| /* |
| * Copyright 2013 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "gm.h" |
| #include "SkBlurMask.h" |
| #include "SkBlurMaskFilter.h" |
| #include "SkCanvas.h" |
| #include "SkGradientShader.h" |
| #include "SkImage.h" |
| #include "SkUtils.h" |
| |
| #if SK_SUPPORT_GPU |
| #include "GrContext.h" |
| #include "GrContextOptions.h" |
| #include "SkGr.h" |
| #endif |
| |
| /** Holds either a bitmap or image to be rendered and a rect that indicates what part of the bitmap |
| or image should be tested by the GM. The area outside of the rect is present to check |
| for bleed due to filtering/blurring. */ |
| struct TestPixels { |
| enum Type { |
| kBitmap, |
| kImage |
| }; |
| Type fType; |
| SkBitmap fBitmap; |
| SkAutoTUnref<SkImage> fImage; |
| SkIRect fRect; // The region of the bitmap/image that should be rendered. |
| }; |
| |
| /** Creates a bitmap with two one-pixel rings around a checkerboard. The checkerboard is 2x2 |
| logically where each check has as many pixels as is necessary to fill the interior. The rect |
| to draw is set to the checkerboard portion. */ |
| template<typename PIXEL_TYPE> |
| bool make_ringed_bitmap(GrContext*, TestPixels* result, int width, int height, |
| SkColorType ct, SkAlphaType at, |
| PIXEL_TYPE outerRingColor, PIXEL_TYPE innerRingColor, |
| PIXEL_TYPE checkColor1, PIXEL_TYPE checkColor2) { |
| SkASSERT(0 == width % 2 && 0 == height % 2); |
| SkASSERT(width >= 6 && height >= 6); |
| |
| result->fType = TestPixels::kBitmap; |
| SkImageInfo info = SkImageInfo::Make(width, height, ct, at); |
| size_t rowBytes = SkAlign4(info.minRowBytes()); |
| result->fBitmap.allocPixels(info, rowBytes); |
| |
| PIXEL_TYPE* scanline = (PIXEL_TYPE*)result->fBitmap.getAddr(0, 0); |
| for (int x = 0; x < width; ++x) { |
| scanline[x] = outerRingColor; |
| } |
| scanline = (PIXEL_TYPE*)result->fBitmap.getAddr(0, 1); |
| scanline[0] = outerRingColor; |
| for (int x = 1; x < width - 1; ++x) { |
| scanline[x] = innerRingColor; |
| } |
| scanline[width - 1] = outerRingColor; |
| |
| for (int y = 2; y < height / 2; ++y) { |
| scanline = (PIXEL_TYPE*)result->fBitmap.getAddr(0, y); |
| scanline[0] = outerRingColor; |
| scanline[1] = innerRingColor; |
| for (int x = 2; x < width / 2; ++x) { |
| scanline[x] = checkColor1; |
| } |
| for (int x = width / 2; x < width - 2; ++x) { |
| scanline[x] = checkColor2; |
| } |
| scanline[width - 2] = innerRingColor; |
| scanline[width - 1] = outerRingColor; |
| } |
| |
| for (int y = height / 2; y < height - 2; ++y) { |
| scanline = (PIXEL_TYPE*)result->fBitmap.getAddr(0, y); |
| scanline[0] = outerRingColor; |
| scanline[1] = innerRingColor; |
| for (int x = 2; x < width / 2; ++x) { |
| scanline[x] = checkColor2; |
| } |
| for (int x = width / 2; x < width - 2; ++x) { |
| scanline[x] = checkColor1; |
| } |
| scanline[width - 2] = innerRingColor; |
| scanline[width - 1] = outerRingColor; |
| } |
| |
| scanline = (PIXEL_TYPE*)result->fBitmap.getAddr(0, height - 2); |
| scanline[0] = outerRingColor; |
| for (int x = 1; x < width - 1; ++x) { |
| scanline[x] = innerRingColor; |
| } |
| scanline[width - 1] = outerRingColor; |
| |
| scanline = (PIXEL_TYPE*)result->fBitmap.getAddr(0, height - 1); |
| for (int x = 0; x < width; ++x) { |
| scanline[x] = outerRingColor; |
| } |
| result->fBitmap.setImmutable(); |
| result->fRect.set(2, 2, width - 2, height - 2); |
| return true; |
| } |
| |
| /** Create a black and white checked texture with 2 1-pixel rings around the outside edge. |
