| |
| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "SkBenchmark.h" |
| #include "SkMatrix.h" |
| #include "SkRandom.h" |
| #include "SkString.h" |
| |
| class MatrixBench : public SkBenchmark { |
| SkString fName; |
| enum { N = 100000 }; |
| public: |
| MatrixBench(void* param, const char name[]) : INHERITED(param) { |
| fName.printf("matrix_%s", name); |
| } |
| |
| virtual void performTest() = 0; |
| |
| protected: |
| virtual int mulLoopCount() const { return 1; } |
| |
| virtual const char* onGetName() { |
| return fName.c_str(); |
| } |
| |
| virtual void onDraw(SkCanvas* canvas) { |
| int n = SkBENCHLOOP(N * this->mulLoopCount()); |
| for (int i = 0; i < n; i++) { |
| this->performTest(); |
| } |
| } |
| |
| private: |
| typedef SkBenchmark INHERITED; |
| }; |
| |
| // we want to stop the compiler from eliminating code that it thinks is a no-op |
| // so we have a non-static global we increment, hoping that will convince the |
| // compiler to execute everything |
| int gMatrixBench_NonStaticGlobal; |
| |
| #define always_do(pred) \ |
| do { \ |
| if (pred) { \ |
| ++gMatrixBench_NonStaticGlobal; \ |
| } \ |
| } while (0) |
| |
| class EqualsMatrixBench : public MatrixBench { |
| public: |
| EqualsMatrixBench(void* param) : INHERITED(param, "equals") {} |
| protected: |
| virtual void performTest() { |
| SkMatrix m0, m1, m2; |
| |
| m0.reset(); |
| m1.reset(); |
| m2.reset(); |
| always_do(m0 == m1); |
| always_do(m1 == m2); |
| always_do(m2 == m0); |
| } |
| private: |
| typedef MatrixBench INHERITED; |
| }; |
| |
| class ScaleMatrixBench : public MatrixBench { |
| public: |
| ScaleMatrixBench(void* param) : INHERITED(param, "scale") { |
| fSX = fSY = SkFloatToScalar(1.5f); |
| fM0.reset(); |
| fM1.setScale(fSX, fSY); |
| fM2.setTranslate(fSX, fSY); |
| } |
| protected: |
| virtual void performTest() { |
| SkMatrix m; |
| m = fM0; m.preScale(fSX, fSY); |
| m = fM1; m.preScale(fSX, fSY); |
| m = fM2; m.preScale(fSX, fSY); |
| } |
| private: |
| SkMatrix fM0, fM1, fM2; |
| SkScalar fSX, fSY; |
| typedef MatrixBench INHERITED; |
| }; |
| |
| // having unknown values in our arrays can throw off the timing a lot, perhaps |
| // handling NaN values is a lot slower. Anyway, this guy is just meant to put |
| // reasonable values in our arrays. |
| template <typename T> void init9(T array[9]) { |
| SkRandom rand; |
| for (int i = 0; i < 9; i++) { |
| array[i] = rand.nextSScalar1(); |
| } |
| } |
| |
| // Test the performance of setConcat() non-perspective case: |
| // using floating point precision only. |
| class FloatConcatMatrixBench : public MatrixBench { |
| public: |
| FloatConcatMatrixBench(void* p) : INHERITED(p, "concat_floatfloat") { |
| init9(mya); |
| init9(myb); |
| init9(myr); |
| } |
| protected: |
| virtual int mulLoopCount() const { return 4; } |
| |
| static inline void muladdmul(float a, float b, float c, float d, |
| float* result) { |
| *result = a * b + c * d; |
| } |
| virtual void performTest() { |
| const float* a = mya; |
| const float* b = myb; |
| float* r = myr; |
| muladdmul(a[0], b[0], a[1], b[3], &r[0]); |
| muladdmul(a[0], b[1], a[1], b[4], &r[1]); |
| muladdmul(a[0], b[2], a[1], b[5], &r[2]); |
| r[2] += a[2]; |
| muladdmul(a[3], b[0], a[4], b[3], &r[3]); |
| muladdmul(a[3], b[1], a[4], b[4], &r[4]); |
| muladdmul(a[3], b[2], a[4], b[5], &r[5]); |
| r[5] += a[5]; |
| r[6] = r[7] = 0.0f; |
| r[8] = 1.0f; |
| } |
| private: |
| float mya [9]; |
| float myb [9]; |
| float myr [9]; |
| typedef MatrixBench INHERITED; |
| }; |
| |
| static inline float SkDoubleToFloat(double x) { |
