blob: 6e24270809c1c2fe12d95634e17d97dfdb6aa10d [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/GrDrawingManager.h"
#include "include/gpu/GrBackendSemaphore.h"
#include "include/gpu/GrTexture.h"
#include "include/private/GrRecordingContext.h"
#include "include/private/SkDeferredDisplayList.h"
#include "src/core/SkTTopoSort.h"
#include "src/gpu/GrAuditTrail.h"
#include "src/gpu/GrClientMappedBufferManager.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrCopyRenderTask.h"
#include "src/gpu/GrGpu.h"
#include "src/gpu/GrMemoryPool.h"
#include "src/gpu/GrOnFlushResourceProvider.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/GrRenderTargetContext.h"
#include "src/gpu/GrRenderTargetProxy.h"
#include "src/gpu/GrRenderTask.h"
#include "src/gpu/GrResourceAllocator.h"
#include "src/gpu/GrResourceProvider.h"
#include "src/gpu/GrSoftwarePathRenderer.h"
#include "src/gpu/GrSurfaceContext.h"
#include "src/gpu/GrSurfaceProxyPriv.h"
#include "src/gpu/GrTexturePriv.h"
#include "src/gpu/GrTextureProxy.h"
#include "src/gpu/GrTextureProxyPriv.h"
#include "src/gpu/GrTextureResolveRenderTask.h"
#include "src/gpu/GrTracing.h"
#include "src/gpu/GrTransferFromRenderTask.h"
#include "src/gpu/GrWaitRenderTask.h"
#include "src/gpu/ccpr/GrCoverageCountingPathRenderer.h"
#include "src/gpu/text/GrTextContext.h"
#include "src/image/SkSurface_Gpu.h"
GrDrawingManager::RenderTaskDAG::RenderTaskDAG(bool sortRenderTasks)
: fSortRenderTasks(sortRenderTasks) {}
GrDrawingManager::RenderTaskDAG::~RenderTaskDAG() {}
void GrDrawingManager::RenderTaskDAG::gatherIDs(SkSTArray<8, uint32_t, true>* idArray) const {
idArray->reset(fRenderTasks.count());
for (int i = 0; i < fRenderTasks.count(); ++i) {
if (fRenderTasks[i]) {
(*idArray)[i] = fRenderTasks[i]->uniqueID();
}
}
}
void GrDrawingManager::RenderTaskDAG::reset() {
fRenderTasks.reset();
}
void GrDrawingManager::RenderTaskDAG::removeRenderTask(int index) {
if (!fRenderTasks[index]->unique()) {
// TODO: Eventually this should be guaranteed unique: http://skbug.com/7111
fRenderTasks[index]->endFlush();
}
fRenderTasks[index] = nullptr;
}
void GrDrawingManager::RenderTaskDAG::removeRenderTasks(int startIndex, int stopIndex) {
for (int i = startIndex; i < stopIndex; ++i) {
if (!fRenderTasks[i]) {
continue;
}
this->removeRenderTask(i);
}
}
bool GrDrawingManager::RenderTaskDAG::isUsed(GrSurfaceProxy* proxy) const {
for (int i = 0; i < fRenderTasks.count(); ++i) {
if (fRenderTasks[i] && fRenderTasks[i]->isUsed(proxy)) {
return true;
}
}
return false;
}
GrRenderTask* GrDrawingManager::RenderTaskDAG::add(sk_sp<GrRenderTask> renderTask) {
if (renderTask) {
return fRenderTasks.emplace_back(std::move(renderTask)).get();
}
return nullptr;
}
GrRenderTask* GrDrawingManager::RenderTaskDAG::addBeforeLast(sk_sp<GrRenderTask> renderTask) {
SkASSERT(!fRenderTasks.empty());
if (renderTask) {
// Release 'fRenderTasks.back()' and grab the raw pointer, in case the SkTArray grows
// and reallocates during emplace_back.
fRenderTasks.emplace_back(fRenderTasks.back().release());
return (fRenderTasks[fRenderTasks.count() - 2] = std::move(renderTask)).get();
}
return nullptr;
}
void GrDrawingManager::RenderTaskDAG::add(const SkTArray<sk_sp<GrRenderTask>>& renderTasks) {
fRenderTasks.push_back_n(renderTasks.count(), renderTasks.begin());
}
void GrDrawingManager::RenderTaskDAG::swap(SkTArray<sk_sp<GrRenderTask>>* renderTasks) {
SkASSERT(renderTasks->empty());
renderTasks->swap(fRenderTasks);
}
void GrDrawingManager::RenderTaskDAG::prepForFlush() {
if (fSortRenderTasks) {
SkDEBUGCODE(bool result =) SkTTopoSort<GrRenderTask, GrRenderTask::TopoSortTraits>(
&fRenderTasks);
SkASSERT(result);
}
#ifdef SK_DEBUG
// This block checks for any unnecessary splits in the opsTasks. If two sequential opsTasks
// share the same backing GrSurfaceProxy it means the opsTask was artificially split.