| The inner ring is red and the outer ring is blue. */ |
| static bool make_ringed_color_bitmap(GrContext* ctx, TestPixels* result, int width, int height) { |
| static const SkPMColor kBlue = SkPreMultiplyColor(SK_ColorBLUE); |
| static const SkPMColor kRed = SkPreMultiplyColor(SK_ColorRED); |
| static const SkPMColor kBlack = SkPreMultiplyColor(SK_ColorBLACK); |
| static const SkPMColor kWhite = SkPreMultiplyColor(SK_ColorWHITE); |
| return make_ringed_bitmap<SkPMColor>(ctx, result, width, height, kBGRA_8888_SkColorType, |
| kPremul_SkAlphaType, kBlue, kRed, kBlack, kWhite); |
| } |
| |
| /** Makes a alpha bitmap with 1 wide rect/ring of 0s, an inset of 1s, and the interior is a 2x2 |
| checker board of 3/4 and 1/2. The inner checkers are large enough to fill the interior with |
| the 2x2 checker grid. */ |
| static bool make_ringed_alpha_bitmap(GrContext* ctx, TestPixels* result, int width, int height) { |
| static const uint8_t kZero = 0x00; |
| static const uint8_t kHalf = 0x80; |
| static const uint8_t k3Q = 0xC0; |
| static const uint8_t kOne = 0xFF; |
| return make_ringed_bitmap<uint8_t>(ctx, result, width, height, kAlpha_8_SkColorType, |
| kPremul_SkAlphaType, kZero, kOne, k3Q, kHalf); |
| } |
| |
| /** Helper to reuse above functions to produce images rather than bmps */ |
| static void bmp_to_image(TestPixels* result) { |
| SkASSERT(TestPixels::kBitmap == result->fType); |
| result->fImage.reset(SkImage::NewFromBitmap(result->fBitmap)); |
| SkASSERT(result->fImage); |
| result->fType = TestPixels::kImage; |
| result->fBitmap.reset(); |
| } |
| |
| /** Color image case. */ |
| bool make_ringed_color_image(GrContext* ctx, TestPixels* result, int width, int height) { |
| if (make_ringed_color_bitmap(ctx, result, width, height)) { |
| bmp_to_image(result); |
| return true; |
| } |
| return false; |
| } |
| |
| /** Alpha image case. */ |
| bool make_ringed_alpha_image(GrContext* ctx, TestPixels* result, int width, int height) { |
| if (make_ringed_alpha_bitmap(ctx, result, width, height)) { |
| bmp_to_image(result); |
| return true; |
| } |
| return false; |
| } |
| |
| /** Similar to make_ringed_bitmap with these modifications: |
| - The backing store is a texture. |
| - The texture is larger than the bitmap dimensions (it is surrounded by non-content |
| padding on the right/bottom of the contents.) |
| - The right/bottom sides of the rings are omitted so that the rect to draw is adjacent to |
| the texture padding. |
| */ |
| template <typename PIXEL_TYPE> |
| bool make_oversized_texture_bitmap(GrContext* ctx, TestPixels* result, int width, int height, |
| GrPixelConfig config, PIXEL_TYPE outerRingColor, |
| PIXEL_TYPE innerRingColor, PIXEL_TYPE checkColor1, |
| PIXEL_TYPE checkColor2, PIXEL_TYPE padColor) { |
| SkASSERT(0 == width % 2 && 0 == height % 2); |
| SkASSERT(width >= 6 && height >= 6); |
| #if SK_SUPPORT_GPU |
| if (!ctx) { |
| return false; |
| } |
| /** Put arbitrary pad to the right and below the bitmap content. */ |
| static const int kXPad = 10; |
| static const int kYPad = 17; |
| size_t rowBytes = (width + kXPad) * sizeof(PIXEL_TYPE); |
| SkAutoTMalloc<PIXEL_TYPE> pixels(rowBytes*(height + kYPad)); |
| |
| PIXEL_TYPE* scanline = pixels.get(); |
| for (int x = 0; x < width; ++x) { |
| scanline[x] = outerRingColor; |
| } |
| for (int x = width; x < width + kXPad; ++x) { |
| scanline[x] = padColor; |
| } |
| |
| scanline = (PIXEL_TYPE*)((char*)scanline + rowBytes); |
| scanline[0] = outerRingColor; |
| for (int x = 1; x < width; ++x) { |
