next != fEdgeTree.end() && curr->intersect(*next)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool remove(const ActiveEdge& edge) { |
| auto element = fEdgeTree.find(edge); |
| // this better not happen |
| if (element == fEdgeTree.end()) { |
| return false; |
| } |
| if (element != fEdgeTree.begin() && element->intersect(*std::prev(element))) { |
| return false; |
| } |
| Iterator next = std::next(element); |
| if (next != fEdgeTree.end() && element->intersect(*next)) { |
| return false; |
| } |
| |
| fEdgeTree.erase(element); |
| return true; |
| } |
| |
| private: |
| std::set<ActiveEdge> fEdgeTree; |
| typedef std::set<ActiveEdge>::iterator Iterator; |
| }; |
| |
| // Here we implement a sweep line algorithm to determine whether the provided points |
| // represent a simple polygon, i.e., the polygon is non-self-intersecting. |
| // We first insert the vertices into a priority queue sorting horizontally from left to right. |
| // Then as we pop the vertices from the queue we generate events which indicate that an edge |
| // should be added or removed from an edge list. If any intersections are detected in the edge |
| // list, then we know the polygon is self-intersecting and hence not simple. |
| bool SkIsSimplePolygon(const SkPoint* polygon, int polygonSize) { |
| if (polygonSize < 3) { |
| return false; |
| } |
| |
| SkTDPQueue <Vertex, Vertex::Left> vertexQueue(polygonSize); |
| for (int i = 0; i < polygonSize; ++i) { |
| Vertex newVertex; |
| if (!polygon[i].isFinite()) { |
| return false; |
| } |
| newVertex.fPosition = polygon[i]; |
| newVertex.fIndex = i; |
| newVertex.fPrevIndex = (i - 1 + polygonSize) % polygonSize; |
| newVertex.fNextIndex = (i + 1) % polygonSize; |
| newVertex.fFlags = 0; |
| if (left(polygon[newVertex.fPrevIndex], polygon[i])) { |
| newVertex.fFlags |= kPrevLeft_VertexFlag; |
| } |
| if (left(polygon[newVertex.fNextIndex], polygon[i])) { |
| newVertex.fFlags |= kNextLeft_VertexFlag; |
| } |
| vertexQueue.insert(newVertex); |
| } |
| |
| // pop each vertex from the queue and generate events depending on |
| // where it lies relative to its neighboring edges |
| ActiveEdgeList sweepLine; |
| sweepLine.reserve(polygonSize); |
| while (vertexQueue.count() > 0) { |
| const Vertex& v = vertexQueue.peek(); |
| |
| // check edge to previous vertex |
| if (v.fFlags & kPrevLeft_VertexFlag) { |
| ActiveEdge edge(polygon[v.fPrevIndex], v.fPosition, v.fPrevIndex, v.fIndex); |
| if (!sweepLine.remove(edge)) { |
| break; |
| } |
| } else { |
| if (!sweepLine.insert(v.fPosition, polygon[v.fPrevIndex], v.fIndex, v.fPrevIndex)) { |
| break; |
| } |
| } |
| |
| // check edge to next vertex |
| if (v.fFlags & kNextLeft_VertexFlag) { |
| ActiveEdge edge(polygon[v.fNextIndex], v.fPosition, v.fNextIndex, v.fIndex); |
| if (!sweepLine.remove(edge)) { |
| break; |
| } |
| } else { |
| if (!sweepLine.insert(v.fPosition, polygon[v.fNextIndex], v.fIndex, v.fNextIndex)) { |
| break; |
| } |
| } |
| |
| vertexQueue.pop(); |
| } |
| |
| return (vertexQueue.count() == 0); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////// |
| |
| // helper function for SkOffsetSimplePolygon |
| static void setup_offset_edge(OffsetEdge* currEdge, |
| const SkPoint& endpoint0, const SkPoint& endpoint1, |
| int startIndex, int endIndex) { |
| currEdge->fInset.fP0 = endpoint0; |
| currEdge->fInset.fP1 = endpoint1; |
| currEdge->init(startIndex, endIndex); |
| } |
| |
| bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize, |
| std::function<SkScalar(const SkPoint&)> offsetDistanceFunc, |
