blob: 08bca6dcc8bc25332dd199619c6b0f7f2a237663 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrGLGpu.h"
#include <cmath>
#include "../private/GrGLSL.h"
#include "GrBackendSemaphore.h"
#include "GrBackendSurface.h"
#include "GrFixedClip.h"
#include "GrGLBuffer.h"
#include "GrGLGpuCommandBuffer.h"
#include "GrGLSemaphore.h"
#include "GrGLStencilAttachment.h"
#include "GrGLTextureRenderTarget.h"
#include "GrGpuResourcePriv.h"
#include "GrMesh.h"
#include "GrPipeline.h"
#include "GrRenderTargetPriv.h"
#include "GrShaderCaps.h"
#include "GrSurfaceProxyPriv.h"
#include "GrTexturePriv.h"
#include "GrTypes.h"
#include "SkAutoMalloc.h"
#include "SkHalf.h"
#include "SkJSONWriter.h"
#include "SkMakeUnique.h"
#include "SkMipMap.h"
#include "SkPixmap.h"
#include "SkSLCompiler.h"
#include "SkStrokeRec.h"
#include "SkTemplates.h"
#include "SkTraceEvent.h"
#include "SkTypes.h"
#include "builders/GrGLShaderStringBuilder.h"
#define GL_CALL(X) GR_GL_CALL(this->glInterface(), X)
#define GL_CALL_RET(RET, X) GR_GL_CALL_RET(this->glInterface(), RET, X)
#define SKIP_CACHE_CHECK true
#if GR_GL_CHECK_ALLOC_WITH_GET_ERROR
#define CLEAR_ERROR_BEFORE_ALLOC(iface) GrGLClearErr(iface)
#define GL_ALLOC_CALL(iface, call) GR_GL_CALL_NOERRCHECK(iface, call)
#define CHECK_ALLOC_ERROR(iface) GR_GL_GET_ERROR(iface)
#else
#define CLEAR_ERROR_BEFORE_ALLOC(iface)
#define GL_ALLOC_CALL(iface, call) GR_GL_CALL(iface, call)
#define CHECK_ALLOC_ERROR(iface) GR_GL_NO_ERROR
#endif
//#define USE_NSIGHT
///////////////////////////////////////////////////////////////////////////////
static const GrGLenum gXfermodeEquation2Blend[] = {
// Basic OpenGL blend equations.
GR_GL_FUNC_ADD,
GR_GL_FUNC_SUBTRACT,
GR_GL_FUNC_REVERSE_SUBTRACT,
// GL_KHR_blend_equation_advanced.
GR_GL_SCREEN,
GR_GL_OVERLAY,
GR_GL_DARKEN,
GR_GL_LIGHTEN,
GR_GL_COLORDODGE,
GR_GL_COLORBURN,
GR_GL_HARDLIGHT,
GR_GL_SOFTLIGHT,
GR_GL_DIFFERENCE,
GR_GL_EXCLUSION,
GR_GL_MULTIPLY,
GR_GL_HSL_HUE,
GR_GL_HSL_SATURATION,
GR_GL_HSL_COLOR,
GR_GL_HSL_LUMINOSITY
};
GR_STATIC_ASSERT(0 == kAdd_GrBlendEquation);
GR_STATIC_ASSERT(1 == kSubtract_GrBlendEquation);
GR_STATIC_ASSERT(2 == kReverseSubtract_GrBlendEquation);
GR_STATIC_ASSERT(3 == kScreen_GrBlendEquation);
GR_STATIC_ASSERT(4 == kOverlay_GrBlendEquation);
GR_STATIC_ASSERT(5 == kDarken_GrBlendEquation);
GR_STATIC_ASSERT(6 == kLighten_GrBlendEquation);
GR_STATIC_ASSERT(7 == kColorDodge_GrBlendEquation);
GR_STATIC_ASSERT(8 == kColorBurn_GrBlendEquation);
GR_STATIC_ASSERT(9 == kHardLight_GrBlendEquation);
GR_STATIC_ASSERT(10 == kSoftLight_GrBlendEquation);
GR_STATIC_ASSERT(11 == kDifference_GrBlendEquation);
GR_STATIC_ASSERT(12 == kExclusion_GrBlendEquation);
GR_STATIC_ASSERT(13 == kMultiply_GrBlendEquation);
GR_STATIC_ASSERT(14 == kHSLHue_GrBlendEquation);
GR_STATIC_ASSERT(15 == kHSLSaturation_GrBlendEquation);
GR_STATIC_ASSERT(16 == kHSLColor_GrBlendEquation);
GR_STATIC_ASSERT(17 == kHSLLuminosity_GrBlendEquation);
GR_STATIC_ASSERT(SK_ARRAY_COUNT(gXfermodeEquation2Blend) == kGrBlendEquationCnt);
static const GrGLenum gXfermodeCoeff2Blend[] = {
GR_GL_ZERO,
GR_GL_ONE,
GR_GL_SRC_COLOR,
GR_GL_ONE_MINUS_SRC_COLOR,
GR_GL_DST_COLOR,
GR_GL_ONE_MINUS_DST_COLOR,
GR_GL_SRC_ALPHA,
GR_GL_ONE_MINUS_SRC_ALPHA,
GR_GL_DST_ALPHA,
GR_GL_ONE_MINUS_DST_ALPHA,
GR_GL_CONSTANT_COLOR,
GR_GL_ONE_MINUS_CONSTANT_COLOR,
GR_GL_CONSTANT_ALPHA,
GR_GL_ONE_MINUS_CONSTANT_ALPHA,
// extended blend coeffs
GR_GL_SRC1_COLOR,
GR_GL_ONE_MINUS_SRC1_COLOR,
GR_GL_SRC1_ALPHA,
GR_GL_ONE_MINUS_SRC1_ALPHA,
};
bool GrGLGpu::BlendCoeffReferencesConstant(GrBlendCoeff coeff) {
static const bool gCoeffReferencesBlendConst[] = {
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
true,
true,
true,
true,
// extended blend coeffs
false,
false,
false,
false,
};
return gCoeffReferencesBlendConst[coeff];
GR_STATIC_ASSERT(kGrBlendCoeffCnt == SK_ARRAY_COUNT(gCoeffReferencesBlendConst));
GR_STATIC_ASSERT(0 == kZero_GrBlendCoeff);
GR_STATIC_ASSERT(1 == kOne_GrBlendCoeff);
GR_STATIC_ASSERT(2 == kSC_GrBlendCoeff);
GR_STATIC_ASSERT(3 == kISC_GrBlendCoeff);
GR_STATIC_ASSERT(4 == kDC_GrBlendCoeff);
GR_STATIC_ASSERT(5 == kIDC_GrBlendCoeff);
GR_STATIC_ASSERT(6 == kSA_GrBlendCoeff);
GR_STATIC_ASSERT(7 == kISA_GrBlendCoeff);
GR_STATIC_ASSERT(8 == kDA_GrBlendCoeff);
GR_STATIC_ASSERT(9 == kIDA_GrBlendCoeff);
GR_STATIC_ASSERT(10 == kConstC_GrBlendCoeff);
GR_STATIC_ASSERT(11 == kIConstC_GrBlendCoeff);
GR_STATIC_ASSERT(12 == kConstA_GrBlendCoeff);
GR_STATIC_ASSERT(13 == kIConstA_GrBlendCoeff);
GR_STATIC_ASSERT(14 == kS2C_GrBlendCoeff);
GR_STATIC_ASSERT(15 == kIS2C_GrBlendCoeff);
GR_STATIC_ASSERT(16 == kS2A_GrBlendCoeff);
GR_STATIC_ASSERT(17 == kIS2A_GrBlendCoeff);
// assertion for gXfermodeCoeff2Blend have to be in GrGpu scope
GR_STATIC_ASSERT(kGrBlendCoeffCnt == SK_ARRAY_COUNT(gXfermodeCoeff2Blend));
}
///////////////////////////////////////////////////////////////////////////////
sk_sp<GrGpu> GrGLGpu::Make(sk_sp<const GrGLInterface> interface, const GrContextOptions& options,
GrContext* context) {
if (!interface) {
interface = GrGLMakeNativeInterface();
// For clients that have written their own GrGLCreateNativeInterface and haven't yet updated
// to GrGLMakeNativeInterface.
if (!interface) {
interface = sk_ref_sp(GrGLCreateNativeInterface());
}
if (!interface) {
return nullptr;
}
}
#ifdef USE_NSIGHT
const_cast<GrContextOptions&>(options).fSuppressPathRendering = true;
#endif
auto glContext = GrGLContext::Make(std::move(interface), options);
if (!glContext) {
return nullptr;
}
return sk_sp<GrGpu>(new GrGLGpu(std::move(glContext), context));
}
GrGLGpu::GrGLGpu(std::unique_ptr<GrGLContext> ctx, GrContext* context)
: GrGpu(context)
, fGLContext(std::move(ctx))
, fProgramCache(new ProgramCache(this))
, fHWProgramID(0)
, fTempSrcFBOID(0)
, fTempDstFBOID(0)
, fStencilClearFBOID(0)
, fHWMaxUsedBufferTextureUnit(-1)
, fHWMinSampleShading(0.0) {
SkASSERT(fGLContext);
fCaps = sk_ref_sp(fGLContext->caps());
fHWBoundTextureUniqueIDs.reset(this->caps()->shaderCaps()->maxCombinedSamplers());
fHWBufferState[kVertex_GrBufferType].fGLTarget = GR_GL_ARRAY_BUFFER;
fHWBufferState[kIndex_GrBufferType].fGLTarget = GR_GL_ELEMENT_ARRAY_BUFFER;
fHWBufferState[kTexel_GrBufferType].fGLTarget = GR_GL_TEXTURE_BUFFER;
fHWBufferState[kDrawIndirect_GrBufferType].fGLTarget = GR_GL_DRAW_INDIRECT_BUFFER;
if (GrGLCaps::kChromium_TransferBufferType == this->glCaps().transferBufferType()) {
fHWBufferState[kXferCpuToGpu_GrBufferType].fGLTarget =
GR_GL_PIXEL_UNPACK_TRANSFER_BUFFER_CHROMIUM;
fHWBufferState[kXferGpuToCpu_GrBufferType].fGLTarget =
GR_GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM;
} else {
fHWBufferState[kXferCpuToGpu_GrBufferType].fGLTarget = GR_GL_PIXEL_UNPACK_BUFFER;
fHWBufferState[kXferGpuToCpu_GrBufferType].fGLTarget = GR_GL_PIXEL_PACK_BUFFER;
}
for (int i = 0; i < kGrBufferTypeCount; ++i) {
fHWBufferState[i].invalidate();
}
GR_STATIC_ASSERT(6 == SK_ARRAY_COUNT(fHWBufferState));
if (this->caps()->shaderCaps()->texelBufferSupport()) {
fHWBufferTextures.reset(this->caps()->shaderCaps()->maxCombinedSamplers());
}
if (this->glCaps().shaderCaps()->pathRenderingSupport()) {
fPathRendering.reset(new GrGLPathRendering(this));
}
GrGLClearErr(this->glInterface());
}
GrGLGpu::~GrGLGpu() {
// Ensure any GrGpuResource objects get deleted first, since they may require a working GrGLGpu
// to release the resources held by the objects themselves.
fPathRendering.reset();
fCopyProgramArrayBuffer.reset();
fMipmapProgramArrayBuffer.reset();
fStencilClipClearArrayBuffer.reset();
if (fHWProgramID) {
// detach the current program so there is no confusion on OpenGL's part
// that we want it to be deleted
GL_CALL(UseProgram(0));
}
if (fTempSrcFBOID) {
GL_CALL(DeleteFramebuffers(1, &fTempSrcFBOID));
}
if (fTempDstFBOID) {
GL_CALL(DeleteFramebuffers(1, &fTempDstFBOID));
}
if (fStencilClearFBOID) {
GL_CALL(DeleteFramebuffers(1, &fStencilClearFBOID));
}
for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) {
if (0 != fCopyPrograms[i].fProgram) {
GL_CALL(DeleteProgram(fCopyPrograms[i].fProgram));
}
}
for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) {
if (0 != fMipmapPrograms[i].fProgram) {
GL_CALL(DeleteProgram(fMipmapPrograms[i].fProgram));
}
}
if (fStencilClipClearProgram) {
GL_CALL(DeleteProgram(fStencilClipClearProgram));
}
if (fClearColorProgram.fProgram) {
GL_CALL(DeleteProgram(fClearColorProgram.fProgram));
}
delete fProgramCache;
}
void GrGLGpu::disconnect(DisconnectType type) {
INHERITED::disconnect(type);
if (DisconnectType::kCleanup == type) {
if (fHWProgramID) {
GL_CALL(UseProgram(0));
}
if (fTempSrcFBOID) {
GL_CALL(DeleteFramebuffers(1, &fTempSrcFBOID));
}
if (fTempDstFBOID) {
GL_CALL(DeleteFramebuffers(1, &fTempDstFBOID));
}
if (fStencilClearFBOID) {
GL_CALL(DeleteFramebuffers(1, &fStencilClearFBOID));
}
for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) {
if (fCopyPrograms[i].fProgram) {
GL_CALL(DeleteProgram(fCopyPrograms[i].fProgram));
}
}
for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) {
if (fMipmapPrograms[i].fProgram) {
GL_CALL(DeleteProgram(fMipmapPrograms[i].fProgram));
}
}
if (fStencilClipClearProgram) {
GL_CALL(DeleteProgram(fStencilClipClearProgram));
}
if (fClearColorProgram.fProgram) {
GL_CALL(DeleteProgram(fClearColorProgram.fProgram));
}
} else {
if (fProgramCache) {
fProgramCache->abandon();
}
}
delete fProgramCache;
fProgramCache = nullptr;
fHWProgramID = 0;
fTempSrcFBOID = 0;
fTempDstFBOID = 0;
fStencilClearFBOID = 0;
fCopyProgramArrayBuffer.reset();
for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) {
fCopyPrograms[i].fProgram = 0;
}
fMipmapProgramArrayBuffer.reset();
for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) {
fMipmapPrograms[i].fProgram = 0;
}
fStencilClipClearProgram = 0;
fStencilClipClearArrayBuffer.reset();
fClearColorProgram.fProgram = 0;
if (this->glCaps().shaderCaps()->pathRenderingSupport()) {
this->glPathRendering()->disconnect(type);
}
}
///////////////////////////////////////////////////////////////////////////////
void GrGLGpu::onResetContext(uint32_t resetBits) {
if (resetBits & kMisc_GrGLBackendState) {
// we don't use the zb at all
GL_CALL(Disable(GR_GL_DEPTH_TEST));
GL_CALL(DepthMask(GR_GL_FALSE));
// We don't use face culling.
GL_CALL(Disable(GR_GL_CULL_FACE));
// We do use separate stencil. Our algorithms don't care which face is front vs. back so
// just set this to the default for self-consistency.
GL_CALL(FrontFace(GR_GL_CCW));
fHWBufferState[kTexel_GrBufferType].invalidate();
fHWBufferState[kDrawIndirect_GrBufferType].invalidate();
fHWBufferState[kXferCpuToGpu_GrBufferType].invalidate();
fHWBufferState[kXferGpuToCpu_GrBufferType].invalidate();
if (kGL_GrGLStandard == this->glStandard()) {
#ifndef USE_NSIGHT
// Desktop-only state that we never change
if (!this->glCaps().isCoreProfile()) {
GL_CALL(Disable(GR_GL_POINT_SMOOTH));
GL_CALL(Disable(GR_GL_LINE_SMOOTH));
GL_CALL(Disable(GR_GL_POLYGON_SMOOTH));
GL_CALL(Disable(GR_GL_POLYGON_STIPPLE));
GL_CALL(Disable(GR_GL_COLOR_LOGIC_OP));
GL_CALL(Disable(GR_GL_INDEX_LOGIC_OP));
}
// The windows NVIDIA driver has GL_ARB_imaging in the extension string when using a
// core profile. This seems like a bug since the core spec removes any mention of
// GL_ARB_imaging.
if (this->glCaps().imagingSupport() && !this->glCaps().isCoreProfile()) {
GL_CALL(Disable(GR_GL_COLOR_TABLE));
}
GL_CALL(Disable(GR_GL_POLYGON_OFFSET_FILL));
if (this->caps()->wireframeMode()) {
GL_CALL(PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_LINE));
} else {
GL_CALL(PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_FILL));
}
#endif
// Since ES doesn't support glPointSize at all we always use the VS to
// set the point size
GL_CALL(Enable(GR_GL_VERTEX_PROGRAM_POINT_SIZE));
}
if (kGLES_GrGLStandard == this->glStandard() &&
this->hasExtension("GL_ARM_shader_framebuffer_fetch")) {
// The arm extension requires specifically enabling MSAA fetching per sample.
// On some devices this may have a perf hit. Also multiple render targets are disabled
GL_CALL(Enable(GR_GL_FETCH_PER_SAMPLE_ARM));
}
fHWWriteToColor = kUnknown_TriState;
// we only ever use lines in hairline mode
GL_CALL(LineWidth(1));
GL_CALL(Disable(GR_GL_DITHER));
}
if (resetBits & kMSAAEnable_GrGLBackendState) {
fMSAAEnabled = kUnknown_TriState;
if (this->caps()->usesMixedSamples()) {
if (0 != this->caps()->maxRasterSamples()) {
fHWRasterMultisampleEnabled = kUnknown_TriState;
fHWNumRasterSamples = 0;
}
// The skia blend modes all use premultiplied alpha and therefore expect RGBA coverage
// modulation. This state has no effect when not rendering to a mixed sampled target.