| return static_cast<float>(x); |
| } |
| |
| // Test the performance of setConcat() non-perspective case: |
| // using floating point precision but casting up to float for |
| // intermediate results during computations. |
| class FloatDoubleConcatMatrixBench : public MatrixBench { |
| public: |
| FloatDoubleConcatMatrixBench(void* p) : INHERITED(p, "concat_floatdouble") { |
| init9(mya); |
| init9(myb); |
| init9(myr); |
| } |
| protected: |
| virtual int mulLoopCount() const { return 4; } |
| |
| static inline void muladdmul(float a, float b, float c, float d, |
| float* result) { |
| *result = SkDoubleToFloat((double)a * b + (double)c * d); |
| } |
| virtual void performTest() { |
| const float* a = mya; |
| const float* b = myb; |
| float* r = myr; |
| muladdmul(a[0], b[0], a[1], b[3], &r[0]); |
| muladdmul(a[0], b[1], a[1], b[4], &r[1]); |
| muladdmul(a[0], b[2], a[1], b[5], &r[2]); |
| r[2] += a[2]; |
| muladdmul(a[3], b[0], a[4], b[3], &r[3]); |
| muladdmul(a[3], b[1], a[4], b[4], &r[4]); |
| muladdmul(a[3], b[2], a[4], b[5], &r[5]); |
| r[5] += a[5]; |
| r[6] = r[7] = 0.0f; |
| r[8] = 1.0f; |
| } |
| private: |
| float mya [9]; |
| float myb [9]; |
| float myr [9]; |
| typedef MatrixBench INHERITED; |
| }; |
| |
| // Test the performance of setConcat() non-perspective case: |
| // using double precision only. |
| class DoubleConcatMatrixBench : public MatrixBench { |
| public: |
| DoubleConcatMatrixBench(void* p) : INHERITED(p, "concat_double") { |
| init9(mya); |
| init9(myb); |
| init9(myr); |
| } |
| protected: |
| virtual int mulLoopCount() const { return 4; } |
| |
| static inline void muladdmul(double a, double b, double c, double d, |
| double* result) { |
| *result = a * b + c * d; |
| } |
| virtual void performTest() { |
| const double* a = mya; |
| const double* b = myb; |
| double* r = myr; |
| muladdmul(a[0], b[0], a[1], b[3], &r[0]); |
| muladdmul(a[0], b[1], a[1], b[4], &r[1]); |
| muladdmul(a[0], b[2], a[1], b[5], &r[2]); |
| r[2] += a[2]; |
| muladdmul(a[3], b[0], a[4], b[3], &r[3]); |
| muladdmul(a[3], b[1], a[4], b[4], &r[4]); |
| muladdmul(a[3], b[2], a[4], b[5], &r[5]); |
| r[5] += a[5]; |
| r[6] = r[7] = 0.0; |
| r[8] = 1.0; |
| } |
| private: |
| double mya [9]; |
| double myb [9]; |
| double myr [9]; |
| typedef MatrixBench INHERITED; |
| }; |
| |
| class GetTypeMatrixBench : public MatrixBench { |
| public: |
| GetTypeMatrixBench(void* param) |
| : INHERITED(param, "gettype") { |
| fArray[0] = (float) fRnd.nextS(); |
| fArray[1] = (float) fRnd.nextS(); |
| fArray[2] = (float) fRnd.nextS(); |
| fArray[3] = (float) fRnd.nextS(); |
| fArray[4] = (float) fRnd.nextS(); |
| fArray[5] = (float) fRnd.nextS(); |
| fArray[6] = (float) fRnd.nextS(); |
| fArray[7] = (float) fRnd.nextS(); |
| fArray[8] = (float) fRnd.nextS(); |
| } |
| protected: |
| // Putting random generation of the matrix inside performTest() |
| // would help us avoid anomalous runs, but takes up 25% or |
| // more of the function time. |
| virtual void performTest() { |
| fMatrix.setAll(fArray[0], fArray[1], fArray[2], |
| fArray[3], fArray[4], fArray[5], |
| fArray[6], fArray[7], fArray[8]); |
| always_do(fMatrix.getType()); |
| fMatrix.dirtyMatrixTypeCache(); |
| always_do(fMatrix.getType()); |
| fMatrix.dirtyMatrixTypeCache(); |
| always_do(fMatrix.getType()); |
| fMatrix.dirtyMatrixTypeCache(); |
| always_do(fMatrix.getType()); |
| fMatrix.dirtyMatrixTypeCache(); |
| always_do(fMatrix.getType()); |
| fMatrix.dirtyMatrixTypeCache(); |
| always_do(fMatrix.getType()); |
| fMatrix.dirtyMatrixTypeCache(); |
| always_do(fMatrix.getType()); |
