| #include "CurveIntersection.h" |
| #include "CubicUtilities.h" |
| #include "Intersections.h" |
| #include "LineUtilities.h" |
| |
| /* |
| Find the interection of a line and cubic by solving for valid t values. |
| |
| Analogous to line-quadratic intersection, solve line-cubic intersection by |
| representing the cubic as: |
| x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3 |
| y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3 |
| and the line as: |
| y = i*x + j (if the line is more horizontal) |
| or: |
| x = i*y + j (if the line is more vertical) |
| |
| Then using Mathematica, solve for the values of t where the cubic intersects the |
| line: |
| |
| (in) Resultant[ |
| a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x, |
| e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x] |
| (out) -e + j + |
| 3 e t - 3 f t - |
| 3 e t^2 + 6 f t^2 - 3 g t^2 + |
| e t^3 - 3 f t^3 + 3 g t^3 - h t^3 + |
| i ( a - |
| 3 a t + 3 b t + |
| 3 a t^2 - 6 b t^2 + 3 c t^2 - |
| a t^3 + 3 b t^3 - 3 c t^3 + d t^3 ) |
| |
| if i goes to infinity, we can rewrite the line in terms of x. Mathematica: |
| |
| (in) Resultant[ |
| a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j, |
| e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y] |
| (out) a - j - |
| 3 a t + 3 b t + |
| 3 a t^2 - 6 b t^2 + 3 c t^2 - |
| a t^3 + 3 b t^3 - 3 c t^3 + d t^3 - |
| i ( e - |
| 3 e t + 3 f t + |
| 3 e t^2 - 6 f t^2 + 3 g t^2 - |
| e t^3 + 3 f t^3 - 3 g t^3 + h t^3 ) |
| |
| Solving this with Mathematica produces an expression with hundreds of terms; |
| instead, use Numeric Solutions recipe to solve the cubic. |
| |
| The near-horizontal case, in terms of: Ax^3 + Bx^2 + Cx + D == 0 |
| A = (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d) ) |
| B = 3*(-( e - 2*f + g ) + i*( a - 2*b + c ) ) |
| C = 3*(-(-e + f ) + i*(-a + b ) ) |
| D = (-( e ) + i*( a ) + j ) |
| |
| The near-vertical case, in terms of: Ax^3 + Bx^2 + Cx + D == 0 |
| A = ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h) ) |
| B = 3*( ( a - 2*b + c ) - i*( e - 2*f + g ) ) |
| C = 3*( (-a + b ) - i*(-e + f ) ) |
| D = ( ( a ) - i*( e ) - j ) |
| |
| For horizontal lines: |
| (in) Resultant[ |
| a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j, |
| e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y] |
| (out) e - j - |
| 3 e t + 3 f t + |
| 3 e t^2 - 6 f t^2 + 3 g t^2 - |
| e t^3 + 3 f t^3 - 3 g t^3 + h t^3 |
| So the cubic coefficients are: |
| |
| */ |
| |
| class LineCubicIntersections : public Intersections { |
| public: |
| |
| LineCubicIntersections(const Cubic& c, const _Line& l, double r[3]) |
| : cubic(c) |
| , line(l) |
| , range(r) { |
| } |
| |
| int intersect() { |
| double slope; |
| double axisIntercept; |
| moreHorizontal = implicitLine(line, slope, axisIntercept); |
| double A, B, C, D; |
| coefficients(&cubic[0].x, A, B, C, D); |
| double E, F, G, H; |
| coefficients(&cubic[0].y, E, F, G, H); |
| if (moreHorizontal) { |
| A = A * slope - E; |
| B = B * slope - F; |
| C = C * slope - G; |
| D = D * slope - H + axisIntercept; |
| } else { |
| A = A - E * slope; |
| B = B - F * slope; |
| C = C - G * slope; |
| D = D - H * slope - axisIntercept; |
| } |
| return cubicRoots(A, B, C, D, range); |
| } |
| |
| int horizontalIntersect(double axisIntercept) { |
| double A, B, C, D; |
| coefficients(&cubic[0].y, A, B, C, D); |
| D -= axisIntercept; |
| return cubicRoots(A, B, C, D, range); |
| } |
| |
| int verticalIntersect(double axisIntercept) { |
| double A, B, C, D; |
