| /* |
| * Copyright 2017 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrCCPathProcessor.h" |
| |
| #include "GrGpuCommandBuffer.h" |
| #include "GrOnFlushResourceProvider.h" |
| #include "GrTexture.h" |
| #include "ccpr/GrCCPerFlushResources.h" |
| #include "glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "glsl/GrGLSLGeometryProcessor.h" |
| #include "glsl/GrGLSLProgramBuilder.h" |
| #include "glsl/GrGLSLVarying.h" |
| |
| // Paths are drawn as octagons. Each point on the octagon is the intersection of two lines: one edge |
| // from the path's bounding box and one edge from its 45-degree bounding box. The below inputs |
| // define a vertex by the two edges that need to be intersected. Normals point out of the octagon, |
| // and the bounding boxes are sent in as instance attribs. |
| static constexpr float kOctoEdgeNorms[8 * 4] = { |
| // bbox // bbox45 |
| -1, 0, -1,+1, |
| -1, 0, -1,-1, |
| 0,-1, -1,-1, |
| 0,-1, +1,-1, |
| +1, 0, +1,-1, |
| +1, 0, +1,+1, |
| 0,+1, +1,+1, |
| 0,+1, -1,+1, |
| }; |
| |
| GR_DECLARE_STATIC_UNIQUE_KEY(gVertexBufferKey); |
| |
| sk_sp<const GrBuffer> GrCCPathProcessor::FindVertexBuffer(GrOnFlushResourceProvider* onFlushRP) { |
| GR_DEFINE_STATIC_UNIQUE_KEY(gVertexBufferKey); |
| return onFlushRP->findOrMakeStaticBuffer(GrGpuBufferType::kVertex, sizeof(kOctoEdgeNorms), |
| kOctoEdgeNorms, gVertexBufferKey); |
| } |
| |
| static constexpr uint16_t kRestartStrip = 0xffff; |
| |
| static constexpr uint16_t kOctoIndicesAsStrips[] = { |
| 1, 0, 2, 4, 3, kRestartStrip, // First half. |
| 5, 4, 6, 0, 7 // Second half. |
| }; |
| |
| static constexpr uint16_t kOctoIndicesAsTris[] = { |
| // First half. |
| 1, 0, 2, |
| 0, 4, 2, |
| 2, 4, 3, |
| |
| // Second half. |
| 5, 4, 6, |
| 4, 0, 6, |
| 6, 0, 7, |
| }; |
| |
| GR_DECLARE_STATIC_UNIQUE_KEY(gIndexBufferKey); |
| |
| constexpr GrPrimitiveProcessor::Attribute GrCCPathProcessor::kInstanceAttribs[]; |
| constexpr GrPrimitiveProcessor::Attribute GrCCPathProcessor::kEdgeNormsAttrib; |
| |
| sk_sp<const GrBuffer> GrCCPathProcessor::FindIndexBuffer(GrOnFlushResourceProvider* onFlushRP) { |
| GR_DEFINE_STATIC_UNIQUE_KEY(gIndexBufferKey); |
| if (onFlushRP->caps()->usePrimitiveRestart()) { |
| return onFlushRP->findOrMakeStaticBuffer(GrGpuBufferType::kIndex, |
| sizeof(kOctoIndicesAsStrips), kOctoIndicesAsStrips, |
| gIndexBufferKey); |
| } else { |
| return onFlushRP->findOrMakeStaticBuffer(GrGpuBufferType::kIndex, |
| sizeof(kOctoIndicesAsTris), kOctoIndicesAsTris, |
| gIndexBufferKey); |
| } |
| } |
| |
| GrCCPathProcessor::GrCCPathProcessor(const GrTextureProxy* atlas, |
| const SkMatrix& viewMatrixIfUsingLocalCoords) |
| : INHERITED(kGrCCPathProcessor_ClassID) |
| , fAtlasAccess(atlas->textureType(), atlas->config(), GrSamplerState::Filter::kNearest, |
| GrSamplerState::WrapMode::kClamp) |
| , fAtlasSize(atlas->isize()) |
| , fAtlasOrigin(atlas->origin()) { |
| // TODO: Can we just assert that atlas has GrCCAtlas::kTextureOrigin and remove fAtlasOrigin? |
| this->setInstanceAttributes(kInstanceAttribs, kNumInstanceAttribs); |
| SkASSERT(this->instanceStride() == sizeof(Instance)); |
| |
| this->setVertexAttributes(&kEdgeNormsAttrib, 1); |
| this->setTextureSamplerCnt(1); |
| |
| if (!viewMatrixIfUsingLocalCoords.invert(&fLocalMatrix)) { |
| fLocalMatrix.setIdentity(); |
| } |
| } |
| |
| class GLSLPathProcessor : public GrGLSLGeometryProcessor { |
| public: |
| void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override; |
| |