if (fRenderTasks.count()) {
GrOpsTask* prevOpsTask = fRenderTasks[0]->asOpsTask();
for (int i = 1; i < fRenderTasks.count(); ++i) {
GrOpsTask* curOpsTask = fRenderTasks[i]->asOpsTask();
if (prevOpsTask && curOpsTask) {
SkASSERT(prevOpsTask->fTargetView != curOpsTask->fTargetView);
}
prevOpsTask = curOpsTask;
}
}
#endif
}
void GrDrawingManager::RenderTaskDAG::closeAll(const GrCaps* caps) {
for (int i = 0; i < fRenderTasks.count(); ++i) {
if (fRenderTasks[i]) {
fRenderTasks[i]->makeClosed(*caps);
}
}
}
void GrDrawingManager::RenderTaskDAG::cleanup(const GrCaps* caps) {
for (int i = 0; i < fRenderTasks.count(); ++i) {
if (!fRenderTasks[i]) {
continue;
}
// no renderTask should receive a dependency
fRenderTasks[i]->makeClosed(*caps);
// We shouldn't need to do this, but it turns out some clients still hold onto opsTasks
// after a cleanup.
// MDB TODO: is this still true?
if (!fRenderTasks[i]->unique()) {
// TODO: Eventually this should be guaranteed unique.
// https://bugs.chromium.org/p/skia/issues/detail?id=7111
fRenderTasks[i]->endFlush();
}
}
fRenderTasks.reset();
}
///////////////////////////////////////////////////////////////////////////////////////////////////
GrDrawingManager::GrDrawingManager(GrRecordingContext* context,
const GrPathRendererChain::Options& optionsForPathRendererChain,
const GrTextContext::Options& optionsForTextContext,
bool sortRenderTasks,
bool reduceOpsTaskSplitting)
: fContext(context)
, fOptionsForPathRendererChain(optionsForPathRendererChain)
, fOptionsForTextContext(optionsForTextContext)
, fDAG(sortRenderTasks)
, fTextContext(nullptr)
, fPathRendererChain(nullptr)
, fSoftwarePathRenderer(nullptr)
, fFlushing(false)
, fReduceOpsTaskSplitting(reduceOpsTaskSplitting) {
}
void GrDrawingManager::cleanup() {
fDAG.cleanup(fContext->priv().caps());
fPathRendererChain = nullptr;
fSoftwarePathRenderer = nullptr;
fOnFlushCBObjects.reset();
}
GrDrawingManager::~GrDrawingManager() {
this->cleanup();
}
bool GrDrawingManager::wasAbandoned() const {
return fContext->priv().abandoned();
}
void GrDrawingManager::freeGpuResources() {
for (int i = fOnFlushCBObjects.count() - 1; i >= 0; --i) {
if (!fOnFlushCBObjects[i]->retainOnFreeGpuResources()) {
// it's safe to just do this because we're iterating in reverse
fOnFlushCBObjects.removeShuffle(i);
}
}
// a path renderer may be holding onto resources
fPathRendererChain = nullptr;
fSoftwarePathRenderer = nullptr;
}
// MDB TODO: make use of the 'proxy' parameter.
GrSemaphoresSubmitted GrDrawingManager::flush(GrSurfaceProxy* proxies[], int numProxies,
SkSurface::BackendSurfaceAccess access, const GrFlushInfo& info,
const GrPrepareForExternalIORequests& externalRequests) {
SkASSERT(numProxies >= 0);
SkASSERT(!numProxies || proxies);
GR_CREATE_TRACE_MARKER_CONTEXT("GrDrawingManager", "flush", fContext);
if (fFlushing || this->wasAbandoned()) {
if (info.fFinishedProc) {
info.fFinishedProc(info.fFinishedContext);
}
return GrSemaphoresSubmitted::kNo;
}
SkDEBUGCODE(this->validate());
if (kNone_GrFlushFlags == info.fFlags && !info.fNumSemaphores && !info.fFinishedProc &&
!externalRequests.hasRequests()) {
bool canSkip = numProxies > 0;
for (int i = 0; i < numProxies && canSkip; ++i) {
canSkip = !fDAG.isUsed(proxies[i]) && !this->isDDLTarget(proxies[i]);
}
if (canSkip) {
return GrSemaphoresSubmitted::kNo;
}
}
auto direct = fContext->priv().asDirectContext();
if (!direct) {
if (info.fFinishedProc) {
info.fFinishedProc(info.fFinishedContext);
}
return GrSemaphoresSubmitted::kNo; // Can't flush while DDL recording
}
direct->priv().clientMappedBufferManager()->process();
GrGpu* gpu = direct->priv().getGpu();
if (!gpu) {
if (info.fFinishedProc) {
info.fFinishedProc(info.fFinishedContext);
}
return GrSemaphoresSubmitted::kNo; // Can't flush while DDL recording
}
fFlushing = true;
auto resourceProvider = direct->priv().resourceProvider();
auto resourceCache = direct->priv().getResourceCache();
// Semi-usually the GrRenderTasks are already closed at this point, but sometimes Ganesh needs
// to flush mid-draw. In that case, the SkGpuDevice's opsTasks won't be closed but need to be
// flushed anyway. Closing such opsTasks here will mean new ones will be created to replace them
// if the SkGpuDevice(s) write to them again.