| SkTDArray<SkPoint>* offsetPolygon, SkTDArray<int>* polygonIndices) { |
| if (inputPolygonSize < 3) { |
| return false; |
| } |
| |
| // get winding direction |
| int winding = SkGetPolygonWinding(inputPolygonVerts, inputPolygonSize); |
| if (0 == winding) { |
| return false; |
| } |
| |
| // build normals |
| SkAutoSTMalloc<64, SkVector> normal0(inputPolygonSize); |
| SkAutoSTMalloc<64, SkVector> normal1(inputPolygonSize); |
| SkScalar currOffset = offsetDistanceFunc(inputPolygonVerts[0]); |
| if (!SkScalarIsFinite(currOffset)) { |
| return false; |
| } |
| for (int curr = 0; curr < inputPolygonSize; ++curr) { |
| if (!inputPolygonVerts[curr].isFinite()) { |
| return false; |
| } |
| int next = (curr + 1) % inputPolygonSize; |
| SkScalar nextOffset = offsetDistanceFunc(inputPolygonVerts[next]); |
| if (!SkScalarIsFinite(nextOffset)) { |
| return false; |
| } |
| if (!compute_offset_vectors(inputPolygonVerts[curr], inputPolygonVerts[next], |
| currOffset, nextOffset, winding, |
| &normal0[curr], &normal1[next])) { |
| return false; |
| } |
| currOffset = nextOffset; |
| } |
| |
| // build initial offset edge list |
| SkSTArray<64, OffsetEdge> edgeData(inputPolygonSize); |
| int prevIndex = inputPolygonSize - 1; |
| int currIndex = 0; |
| int nextIndex = 1; |
| while (currIndex < inputPolygonSize) { |
| int side = compute_side(inputPolygonVerts[prevIndex], |
| inputPolygonVerts[currIndex], |
| inputPolygonVerts[nextIndex]); |
| SkScalar offset = offsetDistanceFunc(inputPolygonVerts[currIndex]); |
| // if reflex point, fill in curve |
| if (side*winding*offset < 0) { |
| SkScalar rotSin, rotCos; |
| int numSteps; |
| SkVector prevNormal = normal1[currIndex]; |
| if (!SkComputeRadialSteps(prevNormal, normal0[currIndex], SkScalarAbs(offset), |
| &rotSin, &rotCos, &numSteps)) { |
| return false; |
| } |
| auto currEdge = edgeData.push_back_n(SkTMax(numSteps, 1)); |
| for (int i = 0; i < numSteps - 1; ++i) { |
| SkVector currNormal = SkVector::Make(prevNormal.fX*rotCos - prevNormal.fY*rotSin, |
| prevNormal.fY*rotCos + prevNormal.fX*rotSin); |
| setup_offset_edge(currEdge, |
| inputPolygonVerts[currIndex] + prevNormal, |
| inputPolygonVerts[currIndex] + currNormal, |
| currIndex, currIndex); |
| prevNormal = currNormal; |
| ++currEdge; |
| } |
| setup_offset_edge(currEdge, |
| inputPolygonVerts[currIndex] + prevNormal, |
| inputPolygonVerts[currIndex] + normal0[currIndex], |
| currIndex, currIndex); |
| ++currEdge; |
| |
| } |
| |
| // Add the edge |
| auto edge = edgeData.push_back_n(1); |
| setup_offset_edge(edge, |
| inputPolygonVerts[currIndex] + normal0[currIndex], |
| inputPolygonVerts[nextIndex] + normal1[nextIndex], |
| currIndex, nextIndex); |
| |
| prevIndex = currIndex; |
| currIndex++; |
| nextIndex = (nextIndex + 1) % inputPolygonSize; |
| } |
| |
| // build linked list |
| // we have to do this as a post-process step because we might have reallocated |
| // the array when adding fans for reflex verts |
| prevIndex = edgeData.count()-1; |
| for (int currIndex = 0; currIndex < edgeData.count(); prevIndex = currIndex, ++currIndex) { |
| int nextIndex = (currIndex + 1) % edgeData.count(); |
| edgeData[currIndex].fPrev = &edgeData[prevIndex]; |
| edgeData[currIndex].fNext = &edgeData[nextIndex]; |
| } |
| |
| // now clip edges |
| int edgeDataSize = edgeData.count(); |
| auto head = &edgeData[0]; |
| auto currEdge = head; |
| auto prevEdge = currEdge->fPrev; |
| int offsetVertexCount = edgeDataSize; |
| int iterations = 0; |
| while (head && prevEdge != currEdge) { |