GL_CALL(CoverageModulation(GR_GL_RGBA));
}
}
fHWActiveTextureUnitIdx = -1; // invalid
fLastPrimitiveType = static_cast<GrPrimitiveType>(-1);
if (resetBits & kTextureBinding_GrGLBackendState) {
for (int s = 0; s < fHWBoundTextureUniqueIDs.count(); ++s) {
fHWBoundTextureUniqueIDs[s].makeInvalid();
}
for (int b = 0; b < fHWBufferTextures.count(); ++b) {
SkASSERT(this->caps()->shaderCaps()->texelBufferSupport());
fHWBufferTextures[b].fKnownBound = false;
}
}
if (resetBits & kBlend_GrGLBackendState) {
fHWBlendState.invalidate();
}
if (resetBits & kView_GrGLBackendState) {
fHWScissorSettings.invalidate();
fHWWindowRectsState.invalidate();
fHWViewport.invalidate();
}
if (resetBits & kStencil_GrGLBackendState) {
fHWStencilSettings.invalidate();
fHWStencilTestEnabled = kUnknown_TriState;
}
// Vertex
if (resetBits & kVertex_GrGLBackendState) {
fHWVertexArrayState.invalidate();
fHWBufferState[kVertex_GrBufferType].invalidate();
fHWBufferState[kIndex_GrBufferType].invalidate();
}
if (resetBits & kRenderTarget_GrGLBackendState) {
fHWBoundRenderTargetUniqueID.makeInvalid();
fHWSRGBFramebuffer = kUnknown_TriState;
}
if (resetBits & kPathRendering_GrGLBackendState) {
if (this->caps()->shaderCaps()->pathRenderingSupport()) {
this->glPathRendering()->resetContext();
}
}
// we assume these values
if (resetBits & kPixelStore_GrGLBackendState) {
if (this->glCaps().unpackRowLengthSupport()) {
GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0));
}
if (this->glCaps().packRowLengthSupport()) {
GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0));
}
if (this->glCaps().unpackFlipYSupport()) {
GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE));
}
if (this->glCaps().packFlipYSupport()) {
GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, GR_GL_FALSE));
}
}
if (resetBits & kProgram_GrGLBackendState) {
fHWProgramID = 0;
}
}
static bool check_backend_texture(const GrBackendTexture& backendTex, const GrGLCaps& caps,
GrGLTexture::IDDesc* idDesc) {
const GrGLTextureInfo* info = backendTex.getGLTextureInfo();
if (!info || !info->fID) {
return false;
}
idDesc->fInfo = *info;
if (GR_GL_TEXTURE_EXTERNAL == idDesc->fInfo.fTarget) {
if (!caps.shaderCaps()->externalTextureSupport()) {
return false;
}
} else if (GR_GL_TEXTURE_RECTANGLE == idDesc->fInfo.fTarget) {
if (!caps.rectangleTextureSupport()) {
return false;
}
} else if (GR_GL_TEXTURE_2D != idDesc->fInfo.fTarget) {
return false;
}
return true;
}
sk_sp<GrTexture> GrGLGpu::onWrapBackendTexture(const GrBackendTexture& backendTex,
GrWrapOwnership ownership) {
GrGLTexture::IDDesc idDesc;
if (!check_backend_texture(backendTex, this->glCaps(), &idDesc)) {
return nullptr;
}
if (!idDesc.fInfo.fFormat) {
idDesc.fInfo.fFormat = this->glCaps().configSizedInternalFormat(backendTex.config());
}
if (kBorrow_GrWrapOwnership == ownership) {
idDesc.fOwnership = GrBackendObjectOwnership::kBorrowed;
} else {
idDesc.fOwnership = GrBackendObjectOwnership::kOwned;
}
GrSurfaceDesc surfDesc;
surfDesc.fFlags = kNone_GrSurfaceFlags;
surfDesc.fWidth = backendTex.width();
surfDesc.fHeight = backendTex.height();
surfDesc.fConfig = backendTex.config();
surfDesc.fSampleCnt = 1;
GrMipMapsStatus mipMapsStatus = backendTex.hasMipMaps() ? GrMipMapsStatus::kValid
: GrMipMapsStatus::kNotAllocated;
return GrGLTexture::MakeWrapped(this, surfDesc, mipMapsStatus, idDesc);
}
sk_sp<GrTexture> GrGLGpu::onWrapRenderableBackendTexture(const GrBackendTexture& backendTex,
int sampleCnt,
GrWrapOwnership ownership) {
GrGLTexture::IDDesc idDesc;
if (!check_backend_texture(backendTex, this->glCaps(), &idDesc)) {
return nullptr;
}
if (!idDesc.fInfo.fFormat) {
idDesc.fInfo.fFormat = this->glCaps().configSizedInternalFormat(backendTex.config());
}
// We don't support rendering to a EXTERNAL texture.
if (GR_GL_TEXTURE_EXTERNAL == idDesc.fInfo.fTarget) {
return nullptr;
}
if (kBorrow_GrWrapOwnership == ownership) {
idDesc.fOwnership = GrBackendObjectOwnership::kBorrowed;
} else {
idDesc.fOwnership = GrBackendObjectOwnership::kOwned;
}
GrSurfaceDesc surfDesc;
surfDesc.fFlags = kRenderTarget_GrSurfaceFlag;
surfDesc.fWidth = backendTex.width();
surfDesc.fHeight = backendTex.height();
surfDesc.fConfig = backendTex.config();
surfDesc.fSampleCnt = this->caps()->getRenderTargetSampleCount(sampleCnt, backendTex.config());
if (surfDesc.fSampleCnt < 1) {
return nullptr;
}
GrGLRenderTarget::IDDesc rtIDDesc;
if (!this->createRenderTargetObjects(surfDesc, idDesc.fInfo, &rtIDDesc)) {
return nullptr;
}
GrMipMapsStatus mipMapsStatus = backendTex.hasMipMaps() ? GrMipMapsStatus::kDirty
: GrMipMapsStatus::kNotAllocated;
sk_sp<GrGLTextureRenderTarget> texRT(
GrGLTextureRenderTarget::MakeWrapped(this, surfDesc, idDesc, rtIDDesc, mipMapsStatus));
texRT->baseLevelWasBoundToFBO();
return std::move(texRT);
}
sk_sp<GrRenderTarget> GrGLGpu::onWrapBackendRenderTarget(const GrBackendRenderTarget& backendRT) {
const GrGLFramebufferInfo* info = backendRT.getGLFramebufferInfo();
if (!info) {
return nullptr;
}
GrGLRenderTarget::IDDesc idDesc;
idDesc.fRTFBOID = info->fFBOID;
idDesc.fMSColorRenderbufferID = 0;
idDesc.fTexFBOID = GrGLRenderTarget::kUnresolvableFBOID;
idDesc.fRTFBOOwnership = GrBackendObjectOwnership::kBorrowed;
idDesc.fIsMixedSampled = false;
GrSurfaceDesc desc;
desc.fFlags = kRenderTarget_GrSurfaceFlag;
desc.fWidth = backendRT.width();
desc.fHeight = backendRT.height();
desc.fConfig = backendRT.config();
desc.fSampleCnt =
this->caps()->getRenderTargetSampleCount(backendRT.sampleCnt(), backendRT.config());
return GrGLRenderTarget::MakeWrapped(this, desc, idDesc, backendRT.stencilBits());
}
sk_sp<GrRenderTarget> GrGLGpu::onWrapBackendTextureAsRenderTarget(const GrBackendTexture& tex,
int sampleCnt) {
const GrGLTextureInfo* info = tex.getGLTextureInfo();
if (!info || !info->fID) {
return nullptr;
}
GrGLTextureInfo texInfo;
texInfo = *info;
if (GR_GL_TEXTURE_RECTANGLE != texInfo.fTarget &&
GR_GL_TEXTURE_2D != texInfo.fTarget) {
// Only texture rectangle and texture 2d are supported. We do not check whether texture
// rectangle is supported by Skia - if the caller provided us with a texture rectangle,
// we assume the necessary support exists.
return nullptr;
}
GrSurfaceDesc surfDesc;
surfDesc.fFlags = kRenderTarget_GrSurfaceFlag;
surfDesc.fWidth = tex.width();
surfDesc.fHeight = tex.height();
surfDesc.fConfig = tex.config();
surfDesc.fSampleCnt = this->caps()->getRenderTargetSampleCount(sampleCnt, tex.config());
GrGLRenderTarget::IDDesc rtIDDesc;
if (!this->createRenderTargetObjects(surfDesc, texInfo, &rtIDDesc)) {
return nullptr;
}
return GrGLRenderTarget::MakeWrapped(this, surfDesc, rtIDDesc, 0);
}
////////////////////////////////////////////////////////////////////////////////
bool GrGLGpu::onGetWritePixelsInfo(GrSurface* dstSurface, GrSurfaceOrigin dstOrigin, int width,
int height, GrColorType srcColorType,
DrawPreference* drawPreference,
WritePixelTempDrawInfo* tempDrawInfo) {
// We don't want to introduce a sRGB conversion if we trigger a draw.
auto srcConfigSRGBEncoded = GrPixelConfigIsSRGBEncoded(dstSurface->config());
if (*drawPreference != kNoDraw_DrawPreference) {
// We assume the base class has only inserted a draw for sRGB reasons. So the temp surface
// has the config of the original src data. There is no swizzling nor src config spoofing.
SkASSERT(tempDrawInfo->fWriteColorType == srcColorType);
SkASSERT(GrPixelConfigToColorType(tempDrawInfo->fTempSurfaceDesc.fConfig) == srcColorType);
SkASSERT(tempDrawInfo->fSwizzle == GrSwizzle::RGBA());
// Don't undo a sRGB conversion introduced by our caller via an intermediate draw.
srcConfigSRGBEncoded = GrPixelConfigIsSRGBEncoded(tempDrawInfo->fTempSurfaceDesc.fConfig);
}
if (GrColorTypeIsAlphaOnly(srcColorType)) {
srcConfigSRGBEncoded = GrSRGBEncoded::kNo;
}
if (SkToBool(dstSurface->asRenderTarget())) {
if (this->glCaps().useDrawInsteadOfAllRenderTargetWrites()) {
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
}
}
GrGLTexture* texture = static_cast<GrGLTexture*>(dstSurface->asTexture());
if (texture) {
if (GR_GL_TEXTURE_EXTERNAL == texture->target()) {
// We don't currently support writing pixels to EXTERNAL textures.
return false;
}
if (GrPixelConfigIsUnorm(texture->config()) && texture->hasBaseLevelBeenBoundToFBO() &&
this->glCaps().disallowTexSubImageForUnormConfigTexturesEverBoundToFBO() &&
(width < dstSurface->width() || height < dstSurface->height())) {
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
}
} else {
// This subclass only allows writes to textures. If the dst is not a texture we have to draw
// into it. We could use glDrawPixels on GLs that have it, but we don't today.
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
}
// If the dst is MSAA, we have to draw, or we'll just be writing to the resolve target.
if (dstSurface->asRenderTarget() && dstSurface->asRenderTarget()->numColorSamples() > 1) {
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
}
auto srcAsConfig = GrColorTypeToPixelConfig(srcColorType, srcConfigSRGBEncoded);
SkASSERT(srcAsConfig != kUnknown_GrPixelConfig);
auto dstColorType = GrPixelConfigToColorType(dstSurface->config());
bool configsAreRBSwaps = GrPixelConfigSwapRAndB(srcAsConfig) == dstSurface->config();
if (configsAreRBSwaps) {
if (!this->caps()->isConfigTexturable(srcAsConfig)) {
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
tempDrawInfo->fTempSurfaceDesc.fConfig = dstSurface->config();
tempDrawInfo->fSwizzle = GrSwizzle::BGRA();
tempDrawInfo->fWriteColorType = dstColorType;
} else if (this->glCaps().rgba8888PixelsOpsAreSlow() &&
kRGBA_8888_GrPixelConfig == srcAsConfig) {
ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference);
tempDrawInfo->fTempSurfaceDesc.fConfig = dstSurface->config();
tempDrawInfo->fSwizzle = GrSwizzle::BGRA();
tempDrawInfo->fWriteColorType = dstColorType;
} else if (kGLES_GrGLStandard == this->glStandard() &&
this->glCaps().bgraIsInternalFormat()) {
// The internal format and external formats must match texture uploads so we can't
// swizzle while uploading when BGRA is a distinct internal format.
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
tempDrawInfo->fTempSurfaceDesc.fConfig = dstSurface->config();
tempDrawInfo->fSwizzle = GrSwizzle::BGRA();
tempDrawInfo->fWriteColorType = dstColorType;
}
}
if (!this->glCaps().unpackFlipYSupport() && kBottomLeft_GrSurfaceOrigin == dstOrigin) {
ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference);
}
return true;
}
static bool check_write_and_transfer_input(GrGLTexture* glTex) {
if (!glTex) {
return false;
}
// Write or transfer of pixels is not implemented for TEXTURE_EXTERNAL textures
if (GR_GL_TEXTURE_EXTERNAL == glTex->target()) {
return false;
}
return true;
}
bool GrGLGpu::onWritePixels(GrSurface* surface, GrSurfaceOrigin origin, int left, int top,
int width, int height, GrColorType srcColorType,
const GrMipLevel texels[], int mipLevelCount) {
auto glTex = static_cast<GrGLTexture*>(surface->asTexture());
if (!check_write_and_transfer_input(glTex)) {
return false;
}
this->setScratchTextureUnit();
GL_CALL(BindTexture(glTex->target(), glTex->textureID()));
// No sRGB transformation occurs in uploadTexData. We choose to make the src config match the
// srgb-ness of the surface to avoid issues in ES2 where internal/external formats must match.
// When we're on ES2 and the dst is GL_SRGB_ALPHA by making the config be kSRGB_8888 we know
// that our caps will choose GL_SRGB_ALPHA as the external format, too. On ES3 or regular GL our
// caps knows to make the external format be GL_RGBA.
auto srgbEncoded = GrPixelConfigIsSRGBEncoded(surface->config());
auto srcAsConfig = GrColorTypeToPixelConfig(srcColorType, srgbEncoded);
return this->uploadTexData(glTex->config(), glTex->width(), glTex->height(), origin,
glTex->target(), kWrite_UploadType, left, top, width, height,
srcAsConfig, texels, mipLevelCount);
}
// For GL_[UN]PACK_ALIGNMENT. TODO: This really wants to be GrColorType.
static inline GrGLint config_alignment(GrPixelConfig config) {
switch (config) {
case kAlpha_8_GrPixelConfig:
case kAlpha_8_as_Alpha_GrPixelConfig:
case kAlpha_8_as_Red_GrPixelConfig:
case kGray_8_GrPixelConfig:
case kGray_8_as_Lum_GrPixelConfig:
case kGray_8_as_Red_GrPixelConfig:
return 1;
case kRGB_565_GrPixelConfig:
case kRGBA_4444_GrPixelConfig:
case kAlpha_half_GrPixelConfig:
case kAlpha_half_as_Red_GrPixelConfig:
case kRGBA_half_GrPixelConfig:
return 2;
case kRGBA_8888_GrPixelConfig:
case kRGB_888_GrPixelConfig: // We're really talking about GrColorType::kRGB_888x here.
case kBGRA_8888_GrPixelConfig:
case kSRGBA_8888_GrPixelConfig:
case kSBGRA_8888_GrPixelConfig:
case kRGBA_1010102_GrPixelConfig:
case kRGBA_float_GrPixelConfig:
case kRG_float_GrPixelConfig:
return 4;
case kUnknown_GrPixelConfig:
return 0;
}
SK_ABORT("Invalid pixel config");
return 0;
}
bool GrGLGpu::onTransferPixels(GrTexture* texture, int left, int top, int width, int height,
GrColorType bufferColorType, GrBuffer* transferBuffer, size_t offset,
size_t rowBytes) {
GrGLTexture* glTex = static_cast<GrGLTexture*>(texture);
GrPixelConfig texConfig = glTex->config();
SkASSERT(this->caps()->isConfigTexturable(texConfig));
if (!check_write_and_transfer_input(glTex)) {
return false;
}
if (width <= 0 || width > SK_MaxS32 || height <= 0 || height > SK_MaxS32) {
return false;
}
this->setScratchTextureUnit();
GL_CALL(BindTexture(glTex->target(), glTex->textureID()));
SkASSERT(!transferBuffer->isMapped());
SkASSERT(!transferBuffer->isCPUBacked());
const GrGLBuffer* glBuffer = static_cast<const GrGLBuffer*>(transferBuffer);
this->bindBuffer(kXferCpuToGpu_GrBufferType, glBuffer);
SkDEBUGCODE(
SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height);
SkIRect bounds = SkIRect::MakeWH(texture->width(), texture->height());
SkASSERT(bounds.contains(subRect));
)
int bpp = GrColorTypeBytesPerPixel(bufferColorType);
const size_t trimRowBytes = width * bpp;
if (!rowBytes) {
rowBytes = trimRowBytes;
}
const void* pixels = (void*)offset;
if (width < 0 || height < 0) {
return false;
}
bool restoreGLRowLength = false;
if (trimRowBytes != rowBytes) {
// we should have checked for this support already
SkASSERT(this->glCaps().unpackRowLengthSupport());
GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowBytes / bpp));
restoreGLRowLength = true;
}
// Internal format comes from the texture desc.
GrGLenum internalFormat;
// External format and type come from the upload data.
GrGLenum externalFormat;
GrGLenum externalType;
auto bufferAsConfig = GrColorTypeToPixelConfig(bufferColorType, GrSRGBEncoded::kNo);
if (!this->glCaps().getTexImageFormats(texConfig, bufferAsConfig, &internalFormat,
&externalFormat, &externalType)) {
return false;
}
GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, config_alignment(texConfig)));
GL_CALL(TexSubImage2D(glTex->target(),
0,
left, top,
width,
height,
externalFormat, externalType,
pixels));
if (restoreGLRowLength) {
GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0));
}
return true;
}
/**
* Creates storage space for the texture and fills it with texels.
*
* @param config Pixel config of the texture.
* @param interface The GL interface in use.
* @param caps The capabilities of the GL device.
* @param internalFormat The data format used for the internal storage of the texture. May be sized.
* @param internalFormatForTexStorage The data format used for the TexStorage API. Must be sized.
* @param externalFormat The data format used for the external storage of the texture.
* @param externalType The type of the data used for the external storage of the texture.
* @param texels The texel data of the texture being created.
* @param baseWidth The width of the texture's base mipmap level
* @param baseHeight The height of the texture's base mipmap level
*/
static bool allocate_and_populate_texture(GrPixelConfig config,
const GrGLInterface& interface,
const GrGLCaps& caps,
GrGLenum target,
GrGLenum internalFormat,
GrGLenum internalFormatForTexStorage,
GrGLenum externalFormat,
GrGLenum externalType,
const GrMipLevel texels[], int mipLevelCount,
int baseWidth, int baseHeight) {
CLEAR_ERROR_BEFORE_ALLOC(&interface);
bool useTexStorage = caps.isConfigTexSupportEnabled(config);
// We can only use TexStorage if we know we will not later change the storage requirements.
// This means if we may later want to add mipmaps, we cannot use TexStorage.
// Right now, we cannot know if we will later add mipmaps or not.
// The only time we can use TexStorage is when we already have the
// mipmaps.
useTexStorage &= mipLevelCount > 1;
if (useTexStorage) {
// We never resize or change formats of textures.
GL_ALLOC_CALL(&interface,
TexStorage2D(target, SkTMax(mipLevelCount, 1), internalFormatForTexStorage,
baseWidth, baseHeight));
GrGLenum error = CHECK_ALLOC_ERROR(&interface);
if (error != GR_GL_NO_ERROR) {
return false;
} else {
for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) {
const void* currentMipData = texels[currentMipLevel].fPixels;
if (currentMipData == nullptr) {
continue;
}
int twoToTheMipLevel = 1 << currentMipLevel;
int currentWidth = SkTMax(1, baseWidth / twoToTheMipLevel);
int currentHeight = SkTMax(1, baseHeight / twoToTheMipLevel);
GR_GL_CALL(&interface,
TexSubImage2D(target,
currentMipLevel,
0, // left
0, // top
currentWidth,
currentHeight,
externalFormat, externalType,
currentMipData));
}
return true;
}
} else {
if (!mipLevelCount) {
GL_ALLOC_CALL(&interface,
TexImage2D(target,
0,
internalFormat,
baseWidth,
baseHeight,
0, // border
externalFormat, externalType,
nullptr));
GrGLenum error = CHECK_ALLOC_ERROR(&interface);
if (error != GR_GL_NO_ERROR) {
return false;
}
} else {
for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) {
int twoToTheMipLevel = 1 << currentMipLevel;
int currentWidth = SkTMax(1, baseWidth / twoToTheMipLevel);
int currentHeight = SkTMax(1, baseHeight / twoToTheMipLevel);
const void* currentMipData = texels[currentMipLevel].fPixels;
// Even if curremtMipData is nullptr, continue to call TexImage2D.
// This will allocate texture memory which we can later populate.
GL_ALLOC_CALL(&interface,
TexImage2D(target,
currentMipLevel,
internalFormat,
currentWidth,
currentHeight,
0, // border
externalFormat, externalType,
currentMipData));
GrGLenum error = CHECK_ALLOC_ERROR(&interface);
if (error != GR_GL_NO_ERROR) {
return false;
}
}
}
}
return true;
}
/**
* After a texture is created, any state which was altered during its creation
* needs to be restored.
*
* @param interface The GL interface to use.
* @param caps The capabilities of the GL device.
* @param restoreGLRowLength Should the row length unpacking be restored?
* @param glFlipY Did GL flip the texture vertically?
*/
static void restore_pixelstore_state(const GrGLInterface& interface, const GrGLCaps& caps,
bool restoreGLRowLength, bool glFlipY) {
if (restoreGLRowLength) {
SkASSERT(caps.unpackRowLengthSupport());
GR_GL_CALL(&interface, PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0));
}
if (glFlipY) {
GR_GL_CALL(&interface, PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE));
}
}
void GrGLGpu::unbindCpuToGpuXferBuffer() {
auto& xferBufferState = fHWBufferState[kXferCpuToGpu_GrBufferType];
if (!xferBufferState.fBoundBufferUniqueID.isInvalid()) {
GL_CALL(BindBuffer(xferBufferState.fGLTarget, 0));
xferBufferState.invalidate();
}
}
// TODO: Make this take a GrColorType instead of dataConfig. This requires updating GrGLCaps to
// convert from GrColorType to externalFormat/externalType GLenum values.
bool GrGLGpu::uploadTexData(GrPixelConfig texConfig, int texWidth, int texHeight,
GrSurfaceOrigin texOrigin, GrGLenum target, UploadType uploadType,
int left, int top, int width, int height, GrPixelConfig dataConfig,
const GrMipLevel texels[], int mipLevelCount,
GrMipMapsStatus* mipMapsStatus) {
SkASSERT(this->caps()->isConfigTexturable(texConfig));
SkDEBUGCODE(
SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height);
SkIRect bounds = SkIRect::MakeWH(texWidth, texHeight);
SkASSERT(bounds.contains(subRect));
)
SkASSERT(1 == mipLevelCount ||
(0 == left && 0 == top && width == texWidth && height == texHeight));
this->unbindCpuToGpuXferBuffer();
// texels is const.
