| #include "CurveIntersection.h" |
| #include "Extrema.h" |
| #include "IntersectionUtilities.h" |
| #include "LineParameters.h" |
| |
| static double interp_cubic_coords(const double* src, double t) |
| { |
| double ab = interp(src[0], src[2], t); |
| double bc = interp(src[2], src[4], t); |
| double cd = interp(src[4], src[6], t); |
| double abc = interp(ab, bc, t); |
| double bcd = interp(bc, cd, t); |
| return interp(abc, bcd, t); |
| } |
| |
| static int coincident_line(const Cubic& cubic, Cubic& reduction) { |
| reduction[0] = reduction[1] = cubic[0]; |
| return 1; |
| } |
| |
| static int vertical_line(const Cubic& cubic, Cubic& reduction) { |
| double tValues[2]; |
| reduction[0] = cubic[0]; |
| reduction[1] = cubic[3]; |
| int smaller = reduction[1].y > reduction[0].y; |
| int larger = smaller ^ 1; |
| int roots = findExtrema(cubic[0].y, cubic[1].y, cubic[2].y, cubic[3].y, tValues); |
| for (int index = 0; index < roots; ++index) { |
| double yExtrema = interp_cubic_coords(&cubic[0].y, tValues[index]); |
| if (reduction[smaller].y > yExtrema) { |
| reduction[smaller].y = yExtrema; |
| continue; |
| } |
| if (reduction[larger].y < yExtrema) { |
| reduction[larger].y = yExtrema; |
| } |
| } |
| return 2; |
| } |
| |
| static int horizontal_line(const Cubic& cubic, Cubic& reduction) { |
| double tValues[2]; |
| reduction[0] = cubic[0]; |
| reduction[1] = cubic[3]; |
| int smaller = reduction[1].x > reduction[0].x; |
| int larger = smaller ^ 1; |
| int roots = findExtrema(cubic[0].x, cubic[1].x, cubic[2].x, cubic[3].x, tValues); |
| for (int index = 0; index < roots; ++index) { |
| double xExtrema = interp_cubic_coords(&cubic[0].x, tValues[index]); |
| if (reduction[smaller].x > xExtrema) { |
| reduction[smaller].x = xExtrema; |
| continue; |
| } |
| if (reduction[larger].x < xExtrema) { |
| reduction[larger].x = xExtrema; |
| } |
| } |
| return 2; |
| } |
| |
| // check to see if it is a quadratic or a line |
| static int check_quadratic(const Cubic& cubic, Cubic& reduction, |
| int minX, int maxX, int minY, int maxY) { |
| double dx10 = cubic[1].x - cubic[0].x; |
| double dx23 = cubic[2].x - cubic[3].x; |
| double midX = cubic[0].x + dx10 * 3 / 2; |
| if (!approximately_equal(midX - cubic[3].x, dx23 * 3 / 2)) { |
| return 0; |
| } |
| double dy10 = cubic[1].y - cubic[0].y; |
| double dy23 = cubic[2].y - cubic[3].y; |
| double midY = cubic[0].y + dy10 * 3 / 2; |
| if (!approximately_equal(midY - cubic[3].y, dy23 * 3 / 2)) { |
| return 0; |
| } |
| reduction[0] = cubic[0]; |
| reduction[1].x = midX; |
| reduction[1].y = midY; |
| reduction[2] = cubic[3]; |
| return 3; |
| } |
| |
| static int check_linear(const Cubic& cubic, Cubic& reduction, |
| int minX, int maxX, int minY, int maxY) { |
| int startIndex = 0; |
| int endIndex = 3; |
| while (cubic[startIndex].approximatelyEqual(cubic[endIndex])) { |
| --endIndex; |
| if (endIndex == 0) { |
| printf("%s shouldn't get here if all four points are about equal", __FUNCTION__); |
| assert(0); |
| } |
| } |
| if (!isLinear(cubic, startIndex, endIndex)) { |
| return 0; |
| } |
| // four are colinear: return line formed by outside |
| reduction[0] = cubic[0]; |
| reduction[1] = cubic[3]; |
| int sameSide1; |
| int sameSide2; |
| bool useX = cubic[maxX].x - cubic[minX].x >= cubic[maxY].y - cubic[minY].y; |
| if (useX) { |
| sameSide1 = sign(cubic[0].x - cubic[1].x) + sign(cubic[3].x - cubic[1].x); |
| sameSide2 = sign(cubic[0].x - cubic[2].x) + sign(cubic[3].x - cubic[2].x); |
| } else { |
| sameSide1 = sign(cubic[0].y - cubic[1].y) + sign(cubic[3].y - cubic[1].y); |
| sameSide2 = sign(cubic[0].y - cubic[2].y) + sign(cubic[3].y - cubic[2].y); |
| } |
| if (sameSide1 == sameSide2 && (sameSide1 & 3) != 2) { |
| return 2; |
| } |
| double tValues[2]; |
| int roots; |
| if (useX) { |
| roots = findExtrema(cubic[0].x, cubic[1].x, cubic[2].x, cubic[3].x, tValues); |
| } else { |