| ++iterations; |
| // we should check each edge against each other edge at most once |
| if (iterations > edgeDataSize*edgeDataSize) { |
| return false; |
| } |
| |
| SkScalar s, t; |
| SkPoint intersection; |
| if (compute_intersection(prevEdge->fInset, currEdge->fInset, |
| &intersection, &s, &t)) { |
| // if new intersection is further back on previous inset from the prior intersection |
| if (s < prevEdge->fTValue) { |
| // no point in considering this one again |
| remove_node(prevEdge, &head); |
| --offsetVertexCount; |
| // go back one segment |
| prevEdge = prevEdge->fPrev; |
| // we've already considered this intersection, we're done |
| } else if (currEdge->fTValue > SK_ScalarMin && |
| SkPointPriv::EqualsWithinTolerance(intersection, |
| currEdge->fIntersection, |
| 1.0e-6f)) { |
| break; |
| } else { |
| // add intersection |
| currEdge->fIntersection = intersection; |
| currEdge->fTValue = t; |
| currEdge->fIndex = prevEdge->fEnd; |
| |
| // go to next segment |
| prevEdge = currEdge; |
| currEdge = currEdge->fNext; |
| } |
| } else { |
| // If there is no intersection, we want to minimize the distance between |
| // the point where the segment lines cross and the segments themselves. |
| OffsetEdge* prevPrevEdge = prevEdge->fPrev; |
| OffsetEdge* currNextEdge = currEdge->fNext; |
| SkScalar dist0 = compute_crossing_distance(currEdge->fInset, |
| prevPrevEdge->fInset); |
| SkScalar dist1 = compute_crossing_distance(prevEdge->fInset, |
| currNextEdge->fInset); |
| if (dist0 < dist1) { |
| remove_node(prevEdge, &head); |
| prevEdge = prevPrevEdge; |
| } else { |
| remove_node(currEdge, &head); |
| currEdge = currNextEdge; |
| } |
| --offsetVertexCount; |
| } |
| } |
| |
| // store all the valid intersections that aren't nearly coincident |
| // TODO: look at the main algorithm and see if we can detect these better |
| offsetPolygon->reset(); |
| if (head) { |
| static constexpr SkScalar kCleanupTolerance = 0.01f; |
| if (offsetVertexCount >= 0) { |
| offsetPolygon->setReserve(offsetVertexCount); |
| } |
| int currIndex = 0; |
| OffsetEdge* currEdge = head; |
| *offsetPolygon->push() = currEdge->fIntersection; |
| if (polygonIndices) { |
| *polygonIndices->push() = currEdge->fIndex; |
| } |
| currEdge = currEdge->fNext; |
| while (currEdge != head) { |
| if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection, |
| (*offsetPolygon)[currIndex], |
| kCleanupTolerance)) { |
| *offsetPolygon->push() = currEdge->fIntersection; |
| if (polygonIndices) { |
| *polygonIndices->push() = currEdge->fIndex; |
| } |
| currIndex++; |
| } |
| currEdge = currEdge->fNext; |
| } |
| // make sure the first and last points aren't coincident |
| if (currIndex >= 1 && |
| SkPointPriv::EqualsWithinTolerance((*offsetPolygon)[0], (*offsetPolygon)[currIndex], |
| kCleanupTolerance)) { |
| offsetPolygon->pop(); |
| if (polygonIndices) { |
| polygonIndices->pop(); |
| } |
| } |
| } |
| |
| // check winding of offset polygon (it should be same as the original polygon) |
| SkScalar offsetWinding = SkGetPolygonWinding(offsetPolygon->begin(), offsetPolygon->count()); |
| |
| return (winding*offsetWinding > 0 && |
| SkIsSimplePolygon(offsetPolygon->begin(), offsetPolygon->count())); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////////////////// |
| |
| struct TriangulationVertex { |
| SK_DECLARE_INTERNAL_LLIST_INTERFACE(TriangulationVertex); |
| |
| enum class VertexType { kConvex, kReflex }; |
| |
| SkPoint fPosition; |
| VertexType fVertexType; |
| uint16_t fIndex; |