| fMatrix.dirtyMatrixTypeCache(); |
| always_do(fMatrix.getType()); |
| } |
| private: |
| SkMatrix fMatrix; |
| float fArray[9]; |
| SkRandom fRnd; |
| typedef MatrixBench INHERITED; |
| }; |
| |
| #ifdef SK_SCALAR_IS_FLOAT |
| class ScaleTransMixedMatrixBench : public MatrixBench { |
| public: |
| ScaleTransMixedMatrixBench(void* p) : INHERITED(p, "scaletrans_mixed"), fCount (16) { |
| fMatrix.setAll(fRandom.nextS(), fRandom.nextS(), fRandom.nextS(), |
| fRandom.nextS(), fRandom.nextS(), fRandom.nextS(), |
| fRandom.nextS(), fRandom.nextS(), fRandom.nextS()); |
| int i; |
| for (i = 0; i < SkBENCHLOOP(fCount); i++) { |
| fSrc[i].fX = fRandom.nextSScalar1(); |
| fSrc[i].fY = fRandom.nextSScalar1(); |
| fDst[i].fX = fRandom.nextSScalar1(); |
| fDst[i].fY = fRandom.nextSScalar1(); |
| } |
| } |
| protected: |
| virtual void performTest() { |
| SkPoint* dst = fDst; |
| const SkPoint* src = fSrc; |
| int count = SkBENCHLOOP(fCount); |
| float mx = fMatrix[SkMatrix::kMScaleX]; |
| float my = fMatrix[SkMatrix::kMScaleY]; |
| float tx = fMatrix[SkMatrix::kMTransX]; |
| float ty = fMatrix[SkMatrix::kMTransY]; |
| do { |
| dst->fY = SkScalarMulAdd(src->fY, my, ty); |
| dst->fX = SkScalarMulAdd(src->fX, mx, tx); |
| src += 1; |
| dst += 1; |
| } while (--count); |
| } |
| private: |
| SkMatrix fMatrix; |
| SkPoint fSrc [16]; |
| SkPoint fDst [16]; |
| int fCount; |
| SkRandom fRandom; |
| typedef MatrixBench INHERITED; |
| }; |
| |
| class ScaleTransDoubleMatrixBench : public MatrixBench { |
| public: |
| ScaleTransDoubleMatrixBench(void* p) : INHERITED(p, "scaletrans_double"), fCount (16) { |
| init9(fMatrix); |
| int i; |
| for (i = 0; i < SkBENCHLOOP(fCount); i++) { |
| fSrc[i].fX = fRandom.nextSScalar1(); |
| fSrc[i].fY = fRandom.nextSScalar1(); |
| fDst[i].fX = fRandom.nextSScalar1(); |
| fDst[i].fY = fRandom.nextSScalar1(); |
| } |
| } |
| protected: |
| virtual void performTest() { |
| SkPoint* dst = fDst; |
| const SkPoint* src = fSrc; |
| int count = SkBENCHLOOP(fCount); |
| // As doubles, on Z600 Linux systems this is 2.5x as expensive as mixed mode |
| float mx = (float) fMatrix[SkMatrix::kMScaleX]; |
| float my = (float) fMatrix[SkMatrix::kMScaleY]; |
| float tx = (float) fMatrix[SkMatrix::kMTransX]; |
| float ty = (float) fMatrix[SkMatrix::kMTransY]; |
| do { |
| dst->fY = src->fY * my + ty; |
| dst->fX = src->fX * mx + tx; |
| src += 1; |
| dst += 1; |
| } while (--count); |
| } |
| private: |
| double fMatrix [9]; |
| SkPoint fSrc [16]; |
| SkPoint fDst [16]; |
| int fCount; |
| SkRandom fRandom; |
| typedef MatrixBench INHERITED; |
| }; |
| #endif |
| |
| |
| |
| |
| |
| static SkBenchmark* M0(void* p) { return new EqualsMatrixBench(p); } |
| static SkBenchmark* M1(void* p) { return new ScaleMatrixBench(p); } |
| static SkBenchmark* M2(void* p) { return new FloatConcatMatrixBench(p); } |
| static SkBenchmark* M3(void* p) { return new FloatDoubleConcatMatrixBench(p); } |
| static SkBenchmark* M4(void* p) { return new DoubleConcatMatrixBench(p); } |
| static SkBenchmark* M5(void* p) { return new GetTypeMatrixBench(p); } |
| |
| static BenchRegistry gReg0(M0); |
| static BenchRegistry gReg1(M1); |
| static BenchRegistry gReg2(M2); |
| static BenchRegistry gReg3(M3); |
| static BenchRegistry gReg4(M4); |
| static BenchRegistry gReg5(M5); |
| |
| #ifdef SK_SCALAR_IS_FLOAT |
| static SkBenchmark* FlM0(void* p) { return new ScaleTransMixedMatrixBench(p); } |
| static SkBenchmark* FlM1(void* p) { return new ScaleTransDoubleMatrixBench(p); } |
| static BenchRegistry gFlReg5(FlM0); |
| static BenchRegistry gFlReg6(FlM1); |
| #endif |