| scanline[x] = innerRingColor; |
| } |
| for (int x = width; x < width + kXPad; ++x) { |
| scanline[x] = padColor; |
| } |
| |
| for (int y = 2; y < height / 2 + 1; ++y) { |
| scanline = (PIXEL_TYPE*)((char*)scanline + rowBytes); |
| scanline[0] = outerRingColor; |
| scanline[1] = innerRingColor; |
| for (int x = 2; x < width / 2 + 1; ++x) { |
| scanline[x] = checkColor1; |
| } |
| for (int x = width / 2 + 1; x < width; ++x) { |
| scanline[x] = checkColor2; |
| } |
| for (int x = width; x < width + kXPad; ++x) { |
| scanline[x] = padColor; |
| } |
| } |
| |
| for (int y = height / 2 + 1; y < height; ++y) { |
| scanline = (PIXEL_TYPE*)((char*)scanline + rowBytes); |
| scanline[0] = outerRingColor; |
| scanline[1] = innerRingColor; |
| for (int x = 2; x < width / 2 + 1; ++x) { |
| scanline[x] = checkColor2; |
| } |
| for (int x = width / 2 + 1; x < width; ++x) { |
| scanline[x] = checkColor1; |
| } |
| for (int x = width; x < width + kXPad; ++x) { |
| scanline[x] = padColor; |
| } |
| } |
| |
| for (int y = height; y < height + kYPad; ++y) { |
| scanline = (PIXEL_TYPE*)((char*)scanline + rowBytes); |
| for (int x = 0; x < width + kXPad; ++x) { |
| scanline[x] = padColor; |
| } |
| } |
| |
| GrSurfaceDesc desc; |
| desc.fConfig = config; |
| desc.fWidth = width + kXPad; |
| desc.fHeight = height + kYPad; |
| SkAutoTUnref<GrTexture> texture(ctx->textureProvider()->createTexture( |
| desc, SkBudgeted::kYes, pixels.get(), rowBytes)); |
| |
| if (!texture) { |
| return false; |
| } |
| |
| GrWrapTextureInBitmap(texture, width, height, true, &result->fBitmap); |
| result->fType = TestPixels::kBitmap; |
| result->fBitmap.setImmutable(); |
| result->fRect.set(2, 2, width, height); |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| /** Make the color version of the oversized texture-backed bitmap */ |
| static bool make_ringed_oversized_color_texture_bitmap(GrContext* ctx, TestPixels* result, |
| int width, int height) { |
| static const SkPMColor kBlue = SkPreMultiplyColor(SK_ColorBLUE); |
| static const SkPMColor kRed = SkPreMultiplyColor(SK_ColorRED); |
| static const SkPMColor kBlack = SkPreMultiplyColor(SK_ColorBLACK); |
| static const SkPMColor kWhite = SkPreMultiplyColor(SK_ColorWHITE); |
| static const SkPMColor kGreen = SkPreMultiplyColor(SK_ColorGREEN); |
| return make_oversized_texture_bitmap<SkPMColor>( |
| ctx, result, width, height, kSkia8888_GrPixelConfig, kBlue, kRed, kBlack, kWhite, kGreen); |
| } |
| |
| /** Make the alpha version of the oversized texture-backed bitmap */ |
| static bool make_ringed_oversized_alpha_texture_bitmap(GrContext* ctx, TestPixels* result, |
| int width, int height) { |
| static const uint8_t kZero = 0x00; |
| static const uint8_t kHalf = 0x80; |
| static const uint8_t k3Q = 0xC0; |
| static const uint8_t kOne = 0xFF; |
| static const uint8_t k1Q = 0x40; |
| return make_oversized_texture_bitmap<uint8_t>( |
| ctx, result, width, height, kAlpha_8_GrPixelConfig, kZero, kOne, k3Q, kHalf, k1Q); |
| } |
| |
| static sk_sp<SkShader> make_shader() { |
| static const SkPoint pts[] = { {0, 0}, {20, 20} }; |
| static const SkColor colors[] = { SK_ColorGREEN, SK_ColorYELLOW }; |
| return SkGradientShader::MakeLinear(pts, colors, nullptr, 2, SkShader::kMirror_TileMode); |
| } |
| |
| static sk_sp<SkShader> make_null_shader() { return nullptr; } |
| |
| enum BleedTest { |
| kUseBitmap_BleedTest, |
| kUseTextureBitmap_BleedTest, |
| kUseImage_BleedTest, |
| kUseAlphaBitmap_BleedTest, |