| coefficients(&cubic[0].x, A, B, C, D); |
| D -= axisIntercept; |
| return cubicRoots(A, B, C, D, range); |
| } |
| |
| double findLineT(double t) { |
| const double* cPtr; |
| const double* lPtr; |
| if (moreHorizontal) { |
| cPtr = &cubic[0].x; |
| lPtr = &line[0].x; |
| } else { |
| cPtr = &cubic[0].y; |
| lPtr = &line[0].y; |
| } |
| // FIXME: should fold the following in with TestUtilities.cpp xy_at_t() |
| double s = 1 - t; |
| double cubicVal = cPtr[0] * s * s * s + 3 * cPtr[2] * s * s * t |
| + 3 * cPtr[4] * s * t * t + cPtr[6] * t * t * t; |
| return (cubicVal - lPtr[0]) / (lPtr[2] - lPtr[0]); |
| } |
| |
| private: |
| |
| const Cubic& cubic; |
| const _Line& line; |
| double* range; |
| bool moreHorizontal; |
| |
| }; |
| |
| int horizontalIntersect(const Cubic& cubic, double y, double tRange[3]) { |
| LineCubicIntersections c(cubic, *((_Line*) 0), tRange); |
| return c.horizontalIntersect(y); |
| } |
| |
| int horizontalIntersect(const Cubic& cubic, double left, double right, double y, |
| double tRange[3]) { |
| LineCubicIntersections c(cubic, *((_Line*) 0), tRange); |
| int result = c.horizontalIntersect(y); |
| for (int index = 0; index < result; ) { |
| double x, y; |
| xy_at_t(cubic, tRange[index], x, y); |
| if (x < left || x > right) { |
| if (--result > index) { |
| tRange[index] = tRange[result]; |
| } |
| continue; |
| } |
| ++index; |
| } |
| return result; |
| } |
| |
| int horizontalIntersect(const Cubic& cubic, double left, double right, double y, |
| bool flipped, Intersections& intersections) { |
| LineCubicIntersections c(cubic, *((_Line*) 0), intersections.fT[0]); |
| int result = c.horizontalIntersect(y); |
| for (int index = 0; index < result; ) { |
| double x, y; |
| xy_at_t(cubic, intersections.fT[0][index], x, y); |
| if (x < left || x > right) { |
| if (--result > index) { |
| intersections.fT[0][index] = intersections.fT[0][result]; |
| } |
| continue; |
| } |
| intersections.fT[0][index] = (x - left) / (right - left); |
| ++index; |
| } |
| if (flipped) { |
| // OPTIMIZATION: instead of swapping, pass original line, use [1].x - [0].x |
| for (int index = 0; index < result; ++index) { |
| intersections.fT[1][index] = 1 - intersections.fT[1][index]; |
| } |
| } |
| return result; |
| } |
| |
| int verticalIntersect(const Cubic& cubic, double top, double bottom, double x, |
| bool flipped, Intersections& intersections) { |
| LineCubicIntersections c(cubic, *((_Line*) 0), intersections.fT[0]); |
| int result = c.verticalIntersect(x); |
| for (int index = 0; index < result; ) { |
| double x, y; |
| xy_at_t(cubic, intersections.fT[0][index], x, y); |
| if (y < top || y > bottom) { |
| if (--result > index) { |
| intersections.fT[0][index] = intersections.fT[0][result]; |
| } |
| continue; |
| } |
| intersections.fT[0][index] = (y - top) / (bottom - top); |
| ++index; |
| } |
| if (flipped) { |
| // OPTIMIZATION: instead of swapping, pass original line, use [1].x - [0].x |
| for (int index = 0; index < result; ++index) { |
| intersections.fT[1][index] = 1 - intersections.fT[1][index]; |
| } |
| } |
| return result; |
| } |
| |
| int intersect(const Cubic& cubic, const _Line& line, double cRange[3], double lRange[3]) { |
| LineCubicIntersections c(cubic, line, cRange); |
| int roots; |
| if (approximately_equal(line[0].y, line[1].y)) { |
| roots = c.horizontalIntersect(line[0].y); |
| } else { |
| roots = c.intersect(); |
| } |
| for (int index = 0; index < roots; ++index) { |
| lRange[index] = c.findLineT(cRange[index]); |
| } |
| return roots; |
| } |