// But we may need to flip the texture vertically to prepare it.
// Rather than flip in place and alter the incoming data,
// we allocate a new buffer to flip into.
// This means we need to make a non-const shallow copy of texels.
SkAutoTMalloc<GrMipLevel> texelsShallowCopy;
if (mipLevelCount) {
texelsShallowCopy.reset(mipLevelCount);
memcpy(texelsShallowCopy.get(), texels, mipLevelCount*sizeof(GrMipLevel));
}
const GrGLInterface* interface = this->glInterface();
const GrGLCaps& caps = this->glCaps();
size_t bpp = GrBytesPerPixel(dataConfig);
if (width == 0 || height == 0) {
return false;
}
// Internal format comes from the texture desc.
GrGLenum internalFormat;
// External format and type come from the upload data.
GrGLenum externalFormat;
GrGLenum externalType;
if (!this->glCaps().getTexImageFormats(texConfig, dataConfig, &internalFormat, &externalFormat,
&externalType)) {
return false;
}
// TexStorage requires a sized format, and internalFormat may or may not be
GrGLenum internalFormatForTexStorage = this->glCaps().configSizedInternalFormat(texConfig);
/*
* Check whether to allocate a temporary buffer for flipping y or
* because our srcData has extra bytes past each row. If so, we need
* to trim those off here, since GL ES may not let us specify
* GL_UNPACK_ROW_LENGTH.
*/
bool restoreGLRowLength = false;
bool swFlipY = false;
bool glFlipY = false;
if (kBottomLeft_GrSurfaceOrigin == texOrigin && mipLevelCount) {
if (caps.unpackFlipYSupport()) {
glFlipY = true;
} else {
swFlipY = true;
}
}
// in case we need a temporary, trimmed copy of the src pixels
SkAutoSMalloc<128 * 128> tempStorage;
if (mipMapsStatus) {
*mipMapsStatus = GrMipMapsStatus::kValid;
}
const bool usesMips = mipLevelCount > 1;
// find the combined size of all the mip levels and the relative offset of
// each into the collective buffer
bool willNeedData = false;
size_t combinedBufferSize = 0;
SkTArray<size_t> individualMipOffsets(mipLevelCount);
for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) {
if (texelsShallowCopy[currentMipLevel].fPixels) {
int twoToTheMipLevel = 1 << currentMipLevel;
int currentWidth = SkTMax(1, width / twoToTheMipLevel);
int currentHeight = SkTMax(1, height / twoToTheMipLevel);
const size_t trimRowBytes = currentWidth * bpp;
const size_t trimmedSize = trimRowBytes * currentHeight;
const size_t rowBytes = texelsShallowCopy[currentMipLevel].fRowBytes
? texelsShallowCopy[currentMipLevel].fRowBytes
: trimRowBytes;
if (((!caps.unpackRowLengthSupport() || usesMips) && trimRowBytes != rowBytes) ||
swFlipY) {
willNeedData = true;
}
individualMipOffsets.push_back(combinedBufferSize);
combinedBufferSize += trimmedSize;
} else {
if (mipMapsStatus) {
*mipMapsStatus = GrMipMapsStatus::kDirty;
}
individualMipOffsets.push_back(0);
}
}
if (mipMapsStatus && mipLevelCount <= 1) {
*mipMapsStatus = GrMipMapsStatus::kNotAllocated;
}
char* buffer = nullptr;
if (willNeedData) {
buffer = (char*)tempStorage.reset(combinedBufferSize);
}
for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) {
if (!texelsShallowCopy[currentMipLevel].fPixels) {
continue;
}
int twoToTheMipLevel = 1 << currentMipLevel;
int currentWidth = SkTMax(1, width / twoToTheMipLevel);
int currentHeight = SkTMax(1, height / twoToTheMipLevel);
const size_t trimRowBytes = currentWidth * bpp;
/*
* check whether to allocate a temporary buffer for flipping y or
* because our srcData has extra bytes past each row. If so, we need
* to trim those off here, since GL ES may not let us specify
* GL_UNPACK_ROW_LENGTH.
*/
restoreGLRowLength = false;
const size_t rowBytes = texelsShallowCopy[currentMipLevel].fRowBytes
? texelsShallowCopy[currentMipLevel].fRowBytes
: trimRowBytes;
// TODO: This optimization should be enabled with or without mips.
// For use with mips, we must set GR_GL_UNPACK_ROW_LENGTH once per
// mip level, before calling glTexImage2D.
if (caps.unpackRowLengthSupport() && !swFlipY && !usesMips) {
// can't use this for flipping, only non-neg values allowed. :(
if (rowBytes != trimRowBytes) {
GrGLint rowLength = static_cast<GrGLint>(rowBytes / bpp);
GR_GL_CALL(interface, PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowLength));
restoreGLRowLength = true;
}
} else if (trimRowBytes != rowBytes || swFlipY) {
// copy data into our new storage, skipping the trailing bytes
const char* src = (const char*)texelsShallowCopy[currentMipLevel].fPixels;
if (swFlipY && currentHeight >= 1) {
src += (currentHeight - 1) * rowBytes;
}
char* dst = buffer + individualMipOffsets[currentMipLevel];
for (int y = 0; y < currentHeight; y++) {
memcpy(dst, src, trimRowBytes);
if (swFlipY) {
src -= rowBytes;
} else {
src += rowBytes;
}
dst += trimRowBytes;
}
// now point data to our copied version
texelsShallowCopy[currentMipLevel].fPixels = buffer +
individualMipOffsets[currentMipLevel];
texelsShallowCopy[currentMipLevel].fRowBytes = trimRowBytes;
}
}
if (mipLevelCount) {
if (glFlipY) {
GR_GL_CALL(interface, PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_TRUE));
}
GR_GL_CALL(interface, PixelStorei(GR_GL_UNPACK_ALIGNMENT, config_alignment(texConfig)));
}
bool succeeded = true;
if (kNewTexture_UploadType == uploadType) {
if (0 == left && 0 == top && texWidth == width && texHeight == height) {
succeeded = allocate_and_populate_texture(
texConfig, *interface, caps, target, internalFormat,
internalFormatForTexStorage, externalFormat, externalType,
texelsShallowCopy, mipLevelCount, width, height);
} else {
succeeded = false;
}
} else {
if (swFlipY || glFlipY) {
top = texHeight - (top + height);
}
for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) {
if (!texelsShallowCopy[currentMipLevel].fPixels) {
continue;
}
int twoToTheMipLevel = 1 << currentMipLevel;
int currentWidth = SkTMax(1, width / twoToTheMipLevel);
int currentHeight = SkTMax(1, height / twoToTheMipLevel);
GL_CALL(TexSubImage2D(target,
currentMipLevel,
left, top,
currentWidth,
currentHeight,
externalFormat, externalType,
texelsShallowCopy[currentMipLevel].fPixels));
}
}
restore_pixelstore_state(*interface, caps, restoreGLRowLength, glFlipY);
return succeeded;
}
static bool renderbuffer_storage_msaa(const GrGLContext& ctx,
int sampleCount,
GrGLenum format,
int width, int height) {
CLEAR_ERROR_BEFORE_ALLOC(ctx.interface());
SkASSERT(GrGLCaps::kNone_MSFBOType != ctx.caps()->msFBOType());
switch (ctx.caps()->msFBOType()) {
case GrGLCaps::kStandard_MSFBOType:
case GrGLCaps::kMixedSamples_MSFBOType:
GL_ALLOC_CALL(ctx.interface(),
RenderbufferStorageMultisample(GR_GL_RENDERBUFFER,
sampleCount,
format,
width, height));
break;
case GrGLCaps::kES_Apple_MSFBOType:
GL_ALLOC_CALL(ctx.interface(),
RenderbufferStorageMultisampleES2APPLE(GR_GL_RENDERBUFFER,
sampleCount,
format,
width, height));
break;
case GrGLCaps::kES_EXT_MsToTexture_MSFBOType:
case GrGLCaps::kES_IMG_MsToTexture_MSFBOType:
GL_ALLOC_CALL(ctx.interface(),
RenderbufferStorageMultisampleES2EXT(GR_GL_RENDERBUFFER,
sampleCount,
format,
width, height));
break;
case GrGLCaps::kNone_MSFBOType:
SK_ABORT("Shouldn't be here if we don't support multisampled renderbuffers.");
break;
}
return (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(ctx.interface()));
}
bool GrGLGpu::createRenderTargetObjects(const GrSurfaceDesc& desc,
const GrGLTextureInfo& texInfo,
GrGLRenderTarget::IDDesc* idDesc) {
idDesc->fMSColorRenderbufferID = 0;
idDesc->fRTFBOID = 0;
idDesc->fRTFBOOwnership = GrBackendObjectOwnership::kOwned;
idDesc->fTexFBOID = 0;
SkASSERT((GrGLCaps::kMixedSamples_MSFBOType == this->glCaps().msFBOType()) ==
this->caps()->usesMixedSamples());
idDesc->fIsMixedSampled = desc.fSampleCnt > 1 && this->caps()->usesMixedSamples();
GrGLenum status;
GrGLenum colorRenderbufferFormat = 0; // suppress warning
if (desc.fSampleCnt > 1 && GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType()) {
goto FAILED;
}
GL_CALL(GenFramebuffers(1, &idDesc->fTexFBOID));
if (!idDesc->fTexFBOID) {
goto FAILED;
}
// If we are using multisampling we will create two FBOS. We render to one and then resolve to
// the texture bound to the other. The exception is the IMG multisample extension. With this
// extension the texture is multisampled when rendered to and then auto-resolves it when it is
// rendered from.
if (desc.fSampleCnt > 1 && this->glCaps().usesMSAARenderBuffers()) {
GL_CALL(GenFramebuffers(1, &idDesc->fRTFBOID));
GL_CALL(GenRenderbuffers(1, &idDesc->fMSColorRenderbufferID));
if (!idDesc->fRTFBOID ||
!idDesc->fMSColorRenderbufferID) {
goto FAILED;
}
if (!this->glCaps().getRenderbufferFormat(desc.fConfig, &colorRenderbufferFormat)) {
return false;
}
} else {
idDesc->fRTFBOID = idDesc->fTexFBOID;
}
// below here we may bind the FBO
fHWBoundRenderTargetUniqueID.makeInvalid();
if (idDesc->fRTFBOID != idDesc->fTexFBOID) {
SkASSERT(desc.fSampleCnt > 1);
GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, idDesc->fMSColorRenderbufferID));
if (!renderbuffer_storage_msaa(*fGLContext,
desc.fSampleCnt,
colorRenderbufferFormat,
desc.fWidth, desc.fHeight)) {
goto FAILED;
}
fStats.incRenderTargetBinds();
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, idDesc->fRTFBOID));
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_RENDERBUFFER,
idDesc->fMSColorRenderbufferID));
if (!this->glCaps().isConfigVerifiedColorAttachment(desc.fConfig)) {
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
goto FAILED;
}
fGLContext->caps()->markConfigAsValidColorAttachment(desc.fConfig);
}
}
fStats.incRenderTargetBinds();
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, idDesc->fTexFBOID));
if (this->glCaps().usesImplicitMSAAResolve() && desc.fSampleCnt > 1) {
GL_CALL(FramebufferTexture2DMultisample(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
texInfo.fTarget,
texInfo.fID, 0, desc.fSampleCnt));
} else {
GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
texInfo.fTarget,
texInfo.fID, 0));
}
if (!this->glCaps().isConfigVerifiedColorAttachment(desc.fConfig)) {
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
goto FAILED;
}
fGLContext->caps()->markConfigAsValidColorAttachment(desc.fConfig);
}
return true;
FAILED:
if (idDesc->fMSColorRenderbufferID) {
GL_CALL(DeleteRenderbuffers(1, &idDesc->fMSColorRenderbufferID));
}
if (idDesc->fRTFBOID != idDesc->fTexFBOID) {
GL_CALL(DeleteFramebuffers(1, &idDesc->fRTFBOID));
}
if (idDesc->fTexFBOID) {
GL_CALL(DeleteFramebuffers(1, &idDesc->fTexFBOID));
}
return false;
}
// good to set a break-point here to know when createTexture fails
static sk_sp<GrTexture> return_null_texture() {
// SkDEBUGFAIL("null texture");
return nullptr;
}
#if 0 && defined(SK_DEBUG)
static size_t as_size_t(int x) {
return x;
}
#endif
static void set_initial_texture_params(const GrGLInterface* interface,
const GrGLTextureInfo& info,
GrGLTexture::TexParams* initialTexParams) {
// Some drivers like to know filter/wrap before seeing glTexImage2D. Some
// drivers have a bug where an FBO won't be complete if it includes a
// texture that is not mipmap complete (considering the filter in use).
// we only set a subset here so invalidate first
initialTexParams->invalidate();
initialTexParams->fMinFilter = GR_GL_NEAREST;
initialTexParams->fMagFilter = GR_GL_NEAREST;
initialTexParams->fWrapS = GR_GL_CLAMP_TO_EDGE;
initialTexParams->fWrapT = GR_GL_CLAMP_TO_EDGE;
GR_GL_CALL(interface, TexParameteri(info.fTarget,
GR_GL_TEXTURE_MAG_FILTER,
initialTexParams->fMagFilter));
GR_GL_CALL(interface, TexParameteri(info.fTarget,
GR_GL_TEXTURE_MIN_FILTER,
initialTexParams->fMinFilter));
GR_GL_CALL(interface, TexParameteri(info.fTarget,
GR_GL_TEXTURE_WRAP_S,
initialTexParams->fWrapS));
GR_GL_CALL(interface, TexParameteri(info.fTarget,
GR_GL_TEXTURE_WRAP_T,
initialTexParams->fWrapT));
}
sk_sp<GrTexture> GrGLGpu::onCreateTexture(const GrSurfaceDesc& desc,
SkBudgeted budgeted,
const GrMipLevel texels[],
int mipLevelCount) {
// We fail if the MSAA was requested and is not available.
if (GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType() && desc.fSampleCnt > 1) {
//SkDebugf("MSAA RT requested but not supported on this platform.");
return return_null_texture();
}
bool performClear = (desc.fFlags & kPerformInitialClear_GrSurfaceFlag);
GrMipLevel zeroLevel;
std::unique_ptr<uint8_t[]> zeros;
if (performClear && !this->glCaps().clearTextureSupport() &&
!this->glCaps().canConfigBeFBOColorAttachment(desc.fConfig)) {
size_t rowSize = GrBytesPerPixel(desc.fConfig) * desc.fWidth;
size_t size = rowSize * desc.fHeight;
zeros.reset(new uint8_t[size]);
memset(zeros.get(), 0, size);
zeroLevel.fPixels = zeros.get();
zeroLevel.fRowBytes = 0;
texels = &zeroLevel;
mipLevelCount = 1;
performClear = false;
}
bool isRenderTarget = SkToBool(desc.fFlags & kRenderTarget_GrSurfaceFlag);
GrGLTexture::IDDesc idDesc;
idDesc.fOwnership = GrBackendObjectOwnership::kOwned;
GrMipMapsStatus mipMapsStatus;
GrGLTexture::TexParams initialTexParams;
if (!this->createTextureImpl(desc, &idDesc.fInfo, isRenderTarget, &initialTexParams, texels,
mipLevelCount, &mipMapsStatus)) {
return return_null_texture();
}
sk_sp<GrGLTexture> tex;
if (isRenderTarget) {
// unbind the texture from the texture unit before binding it to the frame buffer
GL_CALL(BindTexture(idDesc.fInfo.fTarget, 0));
GrGLRenderTarget::IDDesc rtIDDesc;
if (!this->createRenderTargetObjects(desc, idDesc.fInfo, &rtIDDesc)) {
GL_CALL(DeleteTextures(1, &idDesc.fInfo.fID));
return return_null_texture();
}
tex = sk_make_sp<GrGLTextureRenderTarget>(this, budgeted, desc, idDesc, rtIDDesc,
mipMapsStatus);
tex->baseLevelWasBoundToFBO();
} else {
tex = sk_make_sp<GrGLTexture>(this, budgeted, desc, idDesc, mipMapsStatus);
}
tex->setCachedTexParams(initialTexParams, this->getResetTimestamp());
#ifdef TRACE_TEXTURE_CREATION
SkDebugf("--- new texture [%d] size=(%d %d) config=%d\n",
idDesc.fInfo.fID, desc.fWidth, desc.fHeight, desc.fConfig);
#endif
if (tex && performClear) {
if (this->glCaps().clearTextureSupport()) {
static constexpr uint32_t kZero = 0;
GL_CALL(ClearTexImage(tex->textureID(), 0, GR_GL_RGBA, GR_GL_UNSIGNED_BYTE, &kZero));
} else {
GrGLIRect viewport;
this->bindSurfaceFBOForPixelOps(tex.get(), GR_GL_FRAMEBUFFER, &viewport,
kDst_TempFBOTarget);
this->disableScissor();
this->disableWindowRectangles();
GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE));
fHWWriteToColor = kYes_TriState;
GL_CALL(ClearColor(0, 0, 0, 0));
GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT));
this->unbindTextureFBOForPixelOps(GR_GL_FRAMEBUFFER, tex.get());
fHWBoundRenderTargetUniqueID.makeInvalid();
}
}
return tex;
}
namespace {
const GrGLuint kUnknownBitCount = GrGLStencilAttachment::kUnknownBitCount;
void inline get_stencil_rb_sizes(const GrGLInterface* gl,
GrGLStencilAttachment::Format* format) {
// we shouldn't ever know one size and not the other
SkASSERT((kUnknownBitCount == format->fStencilBits) ==
(kUnknownBitCount == format->fTotalBits));
if (kUnknownBitCount == format->fStencilBits) {
GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER,
GR_GL_RENDERBUFFER_STENCIL_SIZE,
(GrGLint*)&format->fStencilBits);
if (format->fPacked) {
GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER,
GR_GL_RENDERBUFFER_DEPTH_SIZE,
(GrGLint*)&format->fTotalBits);
format->fTotalBits += format->fStencilBits;
} else {
format->fTotalBits = format->fStencilBits;
}
}
}
}
int GrGLGpu::getCompatibleStencilIndex(GrPixelConfig config) {
static const int kSize = 16;
SkASSERT(this->caps()->isConfigRenderable(config));
if (!this->glCaps().hasStencilFormatBeenDeterminedForConfig(config)) {
// Default to unsupported, set this if we find a stencil format that works.