| kUseAlphaTextureBitmap_BleedTest, |
| kUseAlphaImage_BleedTest, |
| kUseAlphaBitmapShader_BleedTest, |
| kUseAlphaTextureBitmapShader_BleedTest, |
| kUseAlphaImageShader_BleedTest, |
| }; |
| |
| const struct { |
| const char* fName; |
| bool (*fPixelMaker)(GrContext*, TestPixels* result, int width, int height); |
| sk_sp<SkShader> (*fShaderMaker)(); |
| } gBleedRec[] = { |
| { "bleed", make_ringed_color_bitmap, make_null_shader }, |
| { "bleed_texture_bmp", make_ringed_oversized_color_texture_bitmap, make_null_shader }, |
| { "bleed_image", make_ringed_color_image, make_null_shader }, |
| { "bleed_alpha_bmp", make_ringed_alpha_bitmap, make_null_shader }, |
| { "bleed_alpha_texture_bmp", make_ringed_oversized_alpha_texture_bitmap, make_null_shader }, |
| { "bleed_alpha_image", make_ringed_alpha_image, make_null_shader }, |
| { "bleed_alpha_bmp_shader", make_ringed_alpha_bitmap, make_shader }, |
| { "bleed_alpha_texture_bmp_shader", make_ringed_oversized_alpha_texture_bitmap, make_shader }, |
| { "bleed_alpha_image_shader", make_ringed_alpha_image, make_shader }, |
| }; |
| |
| /** This GM exercises the behavior of the drawBitmapRect & drawImageRect calls. Specifically their |
| handling of : |
| - SrcRectConstraint(bleed vs.no - bleed) |
| - handling of the sub - region feature(area - of - interest) of drawBitmap* |
| - handling of 8888 vs. A8 (including presence of a shader in the A8 case). |
| - (gpu - only) handling of tiled vs.non - tiled drawing) |
| - (gpu - only) texture's backing a bmp where the texture is larger than the bmp. |
| In particular, we should never see the padding outside of an SkBitmap's sub - region (green for |
| 8888, 1/4 for alpha). In some instances we can see the two outer rings outside of the area o |
| interest (i.e., the inner four checks) due to AA or filtering if allowed by the |
| SrcRectConstraint. |
| */ |
| class BleedGM : public skiagm::GM { |
| public: |
| BleedGM(BleedTest bt) : fCreatedPixels(false), fBT(bt){} |
| |
| protected: |
| |
| SkString onShortName() override { |
| return SkString(gBleedRec[fBT].fName); |
| } |
| |
| SkISize onISize() override { |
| return SkISize::Make(1200, 1080); |
| } |
| |
| void drawPixels(SkCanvas* canvas, const TestPixels& pixels, const SkRect& src, |
| const SkRect& dst, const SkPaint* paint, |
| SkCanvas::SrcRectConstraint constraint) { |
| if (TestPixels::kBitmap == pixels.fType) { |
| canvas->drawBitmapRect(pixels.fBitmap, src, dst, paint, constraint); |
| } else { |
| canvas->drawImageRect(pixels.fImage, src, dst, paint, constraint); |
| } |
| } |
| |
| // Draw the area of interest of the small image |
| void drawCase1(SkCanvas* canvas, int transX, int transY, bool aa, |
| SkCanvas::SrcRectConstraint constraint, SkFilterQuality filter) { |
| |
| SkRect src = SkRect::Make(fSmallTestPixels.fRect); |
| SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY), |
| SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize)); |
| |
| SkPaint paint; |
| paint.setFilterQuality(filter); |
| paint.setShader(fShader); |
| paint.setColor(SK_ColorBLUE); |
| paint.setAntiAlias(aa); |
| |
| this->drawPixels(canvas, fSmallTestPixels, src, dst, &paint, constraint); |
| } |
| |
| // Draw the area of interest of the large image |
| void drawCase2(SkCanvas* canvas, int transX, int transY, bool aa, |
| SkCanvas::SrcRectConstraint constraint, SkFilterQuality filter) { |
| SkRect src = SkRect::Make(fBigTestPixels.fRect); |
| SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY), |
| SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize)); |
| |
| SkPaint paint; |
| paint.setFilterQuality(filter); |
| paint.setShader(fShader); |
| paint.setColor(SK_ColorBLUE); |
| paint.setAntiAlias(aa); |
| |
| this->drawPixels(canvas, fBigTestPixels, src, dst, &paint, constraint); |
| } |
| |
| // Draw upper-left 1/4 of the area of interest of the large image |
| void drawCase3(SkCanvas* canvas, int transX, int transY, bool aa, |
| SkCanvas::SrcRectConstraint constraint, SkFilterQuality filter) { |
| SkRect src = SkRect::MakeXYWH(SkIntToScalar(fBigTestPixels.fRect.fLeft), |
| SkIntToScalar(fBigTestPixels.fRect.fTop), |
| fBigTestPixels.fRect.width()/2.f, |
| fBigTestPixels.fRect.height()/2.f); |
| SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY), |
| SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize)); |
| |
| SkPaint paint; |
| paint.setFilterQuality(filter); |
| paint.setShader(fShader); |
| paint.setColor(SK_ColorBLUE); |
| paint.setAntiAlias(aa); |
| |
| this->drawPixels(canvas, fBigTestPixels, src, dst, &paint, constraint); |
| } |
| |
| // Draw the area of interest of the small image with a normal blur |
| void drawCase4(SkCanvas* canvas, int transX, int transY, bool aa, |
| SkCanvas::SrcRectConstraint constraint, SkFilterQuality filter) { |
| SkRect src = SkRect::Make(fSmallTestPixels.fRect); |
| SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY), |
| SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize)); |
| |
| SkPaint paint; |
| paint.setFilterQuality(filter); |
| SkMaskFilter* mf = SkBlurMaskFilter::Create(kNormal_SkBlurStyle, |
| SkBlurMask::ConvertRadiusToSigma(3)); |
| paint.setMaskFilter(mf)->unref(); |
| paint.setShader(fShader); |
| paint.setColor(SK_ColorBLUE); |
| paint.setAntiAlias(aa); |
| |
| this->drawPixels(canvas, fSmallTestPixels, src, dst, &paint, constraint); |
| } |
| |
| // Draw the area of interest of the small image with a outer blur |
| void drawCase5(SkCanvas* canvas, int transX, int transY, bool aa, |
| SkCanvas::SrcRectConstraint constraint, SkFilterQuality filter) { |
| SkRect src = SkRect::Make(fSmallTestPixels.fRect); |
| SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY), |
| SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize)); |
| |
| SkPaint paint; |
| paint.setFilterQuality(filter); |
| SkMaskFilter* mf = SkBlurMaskFilter::Create(kOuter_SkBlurStyle, |
| SkBlurMask::ConvertRadiusToSigma(7)); |
| paint.setMaskFilter(mf)->unref(); |
| paint.setShader(fShader); |
| paint.setColor(SK_ColorBLUE); |
| paint.setAntiAlias(aa); |
| |
| this->drawPixels(canvas, fSmallTestPixels, src, dst, &paint, constraint); |
| } |
| |
| void onDraw(SkCanvas* canvas) override { |
| // We don't create pixels in an onOnceBeforeDraw() override because we want access to |
| // GrContext. |
| GrContext* context = canvas->getGrContext(); |
| #if SK_SUPPORT_GPU |
| // Workaround for SampleApp. |
| if (GrTexture* tex = fBigTestPixels.fBitmap.getTexture()) { |
| if (tex->wasDestroyed()) { |
| fCreatedPixels = false; |
| } |
| } |
| #endif |
| bool madePixels = fCreatedPixels; |
| |
| if (!madePixels) { |
| madePixels = gBleedRec[fBT].fPixelMaker(context, &fSmallTestPixels, kSmallTextureSize, |
| kSmallTextureSize); |
| madePixels &= gBleedRec[fBT].fPixelMaker(context, &fBigTestPixels, 2 * kMaxTileSize, |
| 2 * kMaxTileSize); |
| fCreatedPixels = madePixels; |
| } |
| |
| // Assume that if we coulnd't make the bitmap/image it's because it's a GPU test on a |
| // non-GPU backend. |
| if (!madePixels) { |