fDAG.closeAll(fContext->priv().caps());
fActiveOpsTask = nullptr;
fDAG.prepForFlush();
if (!fCpuBufferCache) {
// We cache more buffers when the backend is using client side arrays. Otherwise, we
// expect each pool will use a CPU buffer as a staging buffer before uploading to a GPU
// buffer object. Each pool only requires one staging buffer at a time.
int maxCachedBuffers = fContext->priv().caps()->preferClientSideDynamicBuffers() ? 2 : 6;
fCpuBufferCache = GrBufferAllocPool::CpuBufferCache::Make(maxCachedBuffers);
}
GrOpFlushState flushState(gpu, resourceProvider, &fTokenTracker, fCpuBufferCache);
GrOnFlushResourceProvider onFlushProvider(this);
// TODO: AFAICT the only reason fFlushState is on GrDrawingManager rather than on the
// stack here is to preserve the flush tokens.
// Prepare any onFlush op lists (e.g. atlases).
if (!fOnFlushCBObjects.empty()) {
fDAG.gatherIDs(&fFlushingRenderTaskIDs);
for (GrOnFlushCallbackObject* onFlushCBObject : fOnFlushCBObjects) {
onFlushCBObject->preFlush(&onFlushProvider, fFlushingRenderTaskIDs.begin(),
fFlushingRenderTaskIDs.count());
}
for (const auto& onFlushRenderTask : fOnFlushRenderTasks) {
onFlushRenderTask->makeClosed(*fContext->priv().caps());
#ifdef SK_DEBUG
// OnFlush callbacks are invoked during flush, and are therefore expected to handle
// resource allocation & usage on their own. (No deferred or lazy proxies!)
onFlushRenderTask->visitTargetAndSrcProxies_debugOnly(
[](GrSurfaceProxy* p, GrMipMapped mipMapped) {
SkASSERT(!p->asTextureProxy() || !p->asTextureProxy()->texPriv().isDeferred());
SkASSERT(!p->isLazy());
if (p->requiresManualMSAAResolve()) {
// The onFlush callback is responsible for ensuring MSAA gets resolved.
SkASSERT(p->asRenderTargetProxy() && !p->asRenderTargetProxy()->isMSAADirty());
}
if (GrMipMapped::kYes == mipMapped) {
// The onFlush callback is responsible for regenerating mips if needed.
SkASSERT(p->asTextureProxy() && !p->asTextureProxy()->mipMapsAreDirty());
}
});
#endif
onFlushRenderTask->prepare(&flushState);
}
}
#if 0
// Enable this to print out verbose GrOp information
SkDEBUGCODE(SkDebugf("onFlush renderTasks:"));
for (const auto& onFlushRenderTask : fOnFlushRenderTasks) {
SkDEBUGCODE(onFlushRenderTask->dump();)
}
SkDEBUGCODE(SkDebugf("Normal renderTasks:"));
for (int i = 0; i < fRenderTasks.count(); ++i) {
SkDEBUGCODE(fRenderTasks[i]->dump();)
}
#endif
int startIndex, stopIndex;
bool flushed = false;
{
GrResourceAllocator alloc(resourceProvider SkDEBUGCODE(, fDAG.numRenderTasks()));
for (int i = 0; i < fDAG.numRenderTasks(); ++i) {
if (fDAG.renderTask(i)) {
fDAG.renderTask(i)->gatherProxyIntervals(&alloc);
}
alloc.markEndOfOpsTask(i);
}
alloc.determineRecyclability();
GrResourceAllocator::AssignError error = GrResourceAllocator::AssignError::kNoError;
int numRenderTasksExecuted = 0;
while (alloc.assign(&startIndex, &stopIndex, &error)) {
if (GrResourceAllocator::AssignError::kFailedProxyInstantiation == error) {
for (int i = startIndex; i < stopIndex; ++i) {
GrRenderTask* renderTask = fDAG.renderTask(i);
if (!renderTask) {
continue;
}
if (!renderTask->isInstantiated()) {
// No need to call the renderTask's handleInternalAllocationFailure
// since we will already skip executing the renderTask since it is not
// instantiated.
continue;
}
renderTask->handleInternalAllocationFailure();
}
}
if (this->executeRenderTasks(
startIndex, stopIndex, &flushState, &numRenderTasksExecuted)) {
flushed = true;
}
}
}
#ifdef SK_DEBUG
for (int i = 0; i < fDAG.numRenderTasks(); ++i) {
// If there are any remaining opsTaskss at this point, make sure they will not survive the
// flush. Otherwise we need to call endFlush() on them.