int firstWorkingStencilFormatIndex = -1;
// Create color texture
GrGLuint colorID = 0;
GL_CALL(GenTextures(1, &colorID));
this->setScratchTextureUnit();
GL_CALL(BindTexture(GR_GL_TEXTURE_2D, colorID));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MAG_FILTER,
GR_GL_NEAREST));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MIN_FILTER,
GR_GL_NEAREST));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_S,
GR_GL_CLAMP_TO_EDGE));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_T,
GR_GL_CLAMP_TO_EDGE));
GrGLenum internalFormat;
GrGLenum externalFormat;
GrGLenum externalType;
if (!this->glCaps().getTexImageFormats(config, config, &internalFormat, &externalFormat,
&externalType)) {
return false;
}
this->unbindCpuToGpuXferBuffer();
CLEAR_ERROR_BEFORE_ALLOC(this->glInterface());
GL_ALLOC_CALL(this->glInterface(), TexImage2D(GR_GL_TEXTURE_2D,
0,
internalFormat,
kSize,
kSize,
0,
externalFormat,
externalType,
nullptr));
if (GR_GL_NO_ERROR != CHECK_ALLOC_ERROR(this->glInterface())) {
GL_CALL(DeleteTextures(1, &colorID));
return -1;
}
// unbind the texture from the texture unit before binding it to the frame buffer
GL_CALL(BindTexture(GR_GL_TEXTURE_2D, 0));
// Create Framebuffer
GrGLuint fb = 0;
GL_CALL(GenFramebuffers(1, &fb));
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, fb));
fHWBoundRenderTargetUniqueID.makeInvalid();
GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D,
colorID,
0));
GrGLuint sbRBID = 0;
GL_CALL(GenRenderbuffers(1, &sbRBID));
// look over formats till I find a compatible one
int stencilFmtCnt = this->glCaps().stencilFormats().count();
if (sbRBID) {
GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbRBID));
for (int i = 0; i < stencilFmtCnt && sbRBID; ++i) {
const GrGLCaps::StencilFormat& sFmt = this->glCaps().stencilFormats()[i];
CLEAR_ERROR_BEFORE_ALLOC(this->glInterface());
GL_ALLOC_CALL(this->glInterface(), RenderbufferStorage(GR_GL_RENDERBUFFER,
sFmt.fInternalFormat,
kSize, kSize));
if (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(this->glInterface())) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, sbRBID));
if (sFmt.fPacked) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, sbRBID));
} else {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
}
GrGLenum status;
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status == GR_GL_FRAMEBUFFER_COMPLETE) {
firstWorkingStencilFormatIndex = i;
break;
}
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
if (sFmt.fPacked) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
}
}
}
GL_CALL(DeleteRenderbuffers(1, &sbRBID));
}
GL_CALL(DeleteTextures(1, &colorID));
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, 0));
GL_CALL(DeleteFramebuffers(1, &fb));
fGLContext->caps()->setStencilFormatIndexForConfig(config, firstWorkingStencilFormatIndex);
}
return this->glCaps().getStencilFormatIndexForConfig(config);
}
bool GrGLGpu::createTextureImpl(const GrSurfaceDesc& desc, GrGLTextureInfo* info, bool renderTarget,
GrGLTexture::TexParams* initialTexParams, const GrMipLevel texels[],
int mipLevelCount, GrMipMapsStatus* mipMapsStatus) {
info->fID = 0;
info->fTarget = GR_GL_TEXTURE_2D;
GL_CALL(GenTextures(1, &(info->fID)));
if (!info->fID) {
return false;
}
this->setScratchTextureUnit();
GL_CALL(BindTexture(info->fTarget, info->fID));
if (renderTarget && this->glCaps().textureUsageSupport()) {
// provides a hint about how this texture will be used
GL_CALL(TexParameteri(info->fTarget,
GR_GL_TEXTURE_USAGE,
GR_GL_FRAMEBUFFER_ATTACHMENT));
}
if (info) {
set_initial_texture_params(this->glInterface(), *info, initialTexParams);
}
if (!this->uploadTexData(desc.fConfig, desc.fWidth, desc.fHeight, kTopLeft_GrSurfaceOrigin,
info->fTarget, kNewTexture_UploadType, 0, 0, desc.fWidth, desc.fHeight,
desc.fConfig, texels, mipLevelCount, mipMapsStatus)) {
GL_CALL(DeleteTextures(1, &(info->fID)));
return false;
}
info->fFormat = this->glCaps().configSizedInternalFormat(desc.fConfig);
return true;
}
GrStencilAttachment* GrGLGpu::createStencilAttachmentForRenderTarget(const GrRenderTarget* rt,
int width, int height) {
SkASSERT(width >= rt->width());
SkASSERT(height >= rt->height());
int samples = rt->numStencilSamples();
GrGLStencilAttachment::IDDesc sbDesc;
int sIdx = this->getCompatibleStencilIndex(rt->config());
if (sIdx < 0) {
return nullptr;
}
if (!sbDesc.fRenderbufferID) {
GL_CALL(GenRenderbuffers(1, &sbDesc.fRenderbufferID));
}
if (!sbDesc.fRenderbufferID) {
return nullptr;
}
GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbDesc.fRenderbufferID));
const GrGLCaps::StencilFormat& sFmt = this->glCaps().stencilFormats()[sIdx];
CLEAR_ERROR_BEFORE_ALLOC(this->glInterface());
// we do this "if" so that we don't call the multisample
// version on a GL that doesn't have an MSAA extension.
if (samples > 1) {
SkAssertResult(renderbuffer_storage_msaa(*fGLContext,
samples,
sFmt.fInternalFormat,
width, height));
} else {
GL_ALLOC_CALL(this->glInterface(), RenderbufferStorage(GR_GL_RENDERBUFFER,
sFmt.fInternalFormat,
width, height));
SkASSERT(GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(this->glInterface()));
}
fStats.incStencilAttachmentCreates();
// After sized formats we attempt an unsized format and take
// whatever sizes GL gives us. In that case we query for the size.
GrGLStencilAttachment::Format format = sFmt;
get_stencil_rb_sizes(this->glInterface(), &format);
GrGLStencilAttachment* stencil = new GrGLStencilAttachment(this,
sbDesc,
width,
height,
samples,
format);
return stencil;
}
////////////////////////////////////////////////////////////////////////////////
// GL_STREAM_DRAW triggers an optimization in Chromium's GPU process where a client's vertex buffer
// objects are implemented as client-side-arrays on tile-deferred architectures.
#define DYNAMIC_USAGE_PARAM GR_GL_STREAM_DRAW
GrBuffer* GrGLGpu::onCreateBuffer(size_t size, GrBufferType intendedType,
GrAccessPattern accessPattern, const void* data) {
return GrGLBuffer::Create(this, size, intendedType, accessPattern, data);
}
void GrGLGpu::flushScissor(const GrScissorState& scissorState,
const GrGLIRect& rtViewport,
GrSurfaceOrigin rtOrigin) {
if (scissorState.enabled()) {
GrGLIRect scissor;
scissor.setRelativeTo(rtViewport, scissorState.rect(), rtOrigin);
// if the scissor fully contains the viewport then we fall through and
// disable the scissor test.
if (!scissor.contains(rtViewport)) {
if (fHWScissorSettings.fRect != scissor) {
scissor.pushToGLScissor(this->glInterface());
fHWScissorSettings.fRect = scissor;
}
if (kYes_TriState != fHWScissorSettings.fEnabled) {
GL_CALL(Enable(GR_GL_SCISSOR_TEST));
fHWScissorSettings.fEnabled = kYes_TriState;
}
return;
}
}
// See fall through note above
this->disableScissor();
}
void GrGLGpu::flushWindowRectangles(const GrWindowRectsState& windowState,
const GrGLRenderTarget* rt, GrSurfaceOrigin origin) {
#ifndef USE_NSIGHT
typedef GrWindowRectsState::Mode Mode;
SkASSERT(!windowState.enabled() || rt->renderFBOID()); // Window rects can't be used on-screen.
SkASSERT(windowState.numWindows() <= this->caps()->maxWindowRectangles());
if (!this->caps()->maxWindowRectangles() ||
fHWWindowRectsState.knownEqualTo(origin, rt->getViewport(), windowState)) {
return;
}
// This is purely a workaround for a spurious warning generated by gcc. Otherwise the above
// assert would be sufficient. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=5912
int numWindows = SkTMin(windowState.numWindows(), int(GrWindowRectangles::kMaxWindows));
SkASSERT(windowState.numWindows() == numWindows);
GrGLIRect glwindows[GrWindowRectangles::kMaxWindows];
const SkIRect* skwindows = windowState.windows().data();
for (int i = 0; i < numWindows; ++i) {
glwindows[i].setRelativeTo(rt->getViewport(), skwindows[i], origin);
}
GrGLenum glmode = (Mode::kExclusive == windowState.mode()) ? GR_GL_EXCLUSIVE : GR_GL_INCLUSIVE;
GL_CALL(WindowRectangles(glmode, numWindows, glwindows->asInts()));
fHWWindowRectsState.set(origin, rt->getViewport(), windowState);
#endif
}
void GrGLGpu::disableWindowRectangles() {
#ifndef USE_NSIGHT
if (!this->caps()->maxWindowRectangles() || fHWWindowRectsState.knownDisabled()) {
return;
}
GL_CALL(WindowRectangles(GR_GL_EXCLUSIVE, 0, nullptr));
fHWWindowRectsState.setDisabled();
#endif
}
void GrGLGpu::flushMinSampleShading(float minSampleShading) {
if (fHWMinSampleShading != minSampleShading) {
if (minSampleShading > 0.0) {
GL_CALL(Enable(GR_GL_SAMPLE_SHADING));
GL_CALL(MinSampleShading(minSampleShading));
}
else {
GL_CALL(Disable(GR_GL_SAMPLE_SHADING));
}
fHWMinSampleShading = minSampleShading;
}
}
bool GrGLGpu::flushGLState(const GrPipeline& pipeline, const GrPrimitiveProcessor& primProc,
bool willDrawPoints) {
sk_sp<GrGLProgram> program(fProgramCache->refProgram(this, pipeline, primProc, willDrawPoints));
if (!program) {
GrCapsDebugf(this->caps(), "Failed to create program!\n");
return false;
}
program->generateMipmaps(primProc, pipeline);
GrXferProcessor::BlendInfo blendInfo;
pipeline.getXferProcessor().getBlendInfo(&blendInfo);
this->flushColorWrite(blendInfo.fWriteColor);
this->flushMinSampleShading(primProc.getSampleShading());
GrGLuint programID = program->programID();
if (fHWProgramID != programID) {
GL_CALL(UseProgram(programID));
fHWProgramID = programID;
}
if (blendInfo.fWriteColor) {
// Swizzle the blend to match what the shader will output.
const GrSwizzle& swizzle = this->caps()->shaderCaps()->configOutputSwizzle(
pipeline.proxy()->config());
this->flushBlend(blendInfo, swizzle);
}
program->setData(primProc, pipeline);
GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(pipeline.renderTarget());
GrStencilSettings stencil;
if (pipeline.isStencilEnabled()) {
// TODO: attach stencil and create settings during render target flush.
SkASSERT(glRT->renderTargetPriv().getStencilAttachment());
stencil.reset(*pipeline.getUserStencil(), pipeline.hasStencilClip(),
glRT->renderTargetPriv().numStencilBits());
}
this->flushStencil(stencil);
this->flushScissor(pipeline.getScissorState(), glRT->getViewport(), pipeline.proxy()->origin());
this->flushWindowRectangles(pipeline.getWindowRectsState(), glRT, pipeline.proxy()->origin());
this->flushHWAAState(glRT, pipeline.isHWAntialiasState(), !stencil.isDisabled());
// This must come after textures are flushed because a texture may need
// to be msaa-resolved (which will modify bound FBO state).
this->flushRenderTarget(glRT, pipeline.getDisableOutputConversionToSRGB());
return true;
}
void GrGLGpu::setupGeometry(const GrPrimitiveProcessor& primProc,
const GrBuffer* indexBuffer,
const GrBuffer* vertexBuffer,
int baseVertex,
const GrBuffer* instanceBuffer,
int baseInstance) {
using EnablePrimitiveRestart = GrGLAttribArrayState::EnablePrimitiveRestart;
GrGLAttribArrayState* attribState;
if (indexBuffer) {
SkASSERT(indexBuffer && !indexBuffer->isMapped());
attribState = fHWVertexArrayState.bindInternalVertexArray(this, indexBuffer);
} else {
attribState = fHWVertexArrayState.bindInternalVertexArray(this);
}
struct {
const GrBuffer* fBuffer;
int fStride;
size_t fBufferOffset;
} bindings[2];
if (int vertexStride = primProc.getVertexStride()) {
SkASSERT(vertexBuffer && !vertexBuffer->isMapped());
bindings[0].fBuffer = vertexBuffer;
bindings[0].fStride = vertexStride;
bindings[0].fBufferOffset = vertexBuffer->baseOffset() + baseVertex * vertexStride;
}
if (int instanceStride = primProc.getInstanceStride()) {
SkASSERT(instanceBuffer && !instanceBuffer->isMapped());
bindings[1].fBuffer = instanceBuffer;
bindings[1].fStride = instanceStride;
bindings[1].fBufferOffset = instanceBuffer->baseOffset() + baseInstance * instanceStride;
}
int numAttribs = primProc.numAttribs();
auto enableRestart = EnablePrimitiveRestart(primProc.willUsePrimitiveRestart() && indexBuffer);
attribState->enableVertexArrays(this, numAttribs, enableRestart);
for (int i = 0; i < numAttribs; ++i) {
using InputRate = GrPrimitiveProcessor::Attribute::InputRate;
const GrGeometryProcessor::Attribute& attrib = primProc.getAttrib(i);
const int divisor = InputRate::kPerInstance == attrib.fInputRate ? 1 : 0;
const auto& binding = bindings[divisor];
attribState->set(this, i, binding.fBuffer, attrib.fType, binding.fStride,
binding.fBufferOffset + attrib.fOffsetInRecord, divisor);
}
}
GrGLenum GrGLGpu::bindBuffer(GrBufferType type, const GrBuffer* buffer) {
this->handleDirtyContext();
// Index buffer state is tied to the vertex array.
if (kIndex_GrBufferType == type) {
this->bindVertexArray(0);
}
SkASSERT(type >= 0 && type <= kLast_GrBufferType);
auto& bufferState = fHWBufferState[type];
if (buffer->uniqueID() != bufferState.fBoundBufferUniqueID) {
if (buffer->isCPUBacked()) {
if (!bufferState.fBufferZeroKnownBound) {
GL_CALL(BindBuffer(bufferState.fGLTarget, 0));
}
} else {
const GrGLBuffer* glBuffer = static_cast<const GrGLBuffer*>(buffer);
GL_CALL(BindBuffer(bufferState.fGLTarget, glBuffer->bufferID()));
}
bufferState.fBufferZeroKnownBound = buffer->isCPUBacked();
bufferState.fBoundBufferUniqueID = buffer->uniqueID();
}
return bufferState.fGLTarget;
}
void GrGLGpu::notifyBufferReleased(const GrGLBuffer* buffer) {
if (buffer->hasAttachedToTexture()) {
// Detach this buffer from any textures to ensure the underlying memory is freed.
GrGpuResource::UniqueID uniqueID = buffer->uniqueID();
for (int i = fHWMaxUsedBufferTextureUnit; i >= 0; --i) {
auto& buffTex = fHWBufferTextures[i];
if (uniqueID != buffTex.fAttachedBufferUniqueID) {
continue;
}
if (i == fHWMaxUsedBufferTextureUnit) {
--fHWMaxUsedBufferTextureUnit;
}
this->setTextureUnit(i);
if (!buffTex.fKnownBound) {
SkASSERT(buffTex.fTextureID);
GL_CALL(BindTexture(GR_GL_TEXTURE_BUFFER, buffTex.fTextureID));
buffTex.fKnownBound = true;
}
GL_CALL(TexBuffer(GR_GL_TEXTURE_BUFFER,
this->glCaps().configSizedInternalFormat(buffTex.fTexelConfig), 0));
}
}
}
void GrGLGpu::disableScissor() {
if (kNo_TriState != fHWScissorSettings.fEnabled) {
GL_CALL(Disable(GR_GL_SCISSOR_TEST));
fHWScissorSettings.fEnabled = kNo_TriState;
return;
}
}
void GrGLGpu::clear(const GrFixedClip& clip, GrColor color,
GrRenderTarget* target, GrSurfaceOrigin origin) {
// parent class should never let us get here with no RT
SkASSERT(target);
this->handleDirtyContext();
GrGLfloat r, g, b, a;
static const GrGLfloat scale255 = 1.f / 255.f;
a = GrColorUnpackA(color) * scale255;
GrGLfloat scaleRGB = scale255;
r = GrColorUnpackR(color) * scaleRGB;
g = GrColorUnpackG(color) * scaleRGB;
b = GrColorUnpackB(color) * scaleRGB;
if (this->glCaps().useDrawToClearColor()) {
this->clearColorAsDraw(clip, r, g, b, a, target, origin);
return;
}
GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target);
if (clip.scissorEnabled()) {
this->flushRenderTarget(glRT, origin, clip.scissorRect());
} else {
this->flushRenderTarget(glRT);
}
this->flushScissor(clip.scissorState(), glRT->getViewport(), origin);
this->flushWindowRectangles(clip.windowRectsState(), glRT, origin);
GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE));
fHWWriteToColor = kYes_TriState;
if (this->glCaps().clearToBoundaryValuesIsBroken() &&
(1 == r || 0 == r) && (1 == g || 0 == g) && (1 == b || 0 == b) && (1 == a || 0 == a)) {
static const GrGLfloat safeAlpha1 = nextafter(1.f, 2.f);
static const GrGLfloat safeAlpha0 = nextafter(0.f, -1.f);
a = (1 == a) ? safeAlpha1 : safeAlpha0;
}
GL_CALL(ClearColor(r, g, b, a));
GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT));
}
void GrGLGpu::clearStencil(GrRenderTarget* target, int clearValue) {
if (!target) {
return;
}
GrStencilAttachment* sb = target->renderTargetPriv().getStencilAttachment();
// this should only be called internally when we know we have a
// stencil buffer.
SkASSERT(sb);
GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target);
this->flushRenderTargetNoColorWrites(glRT);
this->disableScissor();
this->disableWindowRectangles();
GL_CALL(StencilMask(0xffffffff));
GL_CALL(ClearStencil(clearValue));
GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT));
fHWStencilSettings.invalidate();
if (!clearValue) {
sb->cleared();
}
}
void GrGLGpu::clearStencilClip(const GrFixedClip& clip,
bool insideStencilMask,
GrRenderTarget* target, GrSurfaceOrigin origin) {
SkASSERT(target);
this->handleDirtyContext();
if (this->glCaps().useDrawToClearStencilClip()) {
this->clearStencilClipAsDraw(clip, insideStencilMask, target, origin);
return;
}
GrStencilAttachment* sb = target->renderTargetPriv().getStencilAttachment();
// this should only be called internally when we know we have a
// stencil buffer.
SkASSERT(sb);
GrGLint stencilBitCount = sb->bits();
#if 0
SkASSERT(stencilBitCount > 0);
GrGLint clipStencilMask = (1 << (stencilBitCount - 1));
#else
// we could just clear the clip bit but when we go through
// ANGLE a partial stencil mask will cause clears to be
// turned into draws. Our contract on GrOpList says that
// changing the clip between stencil passes may or may not
// zero the client's clip bits. So we just clear the whole thing.
static const GrGLint clipStencilMask = ~0;
#endif
GrGLint value;
if (insideStencilMask) {
value = (1 << (stencilBitCount - 1));
} else {
value = 0;
}
GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target);
this->flushRenderTargetNoColorWrites(glRT);
this->flushScissor(clip.scissorState(), glRT->getViewport(), origin);
this->flushWindowRectangles(clip.windowRectsState(), glRT, origin);
GL_CALL(StencilMask((uint32_t) clipStencilMask));
GL_CALL(ClearStencil(value));
GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT));
fHWStencilSettings.invalidate();
}
static bool read_pixels_pays_for_y_flip(GrSurfaceOrigin origin, const GrGLCaps& caps,
int width, int height, GrPixelConfig config,
size_t rowBytes) {
// If the surface is already TopLeft, we don't need to flip.
if (kTopLeft_GrSurfaceOrigin == origin) {
return false;
}
// If the read is really small or smaller than the min texture size, don't force a draw.
static const int kMinSize = 32;
if (width < kMinSize || height < kMinSize) {
return false;
}
// if GL can do the flip then we'll never pay for it.
if (caps.packFlipYSupport()) {
return false;
}
// If we have to do memcpy to handle non-trim rowBytes then we
// get the flip for free. Otherwise it costs.