| roots = findExtrema(cubic[0].y, cubic[1].y, cubic[2].y, cubic[3].y, tValues); |
| } |
| for (int index = 0; index < roots; ++index) { |
| _Point extrema; |
| extrema.x = interp_cubic_coords(&cubic[0].x, tValues[index]); |
| extrema.y = interp_cubic_coords(&cubic[0].y, tValues[index]); |
| // sameSide > 0 means mid is smaller than either [0] or [3], so replace smaller |
| int replace; |
| if (useX) { |
| if (extrema.x < cubic[0].x ^ extrema.x < cubic[3].x) { |
| continue; |
| } |
| replace = (extrema.x < cubic[0].x | extrema.x < cubic[3].x) |
| ^ cubic[0].x < cubic[3].x; |
| } else { |
| if (extrema.y < cubic[0].y ^ extrema.y < cubic[3].y) { |
| continue; |
| } |
| replace = (extrema.y < cubic[0].y | extrema.y < cubic[3].y) |
| ^ cubic[0].y < cubic[3].y; |
| } |
| reduction[replace] = extrema; |
| } |
| return 2; |
| } |
| |
| bool isLinear(const Cubic& cubic, int startIndex, int endIndex) { |
| LineParameters lineParameters; |
| lineParameters.cubicEndPoints(cubic, startIndex, endIndex); |
| double normalSquared = lineParameters.normalSquared(); |
| double distance[2]; // distance is not normalized |
| int mask = other_two(startIndex, endIndex); |
| int inner1 = startIndex ^ mask; |
| int inner2 = endIndex ^ mask; |
| lineParameters.controlPtDistance(cubic, inner1, inner2, distance); |
| double limit = normalSquared * SquaredEpsilon; |
| int index; |
| for (index = 0; index < 2; ++index) { |
| double distSq = distance[index]; |
| distSq *= distSq; |
| if (distSq > limit) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /* food for thought: |
| http://objectmix.com/graphics/132906-fast-precision-driven-cubic-quadratic-piecewise-degree-reduction-algos-2-a.html |
| |
| Given points c1, c2, c3 and c4 of a cubic Bezier, the points of the |
| corresponding quadratic Bezier are (given in convex combinations of |
| points): |
| |
| q1 = (11/13)c1 + (3/13)c2 -(3/13)c3 + (2/13)c4 |
| q2 = -c1 + (3/2)c2 + (3/2)c3 - c4 |
| q3 = (2/13)c1 - (3/13)c2 + (3/13)c3 + (11/13)c4 |
| |
| Of course, this curve does not interpolate the end-points, but it would |
| be interesting to see the behaviour of such a curve in an applet. |
| |
| -- |
| Kalle Rutanen |
| http://kaba.hilvi.org |
| |
| */ |
| |
| // reduce to a quadratic or smaller |
| // look for identical points |
| // look for all four points in a line |
| // note that three points in a line doesn't simplify a cubic |
| // look for approximation with single quadratic |
| // save approximation with multiple quadratics for later |
| int reduceOrder(const Cubic& cubic, Cubic& reduction, ReduceOrder_Flags allowQuadratics) { |
| int index, minX, maxX, minY, maxY; |
| int minXSet, minYSet; |
| minX = maxX = minY = maxY = 0; |
| minXSet = minYSet = 0; |
| for (index = 1; index < 4; ++index) { |
| if (cubic[minX].x > cubic[index].x) { |
| minX = index; |
| } |
| if (cubic[minY].y > cubic[index].y) { |
| minY = index; |
| } |
| if (cubic[maxX].x < cubic[index].x) { |
| maxX = index; |
| } |
| if (cubic[maxY].y < cubic[index].y) { |
| maxY = index; |
| } |
| } |
| for (index = 0; index < 4; ++index) { |
| if (approximately_equal(cubic[index].x, cubic[minX].x)) { |
| minXSet |= 1 << index; |
| } |
| if (approximately_equal(cubic[index].y, cubic[minY].y)) { |
| minYSet |= 1 << index; |
| } |
| } |
| if (minXSet == 0xF) { // test for vertical line |
| if (minYSet == 0xF) { // return 1 if all four are coincident |
| return coincident_line(cubic, reduction); |
| } |
| return vertical_line(cubic, reduction); |
| } |
| if (minYSet == 0xF) { // test for horizontal line |
| return horizontal_line(cubic, reduction); |
| } |
| int result = check_linear(cubic, reduction, minX, maxX, minY, maxY); |
| if (result) { |
| return result; |
| } |
| if (allowQuadratics && (result = check_quadratic(cubic, reduction, minX, maxX, minY, maxY))) { |
| return result; |
| } |
| memcpy(reduction, cubic, sizeof(Cubic)); |
| return 4; |
| } |