// http://skbug.com/7111
SkASSERT(!fDAG.renderTask(i) || fDAG.renderTask(i)->unique());
}
#endif
fDAG.reset();
this->clearDDLTargets();
#ifdef SK_DEBUG
// In non-DDL mode this checks that all the flushed ops have been freed from the memory pool.
// When we move to partial flushes this assert will no longer be valid.
// In DDL mode this check is somewhat superfluous since the memory for most of the ops/opsTasks
// will be stored in the DDL's GrOpMemoryPools.
GrOpMemoryPool* opMemoryPool = fContext->priv().opMemoryPool();
opMemoryPool->isEmpty();
#endif
GrSemaphoresSubmitted result = gpu->finishFlush(proxies, numProxies, access, info,
externalRequests);
// Give the cache a chance to purge resources that become purgeable due to flushing.
if (flushed) {
resourceCache->purgeAsNeeded();
flushed = false;
}
for (GrOnFlushCallbackObject* onFlushCBObject : fOnFlushCBObjects) {
onFlushCBObject->postFlush(fTokenTracker.nextTokenToFlush(), fFlushingRenderTaskIDs.begin(),
fFlushingRenderTaskIDs.count());
flushed = true;
}
if (flushed) {
resourceCache->purgeAsNeeded();
}
fFlushingRenderTaskIDs.reset();
fFlushing = false;
return result;
}
bool GrDrawingManager::executeRenderTasks(int startIndex, int stopIndex, GrOpFlushState* flushState,
int* numRenderTasksExecuted) {
SkASSERT(startIndex <= stopIndex && stopIndex <= fDAG.numRenderTasks());
#if GR_FLUSH_TIME_OP_SPEW
SkDebugf("Flushing opsTask: %d to %d out of [%d, %d]\n",
startIndex, stopIndex, 0, fDAG.numRenderTasks());
for (int i = startIndex; i < stopIndex; ++i) {
if (fDAG.renderTask(i)) {
fDAG.renderTask(i)->dump(true);
}
}
#endif
bool anyRenderTasksExecuted = false;
for (int i = startIndex; i < stopIndex; ++i) {
GrRenderTask* renderTask = fDAG.renderTask(i);
if (!renderTask || !renderTask->isInstantiated()) {
continue;
}
SkASSERT(renderTask->deferredProxiesAreInstantiated());
renderTask->prepare(flushState);
}
// Upload all data to the GPU
flushState->preExecuteDraws();
// For Vulkan, if we have too many oplists to be flushed we end up allocating a lot of resources
// for each command buffer associated with the oplists. If this gets too large we can cause the
// devices to go OOM. In practice we usually only hit this case in our tests, but to be safe we
// put a cap on the number of oplists we will execute before flushing to the GPU to relieve some
// memory pressure.
static constexpr int kMaxRenderTasksBeforeFlush = 100;
// Execute the onFlush renderTasks first, if any.
for (sk_sp<GrRenderTask>& onFlushRenderTask : fOnFlushRenderTasks) {
if (!onFlushRenderTask->execute(flushState)) {
SkDebugf("WARNING: onFlushRenderTask failed to execute.\n");
}
SkASSERT(onFlushRenderTask->unique());
onFlushRenderTask = nullptr;
(*numRenderTasksExecuted)++;
if (*numRenderTasksExecuted >= kMaxRenderTasksBeforeFlush) {
flushState->gpu()->finishFlush(nullptr, 0, SkSurface::BackendSurfaceAccess::kNoAccess,
GrFlushInfo(), GrPrepareForExternalIORequests());
*numRenderTasksExecuted = 0;
}
}
fOnFlushRenderTasks.reset();
// Execute the normal op lists.
for (int i = startIndex; i < stopIndex; ++i) {
GrRenderTask* renderTask = fDAG.renderTask(i);
if (!renderTask || !renderTask->isInstantiated()) {
continue;
}
if (renderTask->execute(flushState)) {
anyRenderTasksExecuted = true;
}
(*numRenderTasksExecuted)++;
if (*numRenderTasksExecuted >= kMaxRenderTasksBeforeFlush) {
flushState->gpu()->finishFlush(nullptr, 0, SkSurface::BackendSurfaceAccess::kNoAccess,
GrFlushInfo(), GrPrepareForExternalIORequests());
*numRenderTasksExecuted = 0;
}
}
SkASSERT(!flushState->opsRenderPass());
SkASSERT(fTokenTracker.nextDrawToken() == fTokenTracker.nextTokenToFlush());
// We reset the flush state before the RenderTasks so that the last resources to be freed are
// those that are written to in the RenderTasks. This helps to make sure the most recently used
// resources are the last to be purged by the resource cache.