// Note that we're assuming that 0 rowBytes has already been handled and that the width has been
// clipped.
return caps.packRowLengthSupport() || GrBytesPerPixel(config) * width == rowBytes;
}
bool GrGLGpu::readPixelsSupported(GrRenderTarget* target, GrPixelConfig readConfig) {
#ifdef SK_BUILD_FOR_MAC
// Chromium may ask us to read back from locked IOSurfaces. Calling the command buffer's
// glGetIntegerv() with GL_IMPLEMENTATION_COLOR_READ_FORMAT/_TYPE causes the command buffer
// to make a call to check the framebuffer status which can hang the driver. So in Mac Chromium
// we always use a temporary surface to test for read pixels support.
// https://www.crbug.com/662802
if (this->glContext().driver() == kChromium_GrGLDriver) {
return this->readPixelsSupported(target->config(), readConfig);
}
#endif
auto bindRenderTarget = [this, target]() -> bool {
this->flushRenderTargetNoColorWrites(static_cast<GrGLRenderTarget*>(target));
return true;
};
auto unbindRenderTarget = []{};
auto getIntegerv = [this](GrGLenum query, GrGLint* value) {
GR_GL_GetIntegerv(this->glInterface(), query, value);
};
GrPixelConfig rtConfig = target->config();
return this->glCaps().readPixelsSupported(rtConfig, readConfig, getIntegerv, bindRenderTarget,
unbindRenderTarget);
}
bool GrGLGpu::readPixelsSupported(GrPixelConfig rtConfig, GrPixelConfig readConfig) {
sk_sp<GrTexture> temp;
auto bindRenderTarget = [this, rtConfig, &temp]() -> bool {
GrSurfaceDesc desc;
desc.fConfig = rtConfig;
desc.fWidth = desc.fHeight = 16;
if (this->glCaps().isConfigRenderable(rtConfig)) {
desc.fFlags = kRenderTarget_GrSurfaceFlag;
temp = this->createTexture(desc, SkBudgeted::kNo);
if (!temp) {
return false;
}
GrGLRenderTarget* glrt = static_cast<GrGLRenderTarget*>(temp->asRenderTarget());
this->flushRenderTargetNoColorWrites(glrt);
return true;
} else if (this->glCaps().canConfigBeFBOColorAttachment(rtConfig)) {
temp = this->createTexture(desc, SkBudgeted::kNo);
if (!temp) {
return false;
}
GrGLIRect vp;
this->bindSurfaceFBOForPixelOps(temp.get(), GR_GL_FRAMEBUFFER, &vp, kDst_TempFBOTarget);
fHWBoundRenderTargetUniqueID.makeInvalid();
return true;
}
return false;
};
auto unbindRenderTarget = [this, &temp]() {
this->unbindTextureFBOForPixelOps(GR_GL_FRAMEBUFFER, temp.get());
};
auto getIntegerv = [this](GrGLenum query, GrGLint* value) {
GR_GL_GetIntegerv(this->glInterface(), query, value);
};
return this->glCaps().readPixelsSupported(rtConfig, readConfig, getIntegerv, bindRenderTarget,
unbindRenderTarget);
}
bool GrGLGpu::readPixelsSupported(GrSurface* surfaceForConfig, GrPixelConfig readConfig) {
if (GrRenderTarget* rt = surfaceForConfig->asRenderTarget()) {
return this->readPixelsSupported(rt, readConfig);
} else {
GrPixelConfig config = surfaceForConfig->config();
return this->readPixelsSupported(config, readConfig);
}
}
bool GrGLGpu::onGetReadPixelsInfo(GrSurface* srcSurface, GrSurfaceOrigin srcOrigin, int width,
int height, size_t rowBytes, GrColorType dstColorType,
DrawPreference* drawPreference,
ReadPixelTempDrawInfo* tempDrawInfo) {
// We don't want to introduce a sRGB conversion if we trigger a draw.
auto dstConfigSRGBEncoded = GrPixelConfigIsSRGBEncoded(srcSurface->config());
if (*drawPreference != kNoDraw_DrawPreference) {
// We assume the base class has only inserted a draw for sRGB reasons. So the
// the temp surface has the config of the dst data. There is no swizzling, nor dst config
// spoofing.
SkASSERT(tempDrawInfo->fReadColorType == dstColorType);
SkASSERT(GrPixelConfigToColorType(tempDrawInfo->fTempSurfaceDesc.fConfig) == dstColorType);
SkASSERT(tempDrawInfo->fSwizzle == GrSwizzle::RGBA());
// Don't undo a sRGB conversion introduced by our caller via an intermediate draw.
dstConfigSRGBEncoded = GrPixelConfigIsSRGBEncoded(tempDrawInfo->fTempSurfaceDesc.fConfig);
}
if (GrColorTypeIsAlphaOnly(dstColorType)) {
dstConfigSRGBEncoded = GrSRGBEncoded::kNo;
}
GrPixelConfig srcConfig = srcSurface->config();
tempDrawInfo->fTempSurfaceFit = this->glCaps().partialFBOReadIsSlow() ? SkBackingFit::kExact
: SkBackingFit::kApprox;
// TODO: Update this logic to use color type.
auto dstAsConfig = GrColorTypeToPixelConfig(dstColorType, dstConfigSRGBEncoded);
if (this->glCaps().rgba8888PixelsOpsAreSlow() && kRGBA_8888_GrPixelConfig == dstAsConfig &&
this->readPixelsSupported(kBGRA_8888_GrPixelConfig, kBGRA_8888_GrPixelConfig)) {
tempDrawInfo->fTempSurfaceDesc.fConfig = kBGRA_8888_GrPixelConfig;
tempDrawInfo->fSwizzle = GrSwizzle::BGRA();
tempDrawInfo->fReadColorType = GrColorType::kBGRA_8888;
ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference);
} else if (this->glCaps().rgbaToBgraReadbackConversionsAreSlow() &&
GrBytesPerPixel(dstAsConfig) == 4 &&
GrPixelConfigSwapRAndB(dstAsConfig) == srcConfig &&
this->readPixelsSupported(srcSurface, srcConfig)) {
// Mesa 3D takes a slow path on when reading back BGRA from an RGBA surface and vice-versa.
// Better to do a draw with a R/B swap and then read as the original config.
tempDrawInfo->fTempSurfaceDesc.fConfig = srcConfig;
tempDrawInfo->fSwizzle = GrSwizzle::BGRA();
tempDrawInfo->fReadColorType = GrPixelConfigToColorType(srcConfig);
ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference);
} else if (!this->readPixelsSupported(srcSurface, dstAsConfig)) {
if (kBGRA_8888_GrPixelConfig == dstAsConfig &&
this->glCaps().canConfigBeFBOColorAttachment(kRGBA_8888_GrPixelConfig) &&
this->readPixelsSupported(kRGBA_8888_GrPixelConfig, kRGBA_8888_GrPixelConfig)) {
// We're trying to read BGRA but it's not supported. If RGBA is renderable and
// we can read it back, then do a swizzling draw to a RGBA and read it back (which
// will effectively be BGRA).
tempDrawInfo->fTempSurfaceDesc.fConfig = kRGBA_8888_GrPixelConfig;
tempDrawInfo->fSwizzle = GrSwizzle::BGRA();
tempDrawInfo->fReadColorType = GrColorType::kRGBA_8888;
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
} else if (kSBGRA_8888_GrPixelConfig == dstAsConfig &&
this->glCaps().canConfigBeFBOColorAttachment(kSRGBA_8888_GrPixelConfig) &&
this->readPixelsSupported(kSRGBA_8888_GrPixelConfig,
kSRGBA_8888_GrPixelConfig)) {
// We're trying to read sBGRA but it's not supported. If sRGBA is renderable and
// we can read it back, then do a swizzling draw to a sRGBA and read it back (which
// will effectively be sBGRA).
tempDrawInfo->fTempSurfaceDesc.fConfig = kSRGBA_8888_GrPixelConfig;
tempDrawInfo->fSwizzle = GrSwizzle::BGRA();
tempDrawInfo->fReadColorType = GrColorType::kRGBA_8888;
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
} else if (kAlpha_8_GrPixelConfig == dstAsConfig) {
// onReadPixels implements a fallback for cases where we want to read kAlpha_8,
// it's unsupported, but 32bit RGBA reads are supported.
if (!this->readPixelsSupported(srcSurface, kRGBA_8888_GrPixelConfig)) {
// If we can't read RGBA from the src try to draw to a kRGBA_8888 (or kSRGBA_8888)
// first and then onReadPixels will read that to a 32bit temporary buffer.
if (this->glCaps().canConfigBeFBOColorAttachment(kRGBA_8888_GrPixelConfig)) {
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
tempDrawInfo->fTempSurfaceDesc.fConfig = kRGBA_8888_GrPixelConfig;
tempDrawInfo->fReadColorType = GrColorType::kAlpha_8;
} else {
return false;
}
} else {
tempDrawInfo->fTempSurfaceDesc.fConfig = srcConfig;
SkASSERT(tempDrawInfo->fReadColorType == GrColorType::kAlpha_8);
}
} else if (kRGBA_half_GrPixelConfig == dstAsConfig &&
this->readPixelsSupported(srcSurface, kRGBA_float_GrPixelConfig)) {
// If reading in half float format is not supported, then read in float format.
return true;
} else if (this->glCaps().canConfigBeFBOColorAttachment(dstAsConfig) &&
this->readPixelsSupported(dstAsConfig, dstAsConfig)) {
// Do a draw to convert from the src config to the read config.
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
tempDrawInfo->fTempSurfaceDesc.fConfig = dstAsConfig;
tempDrawInfo->fReadColorType = dstColorType;
} else {
return false;
}
}
if ((srcSurface->asRenderTarget() || this->glCaps().canConfigBeFBOColorAttachment(srcConfig)) &&
read_pixels_pays_for_y_flip(srcOrigin, this->glCaps(), width, height, dstAsConfig,
rowBytes)) {
ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference);
}
return true;
}
bool GrGLGpu::onReadPixels(GrSurface* surface, GrSurfaceOrigin origin, int left, int top, int width,
int height, GrColorType dstColorType, void* buffer, size_t rowBytes) {
SkASSERT(surface);
GrGLRenderTarget* renderTarget = static_cast<GrGLRenderTarget*>(surface->asRenderTarget());
if (!renderTarget && !this->glCaps().canConfigBeFBOColorAttachment(surface->config())) {
return false;
}
// TODO: Avoid this conversion by making GrGLCaps work with color types.
auto dstAsConfig = GrColorTypeToPixelConfig(dstColorType, GrSRGBEncoded::kNo);
// We have a special case fallback for reading eight bit alpha. We will read back all four 8
// bit channels as RGBA and then extract A.
if (!this->readPixelsSupported(surface, dstAsConfig)) {
if (kAlpha_8_GrPixelConfig == dstAsConfig &&
this->readPixelsSupported(surface, kRGBA_8888_GrPixelConfig)) {
std::unique_ptr<uint32_t[]> temp(new uint32_t[width * height * 4]);
if (this->onReadPixels(surface, origin, left, top, width, height,
GrColorType::kRGBA_8888, temp.get(), width * 4)) {
uint8_t* dst = reinterpret_cast<uint8_t*>(buffer);
for (int j = 0; j < height; ++j) {
for (int i = 0; i < width; ++i) {
dst[j*rowBytes + i] = (0xFF000000U & temp[j*width+i]) >> 24;
}
}
return true;
}
}
// If reading in half float format is not supported, then read in a temporary float buffer
// and convert to half float.
if (kRGBA_half_GrPixelConfig == dstAsConfig &&
this->readPixelsSupported(surface, kRGBA_float_GrPixelConfig)) {
std::unique_ptr<float[]> temp(new float[width * height * 4]);
if (this->onReadPixels(surface, origin, left, top, width, height,
GrColorType::kRGBA_F32, temp.get(), width * sizeof(float) * 4)) {
uint8_t* dst = reinterpret_cast<uint8_t*>(buffer);
float* src = temp.get();
for (int j = 0; j < height; ++j) {
SkHalf* dstRow = reinterpret_cast<SkHalf*>(dst);
for (int i = 0; i < width; ++i) {
for (int color = 0; color < 4; color++) {
*dstRow++ = SkFloatToHalf(*src++);
}
}
dst += rowBytes;
}
return true;
}
}
return false;
}
GrGLenum externalFormat;
GrGLenum externalType;
if (!this->glCaps().getReadPixelsFormat(surface->config(), dstAsConfig, &externalFormat,
&externalType)) {
return false;
}
bool flipY = kBottomLeft_GrSurfaceOrigin == origin;
GrGLIRect glvp;
if (renderTarget) {
// resolve the render target if necessary
switch (renderTarget->getResolveType()) {
case GrGLRenderTarget::kCantResolve_ResolveType:
return false;
case GrGLRenderTarget::kAutoResolves_ResolveType:
this->flushRenderTargetNoColorWrites(renderTarget);
break;
case GrGLRenderTarget::kCanResolve_ResolveType:
this->onResolveRenderTarget(renderTarget);
// we don't track the state of the READ FBO ID.
fStats.incRenderTargetBinds();
GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, renderTarget->textureFBOID()));
break;
default:
SK_ABORT("Unknown resolve type");
}
glvp = renderTarget->getViewport();
} else {
// Use a temporary FBO.
this->bindSurfaceFBOForPixelOps(surface, GR_GL_FRAMEBUFFER, &glvp, kSrc_TempFBOTarget);
fHWBoundRenderTargetUniqueID.makeInvalid();
}
// the read rect is viewport-relative
GrGLIRect readRect;
readRect.setRelativeTo(glvp, left, top, width, height, origin);
int bytesPerPixel = GrBytesPerPixel(dstAsConfig);
size_t tightRowBytes = bytesPerPixel * width;
size_t readDstRowBytes = tightRowBytes;
void* readDst = buffer;
// determine if GL can read using the passed rowBytes or if we need
// a scratch buffer.
SkAutoSMalloc<32 * sizeof(GrColor)> scratch;
if (rowBytes != tightRowBytes) {
if (this->glCaps().packRowLengthSupport() && !(rowBytes % bytesPerPixel)) {
GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH,
static_cast<GrGLint>(rowBytes / bytesPerPixel)));
readDstRowBytes = rowBytes;
} else {
scratch.reset(tightRowBytes * height);
readDst = scratch.get();
}
}
if (flipY && this->glCaps().packFlipYSupport()) {
GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 1));
}
GL_CALL(PixelStorei(GR_GL_PACK_ALIGNMENT, config_alignment(dstAsConfig)));
GL_CALL(ReadPixels(readRect.fLeft, readRect.fBottom,
readRect.fWidth, readRect.fHeight,
externalFormat, externalType, readDst));
if (readDstRowBytes != tightRowBytes) {
SkASSERT(this->glCaps().packRowLengthSupport());
GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0));
}
if (flipY && this->glCaps().packFlipYSupport()) {
GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 0));
flipY = false;
}
// now reverse the order of the rows, since GL's are bottom-to-top, but our
// API presents top-to-bottom. We must preserve the padding contents. Note
// that the above readPixels did not overwrite the padding.
if (readDst == buffer) {
SkASSERT(rowBytes == readDstRowBytes);
if (flipY) {
scratch.reset(tightRowBytes);
void* tmpRow = scratch.get();
// flip y in-place by rows
const int halfY = height >> 1;
char* top = reinterpret_cast<char*>(buffer);
char* bottom = top + (height - 1) * rowBytes;
for (int y = 0; y < halfY; y++) {
memcpy(tmpRow, top, tightRowBytes);
memcpy(top, bottom, tightRowBytes);
memcpy(bottom, tmpRow, tightRowBytes);
top += rowBytes;
bottom -= rowBytes;
}
}
} else {
SkASSERT(readDst != buffer);
SkASSERT(rowBytes != tightRowBytes);
// copy from readDst to buffer while flipping y
// const int halfY = height >> 1;
const char* src = reinterpret_cast<const char*>(readDst);
char* dst = reinterpret_cast<char*>(buffer);
if (flipY) {
dst += (height-1) * rowBytes;
}
for (int y = 0; y < height; y++) {
memcpy(dst, src, tightRowBytes);
src += readDstRowBytes;
if (!flipY) {
dst += rowBytes;
} else {
dst -= rowBytes;
}
}
}
if (!renderTarget) {
this->unbindTextureFBOForPixelOps(GR_GL_FRAMEBUFFER, surface);
}
return true;
}
GrGpuRTCommandBuffer* GrGLGpu::createCommandBuffer(
GrRenderTarget* rt, GrSurfaceOrigin origin,
const GrGpuRTCommandBuffer::LoadAndStoreInfo& colorInfo,
const GrGpuRTCommandBuffer::StencilLoadAndStoreInfo& stencilInfo) {
return new GrGLGpuRTCommandBuffer(this, rt, origin, colorInfo, stencilInfo);
}
GrGpuTextureCommandBuffer* GrGLGpu::createCommandBuffer(GrTexture* texture,
GrSurfaceOrigin origin) {
return new GrGLGpuTextureCommandBuffer(this, texture, origin);
}
void GrGLGpu::flushRenderTarget(GrGLRenderTarget* target, GrSurfaceOrigin origin,
const SkIRect& bounds, bool disableSRGB) {
this->flushRenderTargetNoColorWrites(target, disableSRGB);
this->didWriteToSurface(target, origin, &bounds);
}
void GrGLGpu::flushRenderTarget(GrGLRenderTarget* target, bool disableSRGB) {
this->flushRenderTargetNoColorWrites(target, disableSRGB);
this->didWriteToSurface(target, kTopLeft_GrSurfaceOrigin, nullptr);
}
void GrGLGpu::flushRenderTargetNoColorWrites(GrGLRenderTarget* target, bool disableSRGB) {
SkASSERT(target);
GrGpuResource::UniqueID rtID = target->uniqueID();
if (fHWBoundRenderTargetUniqueID != rtID) {
fStats.incRenderTargetBinds();
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, target->renderFBOID()));
#ifdef SK_DEBUG
// don't do this check in Chromium -- this is causing
// lots of repeated command buffer flushes when the compositor is
// rendering with Ganesh, which is really slow; even too slow for
// Debug mode.