| skiagm::GM::DrawGpuOnlyMessage(canvas); |
| return; |
| } |
| |
| fShader = gBleedRec[fBT].fShaderMaker(); |
| |
| canvas->clear(SK_ColorGRAY); |
| SkTDArray<SkMatrix> matrices; |
| // Draw with identity |
| *matrices.append() = SkMatrix::I(); |
| |
| // Draw with rotation and scale down in x, up in y. |
| SkMatrix m; |
| static const SkScalar kBottom = SkIntToScalar(kRow4Y + kBlockSize + kBlockSpacing); |
| m.setTranslate(0, kBottom); |
| m.preRotate(15.f, 0, kBottom + kBlockSpacing); |
| m.preScale(0.71f, 1.22f); |
| *matrices.append() = m; |
| |
| // Align the next set with the middle of the previous in y, translated to the right in x. |
| SkPoint corners[] = {{0, 0}, { 0, kBottom }, { kWidth, kBottom }, {kWidth, 0} }; |
| matrices[matrices.count()-1].mapPoints(corners, 4); |
| SkScalar y = (corners[0].fY + corners[1].fY + corners[2].fY + corners[3].fY) / 4; |
| SkScalar x = SkTMax(SkTMax(corners[0].fX, corners[1].fX), |
| SkTMax(corners[2].fX, corners[3].fX)); |
| m.setTranslate(x, y); |
| m.preScale(0.2f, 0.2f); |
| *matrices.append() = m; |
| |
| SkScalar maxX = 0; |
| for (int antiAlias = 0; antiAlias < 2; ++antiAlias) { |
| canvas->save(); |
| canvas->translate(maxX, 0); |
| for (int m = 0; m < matrices.count(); ++m) { |
| canvas->save(); |
| canvas->concat(matrices[m]); |
| bool aa = SkToBool(antiAlias); |
| |
| // First draw a column with no bleeding and no filtering |
| this->drawCase1(canvas, kCol0X, kRow0Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality); |
| this->drawCase2(canvas, kCol0X, kRow1Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality); |
| this->drawCase3(canvas, kCol0X, kRow2Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality); |
| this->drawCase4(canvas, kCol0X, kRow3Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality); |
| this->drawCase5(canvas, kCol0X, kRow4Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality); |
| |
| // Then draw a column with no bleeding and low filtering |
| this->drawCase1(canvas, kCol1X, kRow0Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality); |
| this->drawCase2(canvas, kCol1X, kRow1Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality); |
| this->drawCase3(canvas, kCol1X, kRow2Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality); |
| this->drawCase4(canvas, kCol1X, kRow3Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality); |
| this->drawCase5(canvas, kCol1X, kRow4Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality); |
| |
| // Then draw a column with no bleeding and high filtering |
| this->drawCase1(canvas, kCol2X, kRow0Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality); |
| this->drawCase2(canvas, kCol2X, kRow1Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality); |
| this->drawCase3(canvas, kCol2X, kRow2Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality); |
| this->drawCase4(canvas, kCol2X, kRow3Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality); |
| this->drawCase5(canvas, kCol2X, kRow4Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality); |
| |
| // Then draw a column with bleeding and no filtering (bleed should have no effect w/out blur) |
| this->drawCase1(canvas, kCol3X, kRow0Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality); |
| this->drawCase2(canvas, kCol3X, kRow1Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality); |
| this->drawCase3(canvas, kCol3X, kRow2Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality); |