flushState->reset();
fDAG.removeRenderTasks(startIndex, stopIndex);
return anyRenderTasksExecuted;
}
GrSemaphoresSubmitted GrDrawingManager::flushSurfaces(GrSurfaceProxy* proxies[], int numProxies,
SkSurface::BackendSurfaceAccess access,
const GrFlushInfo& info) {
if (this->wasAbandoned()) {
return GrSemaphoresSubmitted::kNo;
}
SkDEBUGCODE(this->validate());
SkASSERT(numProxies >= 0);
SkASSERT(!numProxies || proxies);
auto direct = fContext->priv().asDirectContext();
if (!direct) {
return GrSemaphoresSubmitted::kNo; // Can't flush while DDL recording
}
GrGpu* gpu = direct->priv().getGpu();
if (!gpu) {
return GrSemaphoresSubmitted::kNo; // Can't flush while DDL recording
}
// TODO: It is important to upgrade the drawingmanager to just flushing the
// portion of the DAG required by 'proxies' in order to restore some of the
// semantics of this method.
GrSemaphoresSubmitted result = this->flush(proxies, numProxies, access, info,
GrPrepareForExternalIORequests());
for (int i = 0; i < numProxies; ++i) {
GrSurfaceProxy* proxy = proxies[i];
if (!proxy->isInstantiated()) {
return result;
}
// In the flushSurfaces case, we need to resolve MSAA immediately after flush. This is
// because the client will call through to this method when drawing into a target created by
// wrapBackendTextureAsRenderTarget, and will expect the original texture to be fully
// resolved upon return.
if (proxy->requiresManualMSAAResolve()) {
auto* rtProxy = proxy->asRenderTargetProxy();
SkASSERT(rtProxy);
if (rtProxy->isMSAADirty()) {
SkASSERT(rtProxy->peekRenderTarget());
gpu->resolveRenderTarget(rtProxy->peekRenderTarget(), rtProxy->msaaDirtyRect(),
rtProxy->origin(), GrGpu::ForExternalIO::kYes);
rtProxy->markMSAAResolved();
}
}
// If, after a flush, any of the proxies of interest have dirty mipmaps, regenerate them in
// case their backend textures are being stolen.
// (This special case is exercised by the ReimportImageTextureWithMipLevels test.)
// FIXME: It may be more ideal to plumb down a "we're going to steal the backends" flag.
if (auto* textureProxy = proxy->asTextureProxy()) {
if (textureProxy->mipMapsAreDirty()) {
SkASSERT(textureProxy->peekTexture());
gpu->regenerateMipMapLevels(textureProxy->peekTexture());
textureProxy->markMipMapsClean();
}
}
}
SkDEBUGCODE(this->validate());
return result;
}
void GrDrawingManager::addOnFlushCallbackObject(GrOnFlushCallbackObject* onFlushCBObject) {
fOnFlushCBObjects.push_back(onFlushCBObject);
}
#if GR_TEST_UTILS
void GrDrawingManager::testingOnly_removeOnFlushCallbackObject(GrOnFlushCallbackObject* cb) {
int n = std::find(fOnFlushCBObjects.begin(), fOnFlushCBObjects.end(), cb) -
fOnFlushCBObjects.begin();
SkASSERT(n < fOnFlushCBObjects.count());
fOnFlushCBObjects.removeShuffle(n);
}
#endif
void GrDrawingManager::moveRenderTasksToDDL(SkDeferredDisplayList* ddl) {
SkDEBUGCODE(this->validate());
// no renderTask should receive a new command after this
fDAG.closeAll(fContext->priv().caps());
fActiveOpsTask = nullptr;
fDAG.swap(&ddl->fRenderTasks);
for (auto renderTask : ddl->fRenderTasks) {
renderTask->prePrepare(fContext);
}
ddl->fOpMemoryPool = fContext->priv().detachOpMemoryPool();
ddl->fRecordTimeData = fContext->priv().detachRecordTimeAllocator();
fContext->priv().detachProgramInfos(&ddl->fProgramInfos);
if (fPathRendererChain) {
if (auto ccpr = fPathRendererChain->getCoverageCountingPathRenderer()) {
ddl->fPendingPaths = ccpr->detachPendingPaths();
}
}
SkDEBUGCODE(this->validate());
}
void GrDrawingManager::copyRenderTasksFromDDL(const SkDeferredDisplayList* ddl,
GrRenderTargetProxy* newDest) {
SkDEBUGCODE(this->validate());
if (fActiveOpsTask) {
// This is a temporary fix for the partial-MDB world. In that world we're not
// reordering so ops that (in the single opsTask world) would've just glommed onto the
// end of the single opsTask but referred to a far earlier RT need to appear in their
// own opsTask.
fActiveOpsTask->makeClosed(*fContext->priv().caps());
fActiveOpsTask = nullptr;
}
this->addDDLTarget(newDest);
// Here we jam the proxy that backs the current replay SkSurface into the LazyProxyData.