if (kChromium_GrGLDriver != this->glContext().driver()) {
GrGLenum status;
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
SkDebugf("GrGLGpu::flushRenderTarget glCheckFramebufferStatus %x\n", status);
}
}
#endif
fHWBoundRenderTargetUniqueID = rtID;
this->flushViewport(target->getViewport());
}
if (this->glCaps().srgbWriteControl()) {
this->flushFramebufferSRGB(GrPixelConfigIsSRGB(target->config()) && !disableSRGB);
}
}
void GrGLGpu::flushFramebufferSRGB(bool enable) {
if (enable && kYes_TriState != fHWSRGBFramebuffer) {
GL_CALL(Enable(GR_GL_FRAMEBUFFER_SRGB));
fHWSRGBFramebuffer = kYes_TriState;
} else if (!enable && kNo_TriState != fHWSRGBFramebuffer) {
GL_CALL(Disable(GR_GL_FRAMEBUFFER_SRGB));
fHWSRGBFramebuffer = kNo_TriState;
}
}
void GrGLGpu::flushViewport(const GrGLIRect& viewport) {
if (fHWViewport != viewport) {
viewport.pushToGLViewport(this->glInterface());
fHWViewport = viewport;
}
}
#define SWAP_PER_DRAW 0
#if SWAP_PER_DRAW
#if defined(SK_BUILD_FOR_MAC)
#include <AGL/agl.h>
#elif defined(SK_BUILD_FOR_WIN)
#include <gl/GL.h>
void SwapBuf() {
DWORD procID = GetCurrentProcessId();
HWND hwnd = GetTopWindow(GetDesktopWindow());
while(hwnd) {
DWORD wndProcID = 0;
GetWindowThreadProcessId(hwnd, &wndProcID);
if(wndProcID == procID) {
SwapBuffers(GetDC(hwnd));
}
hwnd = GetNextWindow(hwnd, GW_HWNDNEXT);
}
}
#endif
#endif
void GrGLGpu::draw(const GrPipeline& pipeline,
const GrPrimitiveProcessor& primProc,
const GrMesh meshes[],
const GrPipeline::DynamicState dynamicStates[],
int meshCount) {
this->handleDirtyContext();
bool hasPoints = false;
for (int i = 0; i < meshCount; ++i) {
if (meshes[i].primitiveType() == GrPrimitiveType::kPoints) {
hasPoints = true;
break;
}
}
if (!this->flushGLState(pipeline, primProc, hasPoints)) {
return;
}
for (int i = 0; i < meshCount; ++i) {
if (GrXferBarrierType barrierType = pipeline.xferBarrierType(*this->caps())) {
this->xferBarrier(pipeline.renderTarget(), barrierType);
}
if (dynamicStates) {
if (pipeline.getScissorState().enabled()) {
GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(pipeline.renderTarget());
this->flushScissor(dynamicStates[i].fScissorRect,
glRT->getViewport(), pipeline.proxy()->origin());
}
}
if (this->glCaps().requiresCullFaceEnableDisableWhenDrawingLinesAfterNonLines() &&
GrIsPrimTypeLines(meshes[i].primitiveType()) &&
!GrIsPrimTypeLines(fLastPrimitiveType)) {
GL_CALL(Enable(GR_GL_CULL_FACE));
GL_CALL(Disable(GR_GL_CULL_FACE));
}
meshes[i].sendToGpu(primProc, this);
fLastPrimitiveType = meshes[i].primitiveType();
}
#if SWAP_PER_DRAW
glFlush();
#if defined(SK_BUILD_FOR_MAC)
aglSwapBuffers(aglGetCurrentContext());
int set_a_break_pt_here = 9;
aglSwapBuffers(aglGetCurrentContext());
#elif defined(SK_BUILD_FOR_WIN)
SwapBuf();
int set_a_break_pt_here = 9;
SwapBuf();
#endif
#endif
}
static GrGLenum gr_primitive_type_to_gl_mode(GrPrimitiveType primitiveType) {
switch (primitiveType) {
case GrPrimitiveType::kTriangles:
return GR_GL_TRIANGLES;
case GrPrimitiveType::kTriangleStrip:
return GR_GL_TRIANGLE_STRIP;
case GrPrimitiveType::kTriangleFan:
return GR_GL_TRIANGLE_FAN;
case GrPrimitiveType::kPoints:
return GR_GL_POINTS;
case GrPrimitiveType::kLines:
return GR_GL_LINES;
case GrPrimitiveType::kLineStrip:
return GR_GL_LINE_STRIP;
case GrPrimitiveType::kLinesAdjacency:
return GR_GL_LINES_ADJACENCY;
}
SK_ABORT("invalid GrPrimitiveType");
return GR_GL_TRIANGLES;
}
void GrGLGpu::sendMeshToGpu(const GrPrimitiveProcessor& primProc, GrPrimitiveType primitiveType,
const GrBuffer* vertexBuffer, int vertexCount, int baseVertex) {
const GrGLenum glPrimType = gr_primitive_type_to_gl_mode(primitiveType);
if (this->glCaps().drawArraysBaseVertexIsBroken()) {
this->setupGeometry(primProc, nullptr, vertexBuffer, baseVertex, nullptr, 0);
GL_CALL(DrawArrays(glPrimType, 0, vertexCount));
} else {
this->setupGeometry(primProc, nullptr, vertexBuffer, 0, nullptr, 0);
GL_CALL(DrawArrays(glPrimType, baseVertex, vertexCount));
}
fStats.incNumDraws();
}
void GrGLGpu::sendIndexedMeshToGpu(const GrPrimitiveProcessor& primProc,
GrPrimitiveType primitiveType, const GrBuffer* indexBuffer,
int indexCount, int baseIndex, uint16_t minIndexValue,
uint16_t maxIndexValue, const GrBuffer* vertexBuffer,
int baseVertex) {
const GrGLenum glPrimType = gr_primitive_type_to_gl_mode(primitiveType);
GrGLvoid* const indices = reinterpret_cast<void*>(indexBuffer->baseOffset() +
sizeof(uint16_t) * baseIndex);
this->setupGeometry(primProc, indexBuffer, vertexBuffer, baseVertex, nullptr, 0);
if (this->glCaps().drawRangeElementsSupport()) {
GL_CALL(DrawRangeElements(glPrimType, minIndexValue, maxIndexValue, indexCount,
GR_GL_UNSIGNED_SHORT, indices));
} else {
GL_CALL(DrawElements(glPrimType, indexCount, GR_GL_UNSIGNED_SHORT, indices));
}
fStats.incNumDraws();
}
void GrGLGpu::sendInstancedMeshToGpu(const GrPrimitiveProcessor& primProc, GrPrimitiveType
primitiveType, const GrBuffer* vertexBuffer,
int vertexCount, int baseVertex,
const GrBuffer* instanceBuffer, int instanceCount,
int baseInstance) {
GrGLenum glPrimType = gr_primitive_type_to_gl_mode(primitiveType);
int maxInstances = this->glCaps().maxInstancesPerDrawArraysWithoutCrashing(instanceCount);
for (int i = 0; i < instanceCount; i += maxInstances) {
this->setupGeometry(primProc, nullptr, vertexBuffer, 0, instanceBuffer, baseInstance + i);
GL_CALL(DrawArraysInstanced(glPrimType, baseVertex, vertexCount,
SkTMin(instanceCount - i, maxInstances)));
fStats.incNumDraws();
}
}
void GrGLGpu::sendIndexedInstancedMeshToGpu(const GrPrimitiveProcessor& primProc,
GrPrimitiveType primitiveType,
const GrBuffer* indexBuffer, int indexCount,
int baseIndex, const GrBuffer* vertexBuffer,
int baseVertex, const GrBuffer* instanceBuffer,
int instanceCount, int baseInstance) {
const GrGLenum glPrimType = gr_primitive_type_to_gl_mode(primitiveType);
GrGLvoid* indices = reinterpret_cast<void*>(indexBuffer->baseOffset() +
sizeof(uint16_t) * baseIndex);
this->setupGeometry(primProc, indexBuffer, vertexBuffer, baseVertex,
instanceBuffer, baseInstance);
GL_CALL(DrawElementsInstanced(glPrimType, indexCount, GR_GL_UNSIGNED_SHORT, indices,
instanceCount));
fStats.incNumDraws();
}
void GrGLGpu::onResolveRenderTarget(GrRenderTarget* target) {
GrGLRenderTarget* rt = static_cast<GrGLRenderTarget*>(target);
if (rt->needsResolve()) {
// Some extensions automatically resolves the texture when it is read.
if (this->glCaps().usesMSAARenderBuffers()) {
SkASSERT(rt->textureFBOID() != rt->renderFBOID());
SkASSERT(rt->textureFBOID() != 0 && rt->renderFBOID() != 0);
fStats.incRenderTargetBinds();
fStats.incRenderTargetBinds();
GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, rt->renderFBOID()));
GL_CALL(BindFramebuffer(GR_GL_DRAW_FRAMEBUFFER, rt->textureFBOID()));
// make sure we go through flushRenderTarget() since we've modified
// the bound DRAW FBO ID.
fHWBoundRenderTargetUniqueID.makeInvalid();
const GrGLIRect& vp = rt->getViewport();
const SkIRect dirtyRect = rt->getResolveRect();
// The dirty rect tracked on the RT is always stored in the native coordinates of the
// surface. Choose kTopLeft so no adjustments are made
static constexpr auto kDirtyRectOrigin = kTopLeft_GrSurfaceOrigin;
if (GrGLCaps::kES_Apple_MSFBOType == this->glCaps().msFBOType()) {
// Apple's extension uses the scissor as the blit bounds.
GrScissorState scissorState;
scissorState.set(dirtyRect);
this->flushScissor(scissorState, vp, kDirtyRectOrigin);
this->disableWindowRectangles();
GL_CALL(ResolveMultisampleFramebuffer());
} else {
int l, b, r, t;
if (GrGLCaps::kResolveMustBeFull_BlitFrambufferFlag &
this->glCaps().blitFramebufferSupportFlags()) {
l = 0;
b = 0;
r = target->width();
t = target->height();
} else {
GrGLIRect rect;
rect.setRelativeTo(vp, dirtyRect, kDirtyRectOrigin);
l = rect.fLeft;
b = rect.fBottom;
r = rect.fLeft + rect.fWidth;
t = rect.fBottom + rect.fHeight;
}
// BlitFrameBuffer respects the scissor, so disable it.
this->disableScissor();
this->disableWindowRectangles();
GL_CALL(BlitFramebuffer(l, b, r, t, l, b, r, t,
GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST));
}
}
rt->flagAsResolved();
}
}
namespace {
GrGLenum gr_to_gl_stencil_op(GrStencilOp op) {
static const GrGLenum gTable[kGrStencilOpCount] = {
GR_GL_KEEP, // kKeep
GR_GL_ZERO, // kZero
GR_GL_REPLACE, // kReplace
GR_GL_INVERT, // kInvert
GR_GL_INCR_WRAP, // kIncWrap
GR_GL_DECR_WRAP, // kDecWrap
GR_GL_INCR, // kIncClamp
GR_GL_DECR, // kDecClamp
};
GR_STATIC_ASSERT(0 == (int)GrStencilOp::kKeep);
GR_STATIC_ASSERT(1 == (int)GrStencilOp::kZero);
GR_STATIC_ASSERT(2 == (int)GrStencilOp::kReplace);
GR_STATIC_ASSERT(3 == (int)GrStencilOp::kInvert);
GR_STATIC_ASSERT(4 == (int)GrStencilOp::kIncWrap);
GR_STATIC_ASSERT(5 == (int)GrStencilOp::kDecWrap);
GR_STATIC_ASSERT(6 == (int)GrStencilOp::kIncClamp);
GR_STATIC_ASSERT(7 == (int)GrStencilOp::kDecClamp);
SkASSERT(op < (GrStencilOp)kGrStencilOpCount);
return gTable[(int)op];
}
void set_gl_stencil(const GrGLInterface* gl,
const GrStencilSettings::Face& face,
GrGLenum glFace) {
GrGLenum glFunc = GrToGLStencilFunc(face.fTest);
GrGLenum glFailOp = gr_to_gl_stencil_op(face.fFailOp);
GrGLenum glPassOp = gr_to_gl_stencil_op(face.fPassOp);
GrGLint ref = face.fRef;
GrGLint mask = face.fTestMask;
GrGLint writeMask = face.fWriteMask;
if (GR_GL_FRONT_AND_BACK == glFace) {
// we call the combined func just in case separate stencil is not
// supported.
GR_GL_CALL(gl, StencilFunc(glFunc, ref, mask));
GR_GL_CALL(gl, StencilMask(writeMask));
GR_GL_CALL(gl, StencilOp(glFailOp, GR_GL_KEEP, glPassOp));
} else {
GR_GL_CALL(gl, StencilFuncSeparate(glFace, glFunc, ref, mask));
GR_GL_CALL(gl, StencilMaskSeparate(glFace, writeMask));
GR_GL_CALL(gl, StencilOpSeparate(glFace, glFailOp, GR_GL_KEEP, glPassOp));
}
}
}
void GrGLGpu::flushStencil(const GrStencilSettings& stencilSettings) {
if (stencilSettings.isDisabled()) {
this->disableStencil();
} else if (fHWStencilSettings != stencilSettings) {
if (kYes_TriState != fHWStencilTestEnabled) {
GL_CALL(Enable(GR_GL_STENCIL_TEST));
fHWStencilTestEnabled = kYes_TriState;
}
if (stencilSettings.isTwoSided()) {
set_gl_stencil(this->glInterface(),
stencilSettings.front(),
GR_GL_FRONT);
set_gl_stencil(this->glInterface(),
stencilSettings.back(),
GR_GL_BACK);
} else {
set_gl_stencil(this->glInterface(),
stencilSettings.front(),
GR_GL_FRONT_AND_BACK);
}
fHWStencilSettings = stencilSettings;
}
}
void GrGLGpu::disableStencil() {
if (kNo_TriState != fHWStencilTestEnabled) {
GL_CALL(Disable(GR_GL_STENCIL_TEST));
fHWStencilTestEnabled = kNo_TriState;
fHWStencilSettings.invalidate();
}
}
void GrGLGpu::flushHWAAState(GrRenderTarget* rt, bool useHWAA, bool stencilEnabled) {
// rt is only optional if useHWAA is false.
SkASSERT(rt || !useHWAA);
SkASSERT(!useHWAA || rt->isStencilBufferMultisampled());
if (this->caps()->multisampleDisableSupport()) {
if (useHWAA) {
if (kYes_TriState != fMSAAEnabled) {
GL_CALL(Enable(GR_GL_MULTISAMPLE));
fMSAAEnabled = kYes_TriState;
}
} else {
if (kNo_TriState != fMSAAEnabled) {
GL_CALL(Disable(GR_GL_MULTISAMPLE));
fMSAAEnabled = kNo_TriState;
}
}
}
if (0 != this->caps()->maxRasterSamples()) {
if (useHWAA && GrFSAAType::kMixedSamples == rt->fsaaType() && !stencilEnabled) {
// Since stencil is disabled and we want more samples than are in the color buffer, we
// need to tell the rasterizer explicitly how many to run.
if (kYes_TriState != fHWRasterMultisampleEnabled) {
GL_CALL(Enable(GR_GL_RASTER_MULTISAMPLE));
fHWRasterMultisampleEnabled = kYes_TriState;
}
int numStencilSamples = rt->numStencilSamples();
// convert to GL's understanding of sample counts where 0 means nonMSAA.
numStencilSamples = 1 == numStencilSamples ? 0 : numStencilSamples;
if (numStencilSamples != fHWNumRasterSamples) {
SkASSERT(numStencilSamples <= this->caps()->maxRasterSamples());
GL_CALL(RasterSamples(numStencilSamples, GR_GL_TRUE));
fHWNumRasterSamples = numStencilSamples;
}
} else {
if (kNo_TriState != fHWRasterMultisampleEnabled) {
GL_CALL(Disable(GR_GL_RASTER_MULTISAMPLE));
fHWRasterMultisampleEnabled = kNo_TriState;
}
}
} else {
SkASSERT(!useHWAA || GrFSAAType::kMixedSamples != rt->fsaaType() || stencilEnabled);
}
}
void GrGLGpu::flushBlend(const GrXferProcessor::BlendInfo& blendInfo, const GrSwizzle& swizzle) {
// Any optimization to disable blending should have already been applied and
// tweaked the equation to "add" or "subtract", and the coeffs to (1, 0).
GrBlendEquation equation = blendInfo.fEquation;
GrBlendCoeff srcCoeff = blendInfo.fSrcBlend;
GrBlendCoeff dstCoeff = blendInfo.fDstBlend;
bool blendOff = (kAdd_GrBlendEquation == equation || kSubtract_GrBlendEquation == equation) &&
kOne_GrBlendCoeff == srcCoeff && kZero_GrBlendCoeff == dstCoeff;
if (blendOff) {
if (kNo_TriState != fHWBlendState.fEnabled) {
GL_CALL(Disable(GR_GL_BLEND));
// Workaround for the ARM KHR_blend_equation_advanced blacklist issue
// https://code.google.com/p/skia/issues/detail?id=3943
if (kARM_GrGLVendor == this->ctxInfo().vendor() &&
GrBlendEquationIsAdvanced(fHWBlendState.fEquation)) {
SkASSERT(this->caps()->advancedBlendEquationSupport());
// Set to any basic blending equation.
GrBlendEquation blend_equation = kAdd_GrBlendEquation;
GL_CALL(BlendEquation(gXfermodeEquation2Blend[blend_equation]));
fHWBlendState.fEquation = blend_equation;
}
fHWBlendState.fEnabled = kNo_TriState;
}
return;
}
if (kYes_TriState != fHWBlendState.fEnabled) {
GL_CALL(Enable(GR_GL_BLEND));
fHWBlendState.fEnabled = kYes_TriState;
}
if (fHWBlendState.fEquation != equation) {
GL_CALL(BlendEquation(gXfermodeEquation2Blend[equation]));
fHWBlendState.fEquation = equation;
}
if (GrBlendEquationIsAdvanced(equation)) {
SkASSERT(this->caps()->advancedBlendEquationSupport());
// Advanced equations have no other blend state.
return;
}
if (fHWBlendState.fSrcCoeff != srcCoeff || fHWBlendState.fDstCoeff != dstCoeff) {
GL_CALL(BlendFunc(gXfermodeCoeff2Blend[srcCoeff],
gXfermodeCoeff2Blend[dstCoeff]));
fHWBlendState.fSrcCoeff = srcCoeff;
fHWBlendState.fDstCoeff = dstCoeff;
}
if ((BlendCoeffReferencesConstant(srcCoeff) || BlendCoeffReferencesConstant(dstCoeff))) {
GrColor blendConst = blendInfo.fBlendConstant;
blendConst = swizzle.applyTo(blendConst);
if (!fHWBlendState.fConstColorValid || fHWBlendState.fConstColor != blendConst) {
GrGLfloat c[4];
GrColorToRGBAFloat(blendConst, c);
GL_CALL(BlendColor(c[0], c[1], c[2], c[3]));
fHWBlendState.fConstColor = blendConst;
fHWBlendState.fConstColorValid = true;
}
}
}
static inline GrGLenum wrap_mode_to_gl_wrap(GrSamplerState::WrapMode wrapMode) {
switch (wrapMode) {
case GrSamplerState::WrapMode::kClamp:
return GR_GL_CLAMP_TO_EDGE;
case GrSamplerState::WrapMode::kRepeat:
return GR_GL_REPEAT;
case GrSamplerState::WrapMode::kMirrorRepeat:
return GR_GL_MIRRORED_REPEAT;
};
SK_ABORT("Unknown wrap mode");
return 0;
}
static GrGLenum get_component_enum_from_char(char component) {
switch (component) {
case 'r':
return GR_GL_RED;
case 'g':
return GR_GL_GREEN;
case 'b':
return GR_GL_BLUE;
case 'a':
return GR_GL_ALPHA;
default:
SK_ABORT("Unsupported component");
return 0;
}
}
/** If texture swizzling is available using tex parameters then it is preferred over mangling
the generated shader code. This potentially allows greater reuse of cached shaders. */
static void get_tex_param_swizzle(GrPixelConfig config,
const GrGLCaps& caps,
GrGLenum* glSwizzle) {
const GrSwizzle& swizzle = caps.configSwizzle(config);
for (int i = 0; i < 4; ++i) {
glSwizzle[i] = get_component_enum_from_char(swizzle.c_str()[i]);
}
}
static GrGLenum filter_to_gl_mag_filter(GrSamplerState::Filter filter) {
switch (filter) {
case GrSamplerState::Filter::kNearest:
return GR_GL_NEAREST;
case GrSamplerState::Filter::kBilerp:
return GR_GL_LINEAR;
case GrSamplerState::Filter::kMipMap:
return GR_GL_LINEAR;
}
SK_ABORT("Unknown filter");
return 0;
}
static GrGLenum filter_to_gl_min_filter(GrSamplerState::Filter filter) {
switch (filter) {
case GrSamplerState::Filter::kNearest:
return GR_GL_NEAREST;
case GrSamplerState::Filter::kBilerp:
return GR_GL_LINEAR;
case GrSamplerState::Filter::kMipMap:
return GR_GL_LINEAR_MIPMAP_LINEAR;
}
SK_ABORT("Unknown filter");
return 0;
}
void GrGLGpu::bindTexture(int unitIdx, const GrSamplerState& samplerState, bool allowSRGBInputs,
GrGLTexture* texture, GrSurfaceOrigin textureOrigin) {
SkASSERT(texture);
#ifdef SK_DEBUG
if (!this->caps()->npotTextureTileSupport()) {
if (samplerState.isRepeated()) {
const int w = texture->width();
const int h = texture->height();
SkASSERT(SkIsPow2(w) && SkIsPow2(h));
}
}
#endif
// If we created a rt/tex and rendered to it without using a texture and now we're texturing
// from the rt it will still be the last bound texture, but it needs resolving. So keep this
// out of the "last != next" check.