| uint16_t fPrevIndex; |
| uint16_t fNextIndex; |
| }; |
| |
| // test to see if point p is in triangle p0p1p2. |
| // for now assuming strictly inside -- if on the edge it's outside |
| static bool point_in_triangle(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, |
| const SkPoint& p) { |
| SkVector v0 = p1 - p0; |
| SkVector v1 = p2 - p1; |
| SkScalar n = v0.cross(v1); |
| |
| SkVector w0 = p - p0; |
| if (n*v0.cross(w0) < SK_ScalarNearlyZero) { |
| return false; |
| } |
| |
| SkVector w1 = p - p1; |
| if (n*v1.cross(w1) < SK_ScalarNearlyZero) { |
| return false; |
| } |
| |
| SkVector v2 = p0 - p2; |
| SkVector w2 = p - p2; |
| if (n*v2.cross(w2) < SK_ScalarNearlyZero) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Data structure to track reflex vertices and check whether any are inside a given triangle |
| class ReflexHash { |
| public: |
| void add(TriangulationVertex* v) { |
| fReflexList.addToTail(v); |
| } |
| |
| void remove(TriangulationVertex* v) { |
| fReflexList.remove(v); |
| } |
| |
| bool checkTriangle(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, |
| uint16_t ignoreIndex0, uint16_t ignoreIndex1) { |
| for (SkTInternalLList<TriangulationVertex>::Iter reflexIter = fReflexList.begin(); |
| reflexIter != fReflexList.end(); ++reflexIter) { |
| TriangulationVertex* reflexVertex = *reflexIter; |
| if (reflexVertex->fIndex != ignoreIndex0 && reflexVertex->fIndex != ignoreIndex1 && |
| point_in_triangle(p0, p1, p2, reflexVertex->fPosition)) { |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| private: |
| // TODO: switch to an actual spatial hash |
| SkTInternalLList<TriangulationVertex> fReflexList; |
| }; |
| |
| // Check to see if a reflex vertex has become a convex vertex after clipping an ear |
| static void reclassify_vertex(TriangulationVertex* p, const SkPoint* polygonVerts, |
| int winding, ReflexHash* reflexHash, |
| SkTInternalLList<TriangulationVertex>* convexList) { |
| if (TriangulationVertex::VertexType::kReflex == p->fVertexType) { |
| SkVector v0 = p->fPosition - polygonVerts[p->fPrevIndex]; |
| SkVector v1 = polygonVerts[p->fNextIndex] - p->fPosition; |
| if (winding*v0.cross(v1) > SK_ScalarNearlyZero*SK_ScalarNearlyZero) { |
| p->fVertexType = TriangulationVertex::VertexType::kConvex; |
| reflexHash->remove(p); |
| p->fPrev = p->fNext = nullptr; |
| convexList->addToTail(p); |
| } |
| } |
| } |
| |
| bool SkTriangulateSimplePolygon(const SkPoint* polygonVerts, uint16_t* indexMap, int polygonSize, |
| SkTDArray<uint16_t>* triangleIndices) { |
| if (polygonSize < 3) { |
| return false; |
| } |
| // need to be able to represent all the vertices in the 16-bit indices |
| if (polygonSize >= (1 << 16)) { |
| return false; |
| } |
| |
| // get winding direction |
| // TODO: we do this for all the polygon routines -- might be better to have the client |
| // compute it and pass it in |
| int winding = SkGetPolygonWinding(polygonVerts, polygonSize); |
| if (0 == winding) { |
| return false; |
| } |
| |
| // Classify initial vertices into a list of convex vertices and a hash of reflex vertices |
| // TODO: possibly sort the convexList in some way to get better triangles |
| SkTInternalLList<TriangulationVertex> convexList; |
| ReflexHash reflexHash; |
| SkAutoSTMalloc<64, TriangulationVertex> triangulationVertices(polygonSize); |
| int prevIndex = polygonSize - 1; |
| int currIndex = 0; |
| int nextIndex = 1; |
| SkVector v0 = polygonVerts[currIndex] - polygonVerts[prevIndex]; |
| SkVector v1 = polygonVerts[nextIndex] - polygonVerts[currIndex]; |