| this->drawCase4(canvas, kCol3X, kRow3Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality); |
| this->drawCase5(canvas, kCol3X, kRow4Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality); |
| |
| // Then draw a column with bleeding and low filtering |
| this->drawCase1(canvas, kCol4X, kRow0Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality); |
| this->drawCase2(canvas, kCol4X, kRow1Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality); |
| this->drawCase3(canvas, kCol4X, kRow2Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality); |
| this->drawCase4(canvas, kCol4X, kRow3Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality); |
| this->drawCase5(canvas, kCol4X, kRow4Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality); |
| |
| // Finally draw a column with bleeding and high filtering |
| this->drawCase1(canvas, kCol5X, kRow0Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality); |
| this->drawCase2(canvas, kCol5X, kRow1Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality); |
| this->drawCase3(canvas, kCol5X, kRow2Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality); |
| this->drawCase4(canvas, kCol5X, kRow3Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality); |
| this->drawCase5(canvas, kCol5X, kRow4Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality); |
| |
| SkPoint corners[] = { { 0, 0 },{ 0, kBottom },{ kWidth, kBottom },{ kWidth, 0 } }; |
| matrices[m].mapPoints(corners, 4); |
| SkScalar x = kBlockSize + SkTMax(SkTMax(corners[0].fX, corners[1].fX), |
| SkTMax(corners[2].fX, corners[3].fX)); |
| maxX = SkTMax(maxX, x); |
| canvas->restore(); |
| } |
| canvas->restore(); |
| } |
| } |
| |
| #if SK_SUPPORT_GPU |
| void modifyGrContextOptions(GrContextOptions* options) override { |
| options->fMaxTileSizeOverride = kMaxTileSize; |
| } |
| #endif |
| |
| private: |
| static const int kBlockSize = 70; |
| static const int kBlockSpacing = 12; |
| |
| static const int kCol0X = kBlockSpacing; |
| static const int kCol1X = 2*kBlockSpacing + kBlockSize; |
| static const int kCol2X = 3*kBlockSpacing + 2*kBlockSize; |
| static const int kCol3X = 4*kBlockSpacing + 3*kBlockSize; |
| static const int kCol4X = 5*kBlockSpacing + 4*kBlockSize; |
| static const int kCol5X = 6*kBlockSpacing + 5*kBlockSize; |
| static const int kWidth = 7*kBlockSpacing + 6*kBlockSize; |
| |
| static const int kRow0Y = kBlockSpacing; |
| static const int kRow1Y = 2*kBlockSpacing + kBlockSize; |
| static const int kRow2Y = 3*kBlockSpacing + 2*kBlockSize; |
| static const int kRow3Y = 4*kBlockSpacing + 3*kBlockSize; |
| static const int kRow4Y = 5*kBlockSpacing + 4*kBlockSize; |
| |
| static const int kSmallTextureSize = 6; |
| static const int kMaxTileSize = 32; |
| |
| bool fCreatedPixels; |
| TestPixels fBigTestPixels; |
| TestPixels fSmallTestPixels; |
| |
| sk_sp<SkShader> fShader; |
| |
| const BleedTest fBT; |
| |
| typedef GM INHERITED; |
| }; |
| |
| |
| DEF_GM( return new BleedGM(kUseBitmap_BleedTest); ) |
| DEF_GM( return new BleedGM(kUseTextureBitmap_BleedTest); ) |
| DEF_GM( return new BleedGM(kUseImage_BleedTest); ) |
| DEF_GM( return new BleedGM(kUseAlphaBitmap_BleedTest); ) |
| DEF_GM( return new BleedGM(kUseAlphaTextureBitmap_BleedTest); ) |
| DEF_GM( return new BleedGM(kUseAlphaImage_BleedTest); ) |
| DEF_GM( return new BleedGM(kUseAlphaBitmapShader_BleedTest); ) |
| DEF_GM( return new BleedGM(kUseAlphaTextureBitmapShader_BleedTest); ) |
| DEF_GM( return new BleedGM(kUseAlphaImageShader_BleedTest); ) |