GrGLRenderTarget* texRT = static_cast<GrGLRenderTarget*>(texture->asRenderTarget());
if (texRT) {
this->onResolveRenderTarget(texRT);
}
GrGpuResource::UniqueID textureID = texture->uniqueID();
GrGLenum target = texture->target();
if (fHWBoundTextureUniqueIDs[unitIdx] != textureID) {
this->setTextureUnit(unitIdx);
GL_CALL(BindTexture(target, texture->textureID()));
fHWBoundTextureUniqueIDs[unitIdx] = textureID;
}
ResetTimestamp timestamp;
const GrGLTexture::TexParams& oldTexParams = texture->getCachedTexParams(&timestamp);
bool setAll = timestamp < this->getResetTimestamp();
GrGLTexture::TexParams newTexParams;
GrSamplerState::Filter filterMode = samplerState.filter();
if (GrSamplerState::Filter::kMipMap == filterMode) {
if (!this->caps()->mipMapSupport()) {
filterMode = GrSamplerState::Filter::kBilerp;
}
}
newTexParams.fMinFilter = filter_to_gl_min_filter(filterMode);
newTexParams.fMagFilter = filter_to_gl_mag_filter(filterMode);
if (this->glCaps().srgbDecodeDisableSupport() && GrPixelConfigIsSRGB(texture->config())) {
newTexParams.fSRGBDecode = allowSRGBInputs ? GR_GL_DECODE_EXT : GR_GL_SKIP_DECODE_EXT;
if (setAll || newTexParams.fSRGBDecode != oldTexParams.fSRGBDecode) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SRGB_DECODE_EXT, newTexParams.fSRGBDecode));
}
}
#ifdef SK_DEBUG
// We were supposed to ensure MipMaps were up-to-date and built correctly before getting here.
if (GrSamplerState::Filter::kMipMap == filterMode) {
SkASSERT(!texture->texturePriv().mipMapsAreDirty());
if (GrPixelConfigIsSRGB(texture->config())) {
SkDestinationSurfaceColorMode colorMode = allowSRGBInputs
? SkDestinationSurfaceColorMode::kGammaAndColorSpaceAware
: SkDestinationSurfaceColorMode::kLegacy;
SkASSERT(texture->texturePriv().mipColorMode() == colorMode);
}
}
#endif
newTexParams.fMaxMipMapLevel = texture->texturePriv().maxMipMapLevel();
newTexParams.fWrapS = wrap_mode_to_gl_wrap(samplerState.wrapModeX());
newTexParams.fWrapT = wrap_mode_to_gl_wrap(samplerState.wrapModeY());
get_tex_param_swizzle(texture->config(), this->glCaps(), newTexParams.fSwizzleRGBA);
if (setAll || newTexParams.fMagFilter != oldTexParams.fMagFilter) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MAG_FILTER, newTexParams.fMagFilter));
}
if (setAll || newTexParams.fMinFilter != oldTexParams.fMinFilter) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MIN_FILTER, newTexParams.fMinFilter));
}
if (setAll || newTexParams.fMaxMipMapLevel != oldTexParams.fMaxMipMapLevel) {
// These are not supported in ES2 contexts
if (this->glCaps().mipMapLevelAndLodControlSupport()) {
if (newTexParams.fMaxMipMapLevel != 0) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MIN_LOD, 0));
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_BASE_LEVEL, 0));
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MAX_LOD,
newTexParams.fMaxMipMapLevel));
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MAX_LEVEL,
newTexParams.fMaxMipMapLevel));
}
}
}
if (setAll || newTexParams.fWrapS != oldTexParams.fWrapS) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_WRAP_S, newTexParams.fWrapS));
}
if (setAll || newTexParams.fWrapT != oldTexParams.fWrapT) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_WRAP_T, newTexParams.fWrapT));
}
if (this->glCaps().textureSwizzleSupport() &&
(setAll || memcmp(newTexParams.fSwizzleRGBA,
oldTexParams.fSwizzleRGBA,
sizeof(newTexParams.fSwizzleRGBA)))) {
this->setTextureSwizzle(unitIdx, target, newTexParams.fSwizzleRGBA);
}
texture->setCachedTexParams(newTexParams, this->getResetTimestamp());
}
void GrGLGpu::bindTexelBuffer(int unitIdx, GrPixelConfig texelConfig, GrGLBuffer* buffer) {
SkASSERT(this->glCaps().canUseConfigWithTexelBuffer(texelConfig));
SkASSERT(unitIdx >= 0 && unitIdx < fHWBufferTextures.count());
BufferTexture& buffTex = fHWBufferTextures[unitIdx];
if (!buffTex.fKnownBound) {
if (!buffTex.fTextureID) {
GL_CALL(GenTextures(1, &buffTex.fTextureID));
if (!buffTex.fTextureID) {
return;
}
}
this->setTextureUnit(unitIdx);
GL_CALL(BindTexture(GR_GL_TEXTURE_BUFFER, buffTex.fTextureID));
buffTex.fKnownBound = true;
}
if (buffer->uniqueID() != buffTex.fAttachedBufferUniqueID ||
buffTex.fTexelConfig != texelConfig) {
this->setTextureUnit(unitIdx);
GL_CALL(TexBuffer(GR_GL_TEXTURE_BUFFER,
this->glCaps().configSizedInternalFormat(texelConfig),
buffer->bufferID()));
buffTex.fTexelConfig = texelConfig;
buffTex.fAttachedBufferUniqueID = buffer->uniqueID();
if (this->glCaps().textureSwizzleSupport() &&
this->glCaps().configSwizzle(texelConfig) != buffTex.fSwizzle) {
GrGLenum glSwizzle[4];
get_tex_param_swizzle(texelConfig, this->glCaps(), glSwizzle);
this->setTextureSwizzle(unitIdx, GR_GL_TEXTURE_BUFFER, glSwizzle);
buffTex.fSwizzle = this->glCaps().configSwizzle(texelConfig);
}
buffer->setHasAttachedToTexture();
fHWMaxUsedBufferTextureUnit = SkTMax(unitIdx, fHWMaxUsedBufferTextureUnit);
}
}
void GrGLGpu::generateMipmaps(const GrSamplerState& params, bool allowSRGBInputs,
GrGLTexture* texture, GrSurfaceOrigin textureOrigin) {
SkASSERT(texture);
// First, figure out if we need mips for this texture at all:
GrSamplerState::Filter filterMode = params.filter();
if (GrSamplerState::Filter::kMipMap == filterMode) {
if (!this->caps()->mipMapSupport()) {
filterMode = GrSamplerState::Filter::kBilerp;
}
}
if (GrSamplerState::Filter::kMipMap != filterMode) {
return;
}
// If this is an sRGB texture and the mips were previously built the "other" way
// (gamma-correct vs. not), then we need to rebuild them. We don't need to check for
// srgbSupport - we'll *never* get an sRGB pixel config if we don't support it.
SkDestinationSurfaceColorMode colorMode = allowSRGBInputs
? SkDestinationSurfaceColorMode::kGammaAndColorSpaceAware
: SkDestinationSurfaceColorMode::kLegacy;
if (GrPixelConfigIsSRGB(texture->config()) &&
colorMode != texture->texturePriv().mipColorMode()) {
texture->texturePriv().markMipMapsDirty();
}
// If the mips aren't dirty, we're done:
if (!texture->texturePriv().mipMapsAreDirty()) {
return;
}
// If we created a rt/tex and rendered to it without using a texture and now we're texturing
// from the rt it will still be the last bound texture, but it needs resolving.
GrGLRenderTarget* texRT = static_cast<GrGLRenderTarget*>(texture->asRenderTarget());
if (texRT) {
this->onResolveRenderTarget(texRT);
}
GrGLenum target = texture->target();
this->setScratchTextureUnit();
GL_CALL(BindTexture(target, texture->textureID()));
// Configure sRGB decode, if necessary. This state is the only thing needed for the driver
// call (glGenerateMipmap) to work correctly. Our manual method dirties other state, too.
if (this->glCaps().srgbDecodeDisableSupport() && GrPixelConfigIsSRGB(texture->config())) {
GrGLenum srgbDecode = allowSRGBInputs ? GR_GL_DECODE_EXT : GR_GL_SKIP_DECODE_EXT;
// Command buffer's sRGB decode extension doesn't influence mipmap generation correctly.
// If we set this to skip_decode, it appears to suppress sRGB -> Linear for each downsample,
// but not the Linear -> sRGB when writing the next level. The result is that mip-chains
// get progressively brighter as you go down. Forcing this to 'decode' gives predictable
// (and only slightly incorrect) results. See crbug.com/655247 (~comment 28)
if (!this->glCaps().srgbDecodeDisableAffectsMipmaps()) {
srgbDecode = GR_GL_DECODE_EXT;
}
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SRGB_DECODE_EXT, srgbDecode));
}
// Either do manual mipmap generation or (if that fails), just rely on the driver:
if (!this->generateMipmap(texture, textureOrigin, allowSRGBInputs)) {
GL_CALL(GenerateMipmap(target));
}
texture->texturePriv().markMipMapsClean();
texture->texturePriv().setMaxMipMapLevel(SkMipMap::ComputeLevelCount(
texture->width(), texture->height()));
texture->texturePriv().setMipColorMode(colorMode);
// We have potentially set lots of state on the texture. Easiest to dirty it all:
texture->textureParamsModified();
}
void GrGLGpu::setTextureSwizzle(int unitIdx, GrGLenum target, const GrGLenum swizzle[]) {
this->setTextureUnit(unitIdx);
if (this->glStandard() == kGLES_GrGLStandard) {
// ES3 added swizzle support but not GL_TEXTURE_SWIZZLE_RGBA.
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_R, swizzle[0]));
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_G, swizzle[1]));
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_B, swizzle[2]));
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_A, swizzle[3]));
} else {
GR_STATIC_ASSERT(sizeof(swizzle[0]) == sizeof(GrGLint));
GL_CALL(TexParameteriv(target, GR_GL_TEXTURE_SWIZZLE_RGBA,
reinterpret_cast<const GrGLint*>(swizzle)));
}
}
void GrGLGpu::flushColorWrite(bool writeColor) {
if (!writeColor) {
if (kNo_TriState != fHWWriteToColor) {
GL_CALL(ColorMask(GR_GL_FALSE, GR_GL_FALSE,
GR_GL_FALSE, GR_GL_FALSE));
fHWWriteToColor = kNo_TriState;
}
} else {
if (kYes_TriState != fHWWriteToColor) {
GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE));
fHWWriteToColor = kYes_TriState;
}
}
}
void GrGLGpu::setTextureUnit(int unit) {
SkASSERT(unit >= 0 && unit < fHWBoundTextureUniqueIDs.count());
if (unit != fHWActiveTextureUnitIdx) {
GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + unit));
fHWActiveTextureUnitIdx = unit;
}
}
void GrGLGpu::setScratchTextureUnit() {
// Bind the last texture unit since it is the least likely to be used by GrGLProgram.
int lastUnitIdx = fHWBoundTextureUniqueIDs.count() - 1;
if (lastUnitIdx != fHWActiveTextureUnitIdx) {
GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + lastUnitIdx));
fHWActiveTextureUnitIdx = lastUnitIdx;
}
// clear out the this field so that if a program does use this unit it will rebind the correct
// texture.
fHWBoundTextureUniqueIDs[lastUnitIdx].makeInvalid();
}
// Determines whether glBlitFramebuffer could be used between src and dst by onCopySurface.
static inline bool can_blit_framebuffer_for_copy_surface(
const GrSurface* dst, GrSurfaceOrigin dstOrigin,
const GrSurface* src, GrSurfaceOrigin srcOrigin,
const SkIRect& srcRect,
const SkIPoint& dstPoint,
const GrGLGpu* gpu) {
auto blitFramebufferFlags = gpu->glCaps().blitFramebufferSupportFlags();
if (!gpu->glCaps().canConfigBeFBOColorAttachment(dst->config()) ||
!gpu->glCaps().canConfigBeFBOColorAttachment(src->config())) {
return false;
}
// Blits are not allowed between int color buffers and float/fixed color buffers. GrGpu should
// have filtered such cases out.
const GrGLTexture* dstTex = static_cast<const GrGLTexture*>(dst->asTexture());
const GrGLTexture* srcTex = static_cast<const GrGLTexture*>(src->asTexture());
const GrRenderTarget* dstRT = dst->asRenderTarget();
const GrRenderTarget* srcRT = src->asRenderTarget();
if (dstTex && dstTex->target() != GR_GL_TEXTURE_2D) {
return false;
}
if (srcTex && srcTex->target() != GR_GL_TEXTURE_2D) {
return false;
}
if (GrGLCaps::kNoSupport_BlitFramebufferFlag & blitFramebufferFlags) {
return false;
}
if (GrGLCaps::kNoScalingOrMirroring_BlitFramebufferFlag & blitFramebufferFlags) {
// We would mirror to compensate for origin changes. Note that copySurface is
// specified such that the src and dst rects are the same.
if (dstOrigin != srcOrigin) {
return false;
}
}
if (GrGLCaps::kResolveMustBeFull_BlitFrambufferFlag & blitFramebufferFlags) {
if (srcRT && srcRT->numColorSamples() > 1) {
if (dstRT && 1 == dstRT->numColorSamples()) {
return false;
}
if (SkRect::Make(srcRect) != srcRT->getBoundsRect()) {
return false;
}
}
}
if (GrGLCaps::kNoMSAADst_BlitFramebufferFlag & blitFramebufferFlags) {
if (dstRT && dstRT->numColorSamples() > 1) {
return false;
}
}
if (GrGLCaps::kNoFormatConversion_BlitFramebufferFlag & blitFramebufferFlags) {
if (dst->config() != src->config()) {
return false;
}
} else if (GrGLCaps::kNoFormatConversionForMSAASrc_BlitFramebufferFlag & blitFramebufferFlags) {
const GrRenderTarget* srcRT = src->asRenderTarget();
if (srcRT && srcRT->numColorSamples() > 1 && dst->config() != src->config()) {
return false;
}
}
if (GrGLCaps::kRectsMustMatchForMSAASrc_BlitFramebufferFlag & blitFramebufferFlags) {
if (srcRT && srcRT->numColorSamples() > 1) {
if (dstPoint.fX != srcRect.fLeft || dstPoint.fY != srcRect.fTop) {
return false;
}
if (dstOrigin != srcOrigin) {
return false;
}
}
}
return true;
}
static bool rt_has_msaa_render_buffer(const GrGLRenderTarget* rt, const GrGLCaps& glCaps) {
// A RT has a separate MSAA renderbuffer if:
// 1) It's multisampled
// 2) We're using an extension with separate MSAA renderbuffers
// 3) It's not FBO 0, which is special and always auto-resolves
return rt->numColorSamples() > 1 && glCaps.usesMSAARenderBuffers() && rt->renderFBOID() != 0;
}
static inline bool can_copy_texsubimage(const GrSurface* dst, GrSurfaceOrigin dstOrigin,
const GrSurface* src, GrSurfaceOrigin srcOrigin,
const GrGLGpu* gpu) {
// Table 3.9 of the ES2 spec indicates the supported formats with CopyTexSubImage
// and BGRA isn't in the spec. There doesn't appear to be any extension that adds it. Perhaps
// many drivers would allow it to work, but ANGLE does not.
if (kGLES_GrGLStandard == gpu->glStandard() && gpu->glCaps().bgraIsInternalFormat() &&
(kBGRA_8888_GrPixelConfig == dst->config() || kBGRA_8888_GrPixelConfig == src->config())) {
return false;
}
const GrGLRenderTarget* dstRT = static_cast<const GrGLRenderTarget*>(dst->asRenderTarget());
// If dst is multisampled (and uses an extension where there is a separate MSAA renderbuffer)
// then we don't want to copy to the texture but to the MSAA buffer.
if (dstRT && rt_has_msaa_render_buffer(dstRT, gpu->glCaps())) {
return false;
}
const GrGLRenderTarget* srcRT = static_cast<const GrGLRenderTarget*>(src->asRenderTarget());
// If the src is multisampled (and uses an extension where there is a separate MSAA
// renderbuffer) then it is an invalid operation to call CopyTexSubImage
if (srcRT && rt_has_msaa_render_buffer(srcRT, gpu->glCaps())) {
return false;
}
const GrGLTexture* dstTex = static_cast<const GrGLTexture*>(dst->asTexture());
// CopyTex(Sub)Image writes to a texture and we have no way of dynamically wrapping a RT in a
// texture.
if (!dstTex) {
return false;
}
const GrGLTexture* srcTex = static_cast<const GrGLTexture*>(src->asTexture());
// Check that we could wrap the source in an FBO, that the dst is TEXTURE_2D, that no mirroring
// is required.
if (gpu->glCaps().canConfigBeFBOColorAttachment(src->config()) &&
(!srcTex || srcTex->target() == GR_GL_TEXTURE_2D) && dstTex->target() == GR_GL_TEXTURE_2D &&
dstOrigin == srcOrigin) {
return true;
} else {
return false;
}
}
// If a temporary FBO was created, its non-zero ID is returned. The viewport that the copy rect is
// relative to is output.
void GrGLGpu::bindSurfaceFBOForPixelOps(GrSurface* surface, GrGLenum fboTarget, GrGLIRect* viewport,
TempFBOTarget tempFBOTarget) {
GrGLRenderTarget* rt = static_cast<GrGLRenderTarget*>(surface->asRenderTarget());
if (!rt) {
SkASSERT(surface->asTexture());
GrGLTexture* texture = static_cast<GrGLTexture*>(surface->asTexture());
GrGLuint texID = texture->textureID();
GrGLenum target = texture->target();
GrGLuint* tempFBOID;
tempFBOID = kSrc_TempFBOTarget == tempFBOTarget ? &fTempSrcFBOID : &fTempDstFBOID;
if (0 == *tempFBOID) {
GR_GL_CALL(this->glInterface(), GenFramebuffers(1, tempFBOID));
}
fStats.incRenderTargetBinds();
GR_GL_CALL(this->glInterface(), BindFramebuffer(fboTarget, *tempFBOID));
GR_GL_CALL(this->glInterface(), FramebufferTexture2D(fboTarget,
GR_GL_COLOR_ATTACHMENT0,
target,
texID,
0));
texture->baseLevelWasBoundToFBO();
viewport->fLeft = 0;
viewport->fBottom = 0;
viewport->fWidth = surface->width();
viewport->fHeight = surface->height();
} else {
fStats.incRenderTargetBinds();
GR_GL_CALL(this->glInterface(), BindFramebuffer(fboTarget, rt->renderFBOID()));
*viewport = rt->getViewport();
}
}
void GrGLGpu::unbindTextureFBOForPixelOps(GrGLenum fboTarget, GrSurface* surface) {
// bindSurfaceFBOForPixelOps temporarily binds textures that are not render targets to
if (!surface->asRenderTarget()) {
SkASSERT(surface->asTexture());
GrGLenum textureTarget = static_cast<GrGLTexture*>(surface->asTexture())->target();
GR_GL_CALL(this->glInterface(), FramebufferTexture2D(fboTarget,
GR_GL_COLOR_ATTACHMENT0,
textureTarget,
0,
0));
}
}
bool GrGLGpu::onCopySurface(GrSurface* dst, GrSurfaceOrigin dstOrigin,
GrSurface* src, GrSurfaceOrigin srcOrigin,
const SkIRect& srcRect, const SkIPoint& dstPoint,
bool canDiscardOutsideDstRect) {
// None of our copy methods can handle a swizzle. TODO: Make copySurfaceAsDraw handle the
// swizzle.
if (this->caps()->shaderCaps()->configOutputSwizzle(src->config()) !=
this->caps()->shaderCaps()->configOutputSwizzle(dst->config())) {
return false;
}
// Don't prefer copying as a draw if the dst doesn't already have a FBO object.