| private: |
| void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& primProc, |
| FPCoordTransformIter&& transformIter) override { |
| const GrCCPathProcessor& proc = primProc.cast<GrCCPathProcessor>(); |
| pdman.set2f(fAtlasAdjustUniform, 1.0f / proc.atlasSize().fWidth, |
| 1.0f / proc.atlasSize().fHeight); |
| this->setTransformDataHelper(proc.localMatrix(), pdman, &transformIter); |
| } |
| |
| GrGLSLUniformHandler::UniformHandle fAtlasAdjustUniform; |
| |
| typedef GrGLSLGeometryProcessor INHERITED; |
| }; |
| |
| GrGLSLPrimitiveProcessor* GrCCPathProcessor::createGLSLInstance(const GrShaderCaps&) const { |
| return new GLSLPathProcessor(); |
| } |
| |
| void GrCCPathProcessor::drawPaths(GrOpFlushState* flushState, const GrPipeline& pipeline, |
| const GrPipeline::FixedDynamicState* fixedDynamicState, |
| const GrCCPerFlushResources& resources, int baseInstance, |
| int endInstance, const SkRect& bounds) const { |
| const GrCaps& caps = flushState->caps(); |
| GrPrimitiveType primitiveType = caps.usePrimitiveRestart() |
| ? GrPrimitiveType::kTriangleStrip |
| : GrPrimitiveType::kTriangles; |
| int numIndicesPerInstance = caps.usePrimitiveRestart() |
| ? SK_ARRAY_COUNT(kOctoIndicesAsStrips) |
| : SK_ARRAY_COUNT(kOctoIndicesAsTris); |
| GrMesh mesh(primitiveType); |
| auto enablePrimitiveRestart = GrPrimitiveRestart(flushState->caps().usePrimitiveRestart()); |
| |
| mesh.setIndexedInstanced(resources.refIndexBuffer(), numIndicesPerInstance, |
| resources.refInstanceBuffer(), endInstance - baseInstance, |
| baseInstance, enablePrimitiveRestart); |
| mesh.setVertexData(resources.refVertexBuffer()); |
| |
| flushState->rtCommandBuffer()->draw(*this, pipeline, fixedDynamicState, nullptr, &mesh, 1, |
| bounds); |
| } |
| |
| void GLSLPathProcessor::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) { |
| using InstanceAttribs = GrCCPathProcessor::InstanceAttribs; |
| using Interpolation = GrGLSLVaryingHandler::Interpolation; |
| |
| const GrCCPathProcessor& proc = args.fGP.cast<GrCCPathProcessor>(); |
| GrGLSLUniformHandler* uniHandler = args.fUniformHandler; |
| GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| |
| const char* atlasAdjust; |
| fAtlasAdjustUniform = uniHandler->addUniform( |
| kVertex_GrShaderFlag, |
| kFloat2_GrSLType, "atlas_adjust", &atlasAdjust); |
| |
| varyingHandler->emitAttributes(proc); |
| |
| GrGLSLVarying texcoord(kFloat3_GrSLType); |
| GrGLSLVarying color(kHalf4_GrSLType); |
| varyingHandler->addVarying("texcoord", &texcoord); |
| varyingHandler->addPassThroughAttribute(proc.getInstanceAttrib(InstanceAttribs::kColor), |
| args.fOutputColor, Interpolation::kCanBeFlat); |
| |
| // The vertex shader bloats and intersects the devBounds and devBounds45 rectangles, in order to |
| // find an octagon that circumscribes the (bloated) path. |
| GrGLSLVertexBuilder* v = args.fVertBuilder; |
| |
| // Each vertex is the intersection of one edge from devBounds and one from devBounds45. |
| // 'N' holds the normals to these edges as column vectors. |
| // |
| // NOTE: "float2x2(float4)" is valid and equivalent to "float2x2(float4.xy, float4.zw)", |
| // however Intel compilers crash when we use the former syntax in this shader. |
| v->codeAppendf("float2x2 N = float2x2(%s.xy, %s.zw);", proc.getEdgeNormsAttrib().name(), |
| proc.getEdgeNormsAttrib().name()); |
| |
| // N[0] is the normal for the edge we are intersecting from the regular bounding box, pointing |
| // out of the octagon. |