| for (int i = 0; i < polygonSize; ++i) { |
| SkDEBUGCODE(memset(&triangulationVertices[currIndex], 0, sizeof(TriangulationVertex))); |
| triangulationVertices[currIndex].fPosition = polygonVerts[currIndex]; |
| triangulationVertices[currIndex].fIndex = currIndex; |
| triangulationVertices[currIndex].fPrevIndex = prevIndex; |
| triangulationVertices[currIndex].fNextIndex = nextIndex; |
| if (winding*v0.cross(v1) > SK_ScalarNearlyZero*SK_ScalarNearlyZero) { |
| triangulationVertices[currIndex].fVertexType = TriangulationVertex::VertexType::kConvex; |
| convexList.addToTail(&triangulationVertices[currIndex]); |
| } else { |
| // We treat near collinear vertices as reflex |
| triangulationVertices[currIndex].fVertexType = TriangulationVertex::VertexType::kReflex; |
| reflexHash.add(&triangulationVertices[currIndex]); |
| } |
| |
| prevIndex = currIndex; |
| currIndex = nextIndex; |
| nextIndex = (currIndex + 1) % polygonSize; |
| v0 = v1; |
| v1 = polygonVerts[nextIndex] - polygonVerts[currIndex]; |
| } |
| |
| // The general concept: We are trying to find three neighboring vertices where |
| // no other vertex lies inside the triangle (an "ear"). If we find one, we clip |
| // that ear off, and then repeat on the new polygon. Once we get down to three vertices |
| // we have triangulated the entire polygon. |
| // In the worst case this is an n^2 algorithm. We can cut down the search space somewhat by |
| // noting that only convex vertices can be potential ears, and we only need to check whether |
| // any reflex vertices lie inside the ear. |
| triangleIndices->setReserve(triangleIndices->count() + 3 * (polygonSize - 2)); |
| int vertexCount = polygonSize; |
| while (vertexCount > 3) { |
| bool success = false; |
| TriangulationVertex* earVertex = nullptr; |
| TriangulationVertex* p0 = nullptr; |
| TriangulationVertex* p2 = nullptr; |
| // find a convex vertex to clip |
| for (SkTInternalLList<TriangulationVertex>::Iter convexIter = convexList.begin(); |
| convexIter != convexList.end(); ++convexIter) { |
| earVertex = *convexIter; |
| SkASSERT(TriangulationVertex::VertexType::kReflex != earVertex->fVertexType); |
| |
| p0 = &triangulationVertices[earVertex->fPrevIndex]; |
| p2 = &triangulationVertices[earVertex->fNextIndex]; |
| |
| // see if any reflex vertices are inside the ear |
| bool failed = reflexHash.checkTriangle(p0->fPosition, earVertex->fPosition, |
| p2->fPosition, p0->fIndex, p2->fIndex); |
| if (failed) { |
| continue; |
| } |
| |
| // found one we can clip |
| success = true; |
| break; |
| } |
| // If we can't find any ears to clip, this probably isn't a simple polygon |
| if (!success) { |
| return false; |
| } |
| |
| // add indices |
| auto indices = triangleIndices->append(3); |
| indices[0] = indexMap[p0->fIndex]; |
| indices[1] = indexMap[earVertex->fIndex]; |
| indices[2] = indexMap[p2->fIndex]; |
| |
| // clip the ear |
| convexList.remove(earVertex); |
| --vertexCount; |
| |
| // reclassify reflex verts |
| p0->fNextIndex = earVertex->fNextIndex; |
| reclassify_vertex(p0, polygonVerts, winding, &reflexHash, &convexList); |
| |
| p2->fPrevIndex = earVertex->fPrevIndex; |
| reclassify_vertex(p2, polygonVerts, winding, &reflexHash, &convexList); |
| } |
| |
| // output indices |
| for (SkTInternalLList<TriangulationVertex>::Iter vertexIter = convexList.begin(); |
| vertexIter != convexList.end(); ++vertexIter) { |
| TriangulationVertex* vertex = *vertexIter; |
| *triangleIndices->push() = indexMap[vertex->fIndex]; |
| } |
| |
| return true; |
| } |