// The lazy proxy that references it (in the copied opsTasks) will steal its GrTexture.
ddl->fLazyProxyData->fReplayDest = newDest;
if (ddl->fPendingPaths.size()) {
GrCoverageCountingPathRenderer* ccpr = this->getCoverageCountingPathRenderer();
ccpr->mergePendingPaths(ddl->fPendingPaths);
}
fDAG.add(ddl->fRenderTasks);
SkDEBUGCODE(this->validate());
}
#ifdef SK_DEBUG
void GrDrawingManager::validate() const {
if (fDAG.sortingRenderTasks() && fReduceOpsTaskSplitting) {
SkASSERT(!fActiveOpsTask);
} else {
if (fActiveOpsTask) {
SkASSERT(!fDAG.empty());
SkASSERT(!fActiveOpsTask->isClosed());
SkASSERT(fActiveOpsTask == fDAG.back());
}
for (int i = 0; i < fDAG.numRenderTasks(); ++i) {
if (fActiveOpsTask != fDAG.renderTask(i)) {
// The resolveTask associated with the activeTask remains open for as long as the
// activeTask does.
bool isActiveResolveTask =
fActiveOpsTask && fActiveOpsTask->fTextureResolveTask == fDAG.renderTask(i);
SkASSERT(isActiveResolveTask || fDAG.renderTask(i)->isClosed());
}
}
if (!fDAG.empty() && !fDAG.back()->isClosed()) {
SkASSERT(fActiveOpsTask == fDAG.back());
}
}
}
#endif
void GrDrawingManager::closeRenderTasksForNewRenderTask(GrSurfaceProxy* target) {
if (target && fDAG.sortingRenderTasks() && fReduceOpsTaskSplitting) {
// In this case we need to close all the renderTasks that rely on the current contents of
// 'target'. That is bc we're going to update the content of the proxy so they need to be
// split in case they use both the old and new content. (This is a bit of an overkill: they
// really only need to be split if they ever reference proxy's contents again but that is
// hard to predict/handle).
if (GrRenderTask* lastRenderTask = target->getLastRenderTask()) {
lastRenderTask->closeThoseWhoDependOnMe(*fContext->priv().caps());
}
} else if (fActiveOpsTask) {
// This is a temporary fix for the partial-MDB world. In that world we're not
// reordering so ops that (in the single opsTask world) would've just glommed onto the
// end of the single opsTask but referred to a far earlier RT need to appear in their
// own opsTask.
fActiveOpsTask->makeClosed(*fContext->priv().caps());
fActiveOpsTask = nullptr;
}
}
sk_sp<GrOpsTask> GrDrawingManager::newOpsTask(GrSurfaceProxyView surfaceView,
bool managedOpsTask) {
SkDEBUGCODE(this->validate());
SkASSERT(fContext);
GrSurfaceProxy* proxy = surfaceView.proxy();
this->closeRenderTasksForNewRenderTask(proxy);
sk_sp<GrOpsTask> opsTask(new GrOpsTask(fContext->priv().opMemoryPool(),
fContext->priv().recordTimeAllocator(),
std::move(surfaceView),
fContext->priv().auditTrail()));
SkASSERT(proxy->getLastRenderTask() == opsTask.get());
if (managedOpsTask) {
fDAG.add(opsTask);
if (!fDAG.sortingRenderTasks() || !fReduceOpsTaskSplitting) {
fActiveOpsTask = opsTask.get();
}
}
SkDEBUGCODE(this->validate());
return opsTask;
}
GrTextureResolveRenderTask* GrDrawingManager::newTextureResolveRenderTask(const GrCaps& caps) {
// Unlike in the "new opsTask" case, we do not want to close the active opsTask, nor (if we are
// in sorting and opsTask reduction mode) the render tasks that depend on any proxy's current
// state. This is because those opsTasks can still receive new ops and because if they refer to
// the mipmapped version of 'proxy', they will then come to depend on the render task being
// created here.
//
// Add the new textureResolveTask before the fActiveOpsTask (if not in
// sorting/opsTask-splitting-reduction mode) because it will depend upon this resolve task.
// NOTE: Putting it here will also reduce the amount of work required by the topological sort.
return static_cast<GrTextureResolveRenderTask*>(fDAG.addBeforeLast(
sk_make_sp<GrTextureResolveRenderTask>()));
}
void GrDrawingManager::newWaitRenderTask(sk_sp<GrSurfaceProxy> proxy,
std::unique_ptr<std::unique_ptr<GrSemaphore>[]> semaphores,
int numSemaphores) {
SkDEBUGCODE(this->validate());
SkASSERT(fContext);
const GrCaps& caps = *fContext->priv().caps();
sk_sp<GrWaitRenderTask> waitTask = sk_make_sp<GrWaitRenderTask>(GrSurfaceProxyView(proxy),
std::move(semaphores),
numSemaphores);
if (fReduceOpsTaskSplitting) {
GrRenderTask* lastTask = proxy->getLastRenderTask();
if (lastTask && !lastTask->isClosed()) {
// We directly make the currently open renderTask depend on waitTask instead of using
// the proxy version of addDependency. The waitTask will never need to trigger any
// resolves or mip map generation which is the main advantage of going through the proxy
// version. Additionally we would've had to temporarily set the wait task as the
// lastRenderTask on the proxy, add the dependency, and then reset the lastRenderTask to
// lastTask. Additionally we add all dependencies of lastTask to waitTask so that the
// waitTask doesn't get reordered before them and unnecessarily block those tasks.