| v->codeAppendf("float4 devbounds = %s;", |
| proc.getInstanceAttrib(InstanceAttribs::kDevBounds).name()); |
| v->codeAppend ("float2 refpt = (0 == sk_VertexID >> 2)" |
| "? float2(min(devbounds.x, devbounds.z), devbounds.y)" |
| ": float2(max(devbounds.x, devbounds.z), devbounds.w);"); |
| |
| // N[1] is the normal for the edge we are intersecting from the 45-degree bounding box, pointing |
| // out of the octagon. |
| v->codeAppendf("float2 refpt45 = (0 == ((sk_VertexID + 1) & (1 << 2))) ? %s.xy : %s.zw;", |
| proc.getInstanceAttrib(InstanceAttribs::kDevBounds45).name(), |
| proc.getInstanceAttrib(InstanceAttribs::kDevBounds45).name()); |
| v->codeAppendf("refpt45 *= float2x2(.5,.5,-.5,.5);"); // transform back to device space. |
| |
| v->codeAppend ("float2 K = float2(dot(N[0], refpt), dot(N[1], refpt45));"); |
| v->codeAppendf("float2 octocoord = K * inverse(N);"); |
| |
| // Round the octagon out to ensure we rasterize every pixel the path might touch. (Positive |
| // bloatdir means we should take the "ceil" and negative means to take the "floor".) |
| // |
| // NOTE: If we were just drawing a rect, ceil/floor would be enough. But since there are also |
| // diagonals in the octagon that cross through pixel centers, we need to outset by another |
| // quarter px to ensure those pixels get rasterized. |
| v->codeAppend ("half2 bloatdir = (0 != N[0].x) " |
| "? half2(half(N[0].x), half(N[1].y))" |
| ": half2(half(N[1].x), half(N[0].y));"); |
| v->codeAppend ("octocoord = (ceil(octocoord * bloatdir - 1e-4) + 0.25) * bloatdir;"); |
| |
| gpArgs->fPositionVar.set(kFloat2_GrSLType, "octocoord"); |
| |
| // Convert to atlas coordinates in order to do our texture lookup. |
| v->codeAppendf("float2 atlascoord = octocoord + float2(%s);", |
| proc.getInstanceAttrib(InstanceAttribs::kDevToAtlasOffset).name()); |
| if (kTopLeft_GrSurfaceOrigin == proc.atlasOrigin()) { |
| v->codeAppendf("%s.xy = atlascoord * %s;", texcoord.vsOut(), atlasAdjust); |
| } else { |
| SkASSERT(kBottomLeft_GrSurfaceOrigin == proc.atlasOrigin()); |
| v->codeAppendf("%s.xy = float2(atlascoord.x * %s.x, 1 - atlascoord.y * %s.y);", |
| texcoord.vsOut(), atlasAdjust, atlasAdjust); |
| } |
| // The third texture coordinate is -.5 for even-odd paths and +.5 for winding ones. |
| // ("right < left" indicates even-odd fill type.) |
| v->codeAppendf("%s.z = sign(devbounds.z - devbounds.x) * .5;", texcoord.vsOut()); |
| |
| this->emitTransforms(v, varyingHandler, uniHandler, GrShaderVar("octocoord", kFloat2_GrSLType), |
| proc.localMatrix(), args.fFPCoordTransformHandler); |
| |
| // Fragment shader. |
| GrGLSLFPFragmentBuilder* f = args.fFragBuilder; |
| |
| // Look up coverage count in the atlas. |
| f->codeAppend ("half coverage = "); |
| f->appendTextureLookup(args.fTexSamplers[0], SkStringPrintf("%s.xy", texcoord.fsIn()).c_str(), |
| kFloat2_GrSLType); |
| f->codeAppend (".a;"); |
| |
| // Scale coverage count by .5. Make it negative for even-odd paths and positive for winding |
| // ones. Clamp winding coverage counts at 1.0 (i.e. min(coverage/2, .5)). |
| f->codeAppendf("coverage = min(abs(coverage) * half(%s.z), .5);", texcoord.fsIn()); |
| |
| // For negative values, this finishes the even-odd sawtooth function. Since positive (winding) |
| // values were clamped at "coverage/2 = .5", this only undoes the previous multiply by .5. |
| f->codeAppend ("coverage = 1 - abs(fract(coverage) * 2 - 1);"); |
| |
| f->codeAppendf("%s = half4(coverage);", args.fOutputCoverage); |
| } |