// Note: Any previous Ops already in lastTask will get blocked by the wait semaphore
// even though they don't need to be for correctness.
// Make sure we add the dependencies of lastTask to waitTask first or else we'll get a
// circular self dependency of waitTask on waitTask.
waitTask->addDependenciesFromOtherTask(lastTask);
lastTask->addDependency(waitTask.get());
} else {
// If there is a last task we set the waitTask to depend on it so that it doesn't get
// reordered in front of the lastTask causing the lastTask to be blocked by the
// semaphore. Again we directly just go through adding the dependency to the task and
// not the proxy since we don't need to worry about resolving anything.
if (lastTask) {
waitTask->addDependency(lastTask);
}
proxy->setLastRenderTask(waitTask.get());
}
fDAG.add(waitTask);
} else {
if (fActiveOpsTask && (fActiveOpsTask->fTargetView.proxy() == proxy.get())) {
SkASSERT(proxy->getLastRenderTask() == fActiveOpsTask);
fDAG.addBeforeLast(waitTask);
// In this case we keep the current renderTask open but just insert the new waitTask
// before it in the list. The waitTask will never need to trigger any resolves or mip
// map generation which is the main advantage of going through the proxy version.
// Additionally we would've had to temporarily set the wait task as the lastRenderTask
// on the proxy, add the dependency, and then reset the lastRenderTask to
// fActiveOpsTask. Additionally we make the waitTask depend on all of fActiveOpsTask
// dependencies so that we don't unnecessarily reorder the waitTask before them.
// Note: Any previous Ops already in fActiveOpsTask will get blocked by the wait
// semaphore even though they don't need to be for correctness.
// Make sure we add the dependencies of fActiveOpsTask to waitTask first or else we'll
// get a circular self dependency of waitTask on waitTask.
waitTask->addDependenciesFromOtherTask(fActiveOpsTask);
fActiveOpsTask->addDependency(waitTask.get());
} else {
// In this case we just close the previous RenderTask and start and append the waitTask
// to the DAG. Since it is the last task now we call setLastRenderTask on the proxy. If
// there is a lastTask on the proxy we make waitTask depend on that task. This
// dependency isn't strictly needed but it does keep the DAG from reordering the
// waitTask earlier and blocking more tasks.
if (GrRenderTask* lastTask = proxy->getLastRenderTask()) {
waitTask->addDependency(lastTask);
}
proxy->setLastRenderTask(waitTask.get());
this->closeRenderTasksForNewRenderTask(proxy.get());
fDAG.add(waitTask);
}
}
waitTask->makeClosed(caps);
SkDEBUGCODE(this->validate());
}
void GrDrawingManager::newTransferFromRenderTask(sk_sp<GrSurfaceProxy> srcProxy,
const SkIRect& srcRect,
GrColorType surfaceColorType,
GrColorType dstColorType,
sk_sp<GrGpuBuffer> dstBuffer,
size_t dstOffset) {
SkDEBUGCODE(this->validate());
SkASSERT(fContext);
// This copies from srcProxy to dstBuffer so it doesn't have a real target.
this->closeRenderTasksForNewRenderTask(nullptr);
GrRenderTask* task = fDAG.add(sk_make_sp<GrTransferFromRenderTask>(
srcProxy, srcRect, surfaceColorType, dstColorType, std::move(dstBuffer), dstOffset));
const GrCaps& caps = *fContext->priv().caps();
// We always say GrMipMapped::kNo here since we are always just copying from the base layer. We
// don't need to make sure the whole mip map chain is valid.
task->addDependency(srcProxy.get(), GrMipMapped::kNo, GrTextureResolveManager(this), caps);
task->makeClosed(caps);
// We have closed the previous active oplist but since a new oplist isn't being added there
// shouldn't be an active one.
SkASSERT(!fActiveOpsTask);
SkDEBUGCODE(this->validate());
}
bool GrDrawingManager::newCopyRenderTask(GrSurfaceProxyView srcView,
const SkIRect& srcRect,
GrSurfaceProxyView dstView,
const SkIPoint& dstPoint) {
SkDEBUGCODE(this->validate());
SkASSERT(fContext);
this->closeRenderTasksForNewRenderTask(dstView.proxy());
const GrCaps& caps = *fContext->priv().caps();
GrSurfaceProxy* srcProxy = srcView.proxy();
GrRenderTask* task =
fDAG.add(GrCopyRenderTask::Make(std::move(srcView), srcRect, std::move(dstView),
dstPoint, &caps));
if (!task) {
return false;
}
// We always say GrMipMapped::kNo here since we are always just copying from the base layer to
// another base layer. We don't need to make sure the whole mip map chain is valid.
task->addDependency(srcProxy, GrMipMapped::kNo, GrTextureResolveManager(this), caps);
task->makeClosed(caps);
// We have closed the previous active oplist but since a new oplist isn't being added there
// shouldn't be an active one.
SkASSERT(!fActiveOpsTask);
SkDEBUGCODE(this->validate());
return true;
}
GrTextContext* GrDrawingManager::getTextContext() {
if (!fTextContext) {
fTextContext = GrTextContext::Make(fOptionsForTextContext);
}
return fTextContext.get();
}
/*
* This method finds a path renderer that can draw the specified path on
* the provided target.
* Due to its expense, the software path renderer has split out so it can
* can be individually allowed/disallowed via the "allowSW" boolean.
*/
GrPathRenderer* GrDrawingManager::getPathRenderer(const GrPathRenderer::CanDrawPathArgs& args,
bool allowSW,
GrPathRendererChain::DrawType drawType,
GrPathRenderer::StencilSupport* stencilSupport) {
if (!fPathRendererChain) {
fPathRendererChain.reset(new GrPathRendererChain(fContext, fOptionsForPathRendererChain));
}
GrPathRenderer* pr = fPathRendererChain->getPathRenderer(args, drawType, stencilSupport);
if (!pr && allowSW) {
auto swPR = this->getSoftwarePathRenderer();
if (GrPathRenderer::CanDrawPath::kNo != swPR->canDrawPath(args)) {
pr = swPR;
}
}
return pr;
}
GrPathRenderer* GrDrawingManager::getSoftwarePathRenderer() {
if (!fSoftwarePathRenderer) {
fSoftwarePathRenderer.reset(
new GrSoftwarePathRenderer(fContext->priv().proxyProvider(),
fOptionsForPathRendererChain.fAllowPathMaskCaching));
}
return fSoftwarePathRenderer.get();
}
GrCoverageCountingPathRenderer* GrDrawingManager::getCoverageCountingPathRenderer() {
if (!fPathRendererChain) {
fPathRendererChain.reset(new GrPathRendererChain(fContext, fOptionsForPathRendererChain));
}
return fPathRendererChain->getCoverageCountingPathRenderer();
}
void GrDrawingManager::flushIfNecessary() {
auto direct = fContext->priv().asDirectContext();
if (!direct) {
return;
}
auto resourceCache = direct->priv().getResourceCache();
if (resourceCache && resourceCache->requestsFlush()) {
this->flush(nullptr, 0, SkSurface::BackendSurfaceAccess::kNoAccess, GrFlushInfo(),
GrPrepareForExternalIORequests());
resourceCache->purgeAsNeeded();
}
}
std::unique_ptr<GrRenderTargetContext> GrDrawingManager::makeRenderTargetContext(
sk_sp<GrSurfaceProxy> sProxy,
GrColorType colorType,
sk_sp<SkColorSpace> colorSpace,
const SkSurfaceProps* surfaceProps,
bool managedOpsTask) {
if (this->wasAbandoned() || !sProxy->asRenderTargetProxy()) {
return nullptr;
}
sk_sp<GrRenderTargetProxy> renderTargetProxy(sk_ref_sp(sProxy->asRenderTargetProxy()));
GrSurfaceOrigin origin = renderTargetProxy->origin();
GrSwizzle readSwizzle = fContext->priv().caps()->getReadSwizzle(sProxy->backendFormat(),
colorType);
GrSwizzle outSwizzle = fContext->priv().caps()->getOutputSwizzle(sProxy->backendFormat(),
colorType);
return std::unique_ptr<GrRenderTargetContext>(
new GrRenderTargetContext(fContext,
std::move(renderTargetProxy),
colorType,
origin,
readSwizzle,
outSwizzle,
std::move(colorSpace),
surfaceProps,
managedOpsTask));
}
std::unique_ptr<GrSurfaceContext> GrDrawingManager::makeSurfaceContext(
sk_sp<GrSurfaceProxy> sProxy,
GrColorType colorType,
SkAlphaType alphaType,
sk_sp<SkColorSpace> colorSpace) {
if (this->wasAbandoned() || !sProxy->asTextureProxy()) {
return nullptr;
}
// GrTextureRenderTargets should always be using a GrRenderTargetContext
SkASSERT(!sProxy->asRenderTargetProxy());
GrSurfaceOrigin origin = sProxy->origin();
GrSwizzle readSwizzle = sProxy->textureSwizzle();
return std::unique_ptr<GrSurfaceContext>(new GrSurfaceContext(
fContext, std::move(sProxy), colorType, alphaType, std::move(colorSpace), origin,
readSwizzle));
}