// This implicitly handles this->glCaps().useDrawInsteadOfAllRenderTargetWrites().
bool preferCopy = SkToBool(dst->asRenderTarget());
if (preferCopy && src->asTexture()) {
if (this->copySurfaceAsDraw(dst, dstOrigin, src, srcOrigin, srcRect, dstPoint)) {
return true;
}
}
if (can_copy_texsubimage(dst, dstOrigin, src, srcOrigin, this)) {
this->copySurfaceAsCopyTexSubImage(dst, dstOrigin, src, srcOrigin, srcRect, dstPoint);
return true;
}
if (can_blit_framebuffer_for_copy_surface(dst, dstOrigin, src, srcOrigin,
srcRect, dstPoint, this)) {
return this->copySurfaceAsBlitFramebuffer(dst, dstOrigin, src, srcOrigin,
srcRect, dstPoint);
}
if (!preferCopy && src->asTexture()) {
if (this->copySurfaceAsDraw(dst, dstOrigin, src, srcOrigin, srcRect, dstPoint)) {
return true;
}
}
return false;
}
bool GrGLGpu::createCopyProgram(GrTexture* srcTex) {
TRACE_EVENT0("skia", TRACE_FUNC);
int progIdx = TextureToCopyProgramIdx(srcTex);
const GrShaderCaps* shaderCaps = this->caps()->shaderCaps();
GrSLType samplerType = srcTex->texturePriv().samplerType();
if (!fCopyProgramArrayBuffer) {
static const GrGLfloat vdata[] = {
0, 0,
0, 1,
1, 0,
1, 1
};
fCopyProgramArrayBuffer.reset(GrGLBuffer::Create(this, sizeof(vdata), kVertex_GrBufferType,
kStatic_GrAccessPattern, vdata));
}
if (!fCopyProgramArrayBuffer) {
return false;
}
SkASSERT(!fCopyPrograms[progIdx].fProgram);
GL_CALL_RET(fCopyPrograms[progIdx].fProgram, CreateProgram());
if (!fCopyPrograms[progIdx].fProgram) {
return false;
}
const char* version = shaderCaps->versionDeclString();
GrShaderVar aVertex("a_vertex", kHalf2_GrSLType, GrShaderVar::kIn_TypeModifier);
GrShaderVar uTexCoordXform("u_texCoordXform", kHalf4_GrSLType,
GrShaderVar::kUniform_TypeModifier);
GrShaderVar uPosXform("u_posXform", kHalf4_GrSLType, GrShaderVar::kUniform_TypeModifier);
GrShaderVar uTexture("u_texture", samplerType, GrShaderVar::kUniform_TypeModifier);
GrShaderVar vTexCoord("v_texCoord", kHalf2_GrSLType, GrShaderVar::kOut_TypeModifier);
GrShaderVar oFragColor("o_FragColor", kHalf4_GrSLType, GrShaderVar::kOut_TypeModifier);
SkString vshaderTxt(version);
if (shaderCaps->noperspectiveInterpolationSupport()) {
if (const char* extension = shaderCaps->noperspectiveInterpolationExtensionString()) {
vshaderTxt.appendf("#extension %s : require\n", extension);
}
vTexCoord.addModifier("noperspective");
}
aVertex.appendDecl(shaderCaps, &vshaderTxt);
vshaderTxt.append(";");
uTexCoordXform.appendDecl(shaderCaps, &vshaderTxt);
vshaderTxt.append(";");
uPosXform.appendDecl(shaderCaps, &vshaderTxt);
vshaderTxt.append(";");
vTexCoord.appendDecl(shaderCaps, &vshaderTxt);
vshaderTxt.append(";");
vshaderTxt.append(
"// Copy Program VS\n"
"void main() {"
" v_texCoord = a_vertex.xy * u_texCoordXform.xy + u_texCoordXform.zw;"
" sk_Position.xy = a_vertex * u_posXform.xy + u_posXform.zw;"
" sk_Position.zw = half2(0, 1);"
"}"
);
SkString fshaderTxt(version);
if (shaderCaps->noperspectiveInterpolationSupport()) {
if (const char* extension = shaderCaps->noperspectiveInterpolationExtensionString()) {
fshaderTxt.appendf("#extension %s : require\n", extension);
}
}
if (samplerType == kTextureExternalSampler_GrSLType) {
fshaderTxt.appendf("#extension %s : require\n",
shaderCaps->externalTextureExtensionString());
}
vTexCoord.setTypeModifier(GrShaderVar::kIn_TypeModifier);
vTexCoord.appendDecl(shaderCaps, &fshaderTxt);
fshaderTxt.append(";");
uTexture.appendDecl(shaderCaps, &fshaderTxt);
fshaderTxt.append(";");
fshaderTxt.appendf(
"// Copy Program FS\n"
"void main() {"
" sk_FragColor = texture(u_texture, v_texCoord);"
"}"
);
const char* str;
GrGLint length;
str = vshaderTxt.c_str();
length = SkToInt(vshaderTxt.size());
SkSL::Program::Settings settings;
settings.fCaps = shaderCaps;
SkSL::String glsl;
std::unique_ptr<SkSL::Program> program = GrSkSLtoGLSL(*fGLContext, GR_GL_VERTEX_SHADER,
&str, &length, 1, settings, &glsl);
GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fCopyPrograms[progIdx].fProgram,
GR_GL_VERTEX_SHADER, glsl.c_str(), glsl.size(),
&fStats, settings);
SkASSERT(program->fInputs.isEmpty());
str = fshaderTxt.c_str();
length = SkToInt(fshaderTxt.size());
program = GrSkSLtoGLSL(*fGLContext, GR_GL_FRAGMENT_SHADER, &str, &length, 1, settings, &glsl);
GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fCopyPrograms[progIdx].fProgram,
GR_GL_FRAGMENT_SHADER, glsl.c_str(), glsl.size(),
&fStats, settings);
SkASSERT(program->fInputs.isEmpty());
GL_CALL(LinkProgram(fCopyPrograms[progIdx].fProgram));
GL_CALL_RET(fCopyPrograms[progIdx].fTextureUniform,
GetUniformLocation(fCopyPrograms[progIdx].fProgram, "u_texture"));
GL_CALL_RET(fCopyPrograms[progIdx].fPosXformUniform,
GetUniformLocation(fCopyPrograms[progIdx].fProgram, "u_posXform"));
GL_CALL_RET(fCopyPrograms[progIdx].fTexCoordXformUniform,
GetUniformLocation(fCopyPrograms[progIdx].fProgram, "u_texCoordXform"));
GL_CALL(BindAttribLocation(fCopyPrograms[progIdx].fProgram, 0, "a_vertex"));
GL_CALL(DeleteShader(vshader));
GL_CALL(DeleteShader(fshader));
return true;
}
bool GrGLGpu::createMipmapProgram(int progIdx) {
const bool oddWidth = SkToBool(progIdx & 0x2);
const bool oddHeight = SkToBool(progIdx & 0x1);
const int numTaps = (oddWidth ? 2 : 1) * (oddHeight ? 2 : 1);
const GrShaderCaps* shaderCaps = this->caps()->shaderCaps();
SkASSERT(!fMipmapPrograms[progIdx].fProgram);
GL_CALL_RET(fMipmapPrograms[progIdx].fProgram, CreateProgram());
if (!fMipmapPrograms[progIdx].fProgram) {
return false;
}
const char* version = shaderCaps->versionDeclString();
GrShaderVar aVertex("a_vertex", kHalf2_GrSLType, GrShaderVar::kIn_TypeModifier);
GrShaderVar uTexCoordXform("u_texCoordXform", kHalf4_GrSLType,
GrShaderVar::kUniform_TypeModifier);
GrShaderVar uTexture("u_texture", kTexture2DSampler_GrSLType,
GrShaderVar::kUniform_TypeModifier);
// We need 1, 2, or 4 texture coordinates (depending on parity of each dimension):
GrShaderVar vTexCoords[] = {
GrShaderVar("v_texCoord0", kHalf2_GrSLType, GrShaderVar::kOut_TypeModifier),
GrShaderVar("v_texCoord1", kHalf2_GrSLType, GrShaderVar::kOut_TypeModifier),
GrShaderVar("v_texCoord2", kHalf2_GrSLType, GrShaderVar::kOut_TypeModifier),
GrShaderVar("v_texCoord3", kHalf2_GrSLType, GrShaderVar::kOut_TypeModifier),
};
GrShaderVar oFragColor("o_FragColor", kHalf4_GrSLType,GrShaderVar::kOut_TypeModifier);
SkString vshaderTxt(version);
if (shaderCaps->noperspectiveInterpolationSupport()) {
if (const char* extension = shaderCaps->noperspectiveInterpolationExtensionString()) {
vshaderTxt.appendf("#extension %s : require\n", extension);
}
vTexCoords[0].addModifier("noperspective");
vTexCoords[1].addModifier("noperspective");
vTexCoords[2].addModifier("noperspective");
vTexCoords[3].addModifier("noperspective");
}
aVertex.appendDecl(shaderCaps, &vshaderTxt);
vshaderTxt.append(";");
uTexCoordXform.appendDecl(shaderCaps, &vshaderTxt);
vshaderTxt.append(";");
for (int i = 0; i < numTaps; ++i) {
vTexCoords[i].appendDecl(shaderCaps, &vshaderTxt);
vshaderTxt.append(";");
}
vshaderTxt.append(
"// Mipmap Program VS\n"
"void main() {"
" sk_Position.xy = a_vertex * half2(2, 2) - half2(1, 1);"
" sk_Position.zw = half2(0, 1);"
);
// Insert texture coordinate computation:
if (oddWidth && oddHeight) {
vshaderTxt.append(
" v_texCoord0 = a_vertex.xy * u_texCoordXform.yw;"
" v_texCoord1 = a_vertex.xy * u_texCoordXform.yw + half2(u_texCoordXform.x, 0);"
" v_texCoord2 = a_vertex.xy * u_texCoordXform.yw + half2(0, u_texCoordXform.z);"
" v_texCoord3 = a_vertex.xy * u_texCoordXform.yw + u_texCoordXform.xz;"
);
} else if (oddWidth) {
vshaderTxt.append(
" v_texCoord0 = a_vertex.xy * half2(u_texCoordXform.y, 1);"
" v_texCoord1 = a_vertex.xy * half2(u_texCoordXform.y, 1) + half2(u_texCoordXform.x, 0);"
);
} else if (oddHeight) {
vshaderTxt.append(
" v_texCoord0 = a_vertex.xy * half2(1, u_texCoordXform.w);"
" v_texCoord1 = a_vertex.xy * half2(1, u_texCoordXform.w) + half2(0, u_texCoordXform.z);"
);
} else {
vshaderTxt.append(
" v_texCoord0 = a_vertex.xy;"
);
}
vshaderTxt.append("}");
SkString fshaderTxt(version);
if (shaderCaps->noperspectiveInterpolationSupport()) {
if (const char* extension = shaderCaps->noperspectiveInterpolationExtensionString()) {
fshaderTxt.appendf("#extension %s : require\n", extension);
}
}
for (int i = 0; i < numTaps; ++i) {
vTexCoords[i].setTypeModifier(GrShaderVar::kIn_TypeModifier);
vTexCoords[i].appendDecl(shaderCaps, &fshaderTxt);
fshaderTxt.append(";");
}
uTexture.appendDecl(shaderCaps, &fshaderTxt);
fshaderTxt.append(";");
fshaderTxt.append(
"// Mipmap Program FS\n"
"void main() {"
);
if (oddWidth && oddHeight) {
fshaderTxt.append(
" sk_FragColor = (texture(u_texture, v_texCoord0) + "
" texture(u_texture, v_texCoord1) + "
" texture(u_texture, v_texCoord2) + "
" texture(u_texture, v_texCoord3)) * 0.25;"
);
} else if (oddWidth || oddHeight) {
fshaderTxt.append(
" sk_FragColor = (texture(u_texture, v_texCoord0) + "
" texture(u_texture, v_texCoord1)) * 0.5;"
);
} else {
fshaderTxt.append(
" sk_FragColor = texture(u_texture, v_texCoord0);"
);
}
fshaderTxt.append("}");
const char* str;
GrGLint length;
str = vshaderTxt.c_str();
length = SkToInt(vshaderTxt.size());
SkSL::Program::Settings settings;
settings.fCaps = shaderCaps;
SkSL::String glsl;
std::unique_ptr<SkSL::Program> program = GrSkSLtoGLSL(*fGLContext, GR_GL_VERTEX_SHADER,
&str, &length, 1, settings, &glsl);
GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fMipmapPrograms[progIdx].fProgram,
GR_GL_VERTEX_SHADER, glsl.c_str(), glsl.size(),
&fStats, settings);
SkASSERT(program->fInputs.isEmpty());
str = fshaderTxt.c_str();
length = SkToInt(fshaderTxt.size());
program = GrSkSLtoGLSL(*fGLContext, GR_GL_FRAGMENT_SHADER, &str, &length, 1, settings, &glsl);
GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fMipmapPrograms[progIdx].fProgram,
GR_GL_FRAGMENT_SHADER, glsl.c_str(), glsl.size(),
&fStats, settings);
SkASSERT(program->fInputs.isEmpty());
GL_CALL(LinkProgram(fMipmapPrograms[progIdx].fProgram));
GL_CALL_RET(fMipmapPrograms[progIdx].fTextureUniform,
GetUniformLocation(fMipmapPrograms[progIdx].fProgram, "u_texture"));
GL_CALL_RET(fMipmapPrograms[progIdx].fTexCoordXformUniform,
GetUniformLocation(fMipmapPrograms[progIdx].fProgram, "u_texCoordXform"));
GL_CALL(BindAttribLocation(fMipmapPrograms[progIdx].fProgram, 0, "a_vertex"));
GL_CALL(DeleteShader(vshader));
GL_CALL(DeleteShader(fshader));
return true;
}
bool GrGLGpu::createStencilClipClearProgram() {
TRACE_EVENT0("skia", TRACE_FUNC);
if (!fStencilClipClearArrayBuffer) {
static const GrGLfloat vdata[] = {-1, -1, 1, -1, -1, 1, 1, 1};
fStencilClipClearArrayBuffer.reset(GrGLBuffer::Create(
this, sizeof(vdata), kVertex_GrBufferType, kStatic_GrAccessPattern, vdata));
if (!fStencilClipClearArrayBuffer) {
return false;
}
}
SkASSERT(!fStencilClipClearProgram);
GL_CALL_RET(fStencilClipClearProgram, CreateProgram());
if (!fStencilClipClearProgram) {
return false;
}
GrShaderVar aVertex("a_vertex", kHalf2_GrSLType, GrShaderVar::kIn_TypeModifier);
const char* version = this->caps()->shaderCaps()->versionDeclString();
SkString vshaderTxt(version);
aVertex.appendDecl(this->caps()->shaderCaps(), &vshaderTxt);
vshaderTxt.append(";");
vshaderTxt.append(
"// Stencil Clip Clear Program VS\n"
"void main() {"
" sk_Position = float4(a_vertex.x, a_vertex.y, 0, 1);"
"}");
SkString fshaderTxt(version);
fshaderTxt.appendf(
"// Stencil Clip Clear Program FS\n"
"void main() {"
" sk_FragColor = half4(0);"
"}");
const char* str;
GrGLint length;
str = vshaderTxt.c_str();
length = SkToInt(vshaderTxt.size());
SkSL::Program::Settings settings;
settings.fCaps = this->caps()->shaderCaps();
SkSL::String glsl;
std::unique_ptr<SkSL::Program> program = GrSkSLtoGLSL(*fGLContext, GR_GL_VERTEX_SHADER,
&str, &length, 1, settings, &glsl);
GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fStencilClipClearProgram,
GR_GL_VERTEX_SHADER, glsl.c_str(), glsl.size(),
&fStats, settings);
SkASSERT(program->fInputs.isEmpty());
str = fshaderTxt.c_str();
length = SkToInt(fshaderTxt.size());
program = GrSkSLtoGLSL(*fGLContext, GR_GL_FRAGMENT_SHADER, &str, &length, 1, settings, &glsl);
GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fStencilClipClearProgram,
GR_GL_FRAGMENT_SHADER, glsl.c_str(), glsl.size(),
&fStats, settings);
SkASSERT(program->fInputs.isEmpty());
GL_CALL(LinkProgram(fStencilClipClearProgram));
GL_CALL(BindAttribLocation(fStencilClipClearProgram, 0, "a_vertex"));
GL_CALL(DeleteShader(vshader));
GL_CALL(DeleteShader(fshader));
return true;
}
void GrGLGpu::clearStencilClipAsDraw(const GrFixedClip& clip, bool insideStencilMask,
GrRenderTarget* rt, GrSurfaceOrigin origin) {
// TODO: This should swizzle the output to match dst's config, though it is a debugging
// visualization.
this->handleDirtyContext();
if (!fStencilClipClearProgram) {
if (!this->createStencilClipClearProgram()) {
SkDebugf("Failed to create stencil clip clear program.\n");
return;
}
}
GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(rt->asRenderTarget());
this->flushRenderTarget(glRT);
GL_CALL(UseProgram(fStencilClipClearProgram));
fHWProgramID = fStencilClipClearProgram;
fHWVertexArrayState.setVertexArrayID(this, 0);
GrGLAttribArrayState* attribs = fHWVertexArrayState.bindInternalVertexArray(this);
attribs->enableVertexArrays(this, 1);
attribs->set(this, 0, fStencilClipClearArrayBuffer.get(), kHalf2_GrVertexAttribType,
2 * sizeof(GrGLfloat), 0);
GrXferProcessor::BlendInfo blendInfo;
blendInfo.reset();
this->flushBlend(blendInfo, GrSwizzle::RGBA());
this->flushColorWrite(false);
this->flushHWAAState(glRT, false, false);
this->flushScissor(clip.scissorState(), glRT->getViewport(), origin);
this->flushWindowRectangles(clip.windowRectsState(), glRT, origin);
GrStencilAttachment* sb = rt->renderTargetPriv().getStencilAttachment();
// This should only be called internally when we know we have a stencil buffer.
SkASSERT(sb);
GrStencilSettings settings = GrStencilSettings(
*GrStencilSettings::SetClipBitSettings(insideStencilMask), false, sb->bits());
this->flushStencil(settings);
GL_CALL(DrawArrays(GR_GL_TRIANGLE_STRIP, 0, 4));
}
bool GrGLGpu::createClearColorProgram() {
TRACE_EVENT0("skia", TRACE_FUNC);
if (!fClearProgramArrayBuffer) {
static const GrGLfloat vdata[] = {-1, -1, 1, -1, -1, 1, 1, 1};
fClearProgramArrayBuffer.reset(GrGLBuffer::Create(this, sizeof(vdata), kVertex_GrBufferType,
kStatic_GrAccessPattern, vdata));
if (!fClearProgramArrayBuffer) {
return false;
}
}
SkASSERT(!fClearColorProgram.fProgram);
GL_CALL_RET(fClearColorProgram.fProgram, CreateProgram());
if (!fClearColorProgram.fProgram) {
return false;
}
GrShaderVar aVertex("a_vertex", kHalf2_GrSLType, GrShaderVar::kIn_TypeModifier);
const char* version = this->caps()->shaderCaps()->versionDeclString();
SkString vshaderTxt(version);
aVertex.appendDecl(this->caps()->shaderCaps(), &vshaderTxt);
vshaderTxt.append(";");
vshaderTxt.append(R"(
// Clear Color Program VS
void main() {
sk_Position = float4(a_vertex.x, a_vertex.y, 0, 1);
})");
GrShaderVar uColor("u_color", kHalf4_GrSLType, GrShaderVar::kUniform_TypeModifier);
SkString fshaderTxt(version);
uColor.appendDecl(this->caps()->shaderCaps(), &fshaderTxt);
fshaderTxt.append(";");
fshaderTxt.appendf(R"(
// Clear Color Program FS
void main() {
sk_FragColor = u_color;
})");
const char* str;
GrGLint length;
str = vshaderTxt.c_str();
length = SkToInt(vshaderTxt.size());
SkSL::Program::Settings settings;
settings.fCaps = this->caps()->shaderCaps();
SkSL::String glsl;
GrSkSLtoGLSL(*fGLContext, GR_GL_VERTEX_SHADER, &str, &length, 1, settings, &glsl);
GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fClearColorProgram.fProgram,
GR_GL_VERTEX_SHADER, glsl.c_str(), glsl.size(),
&fStats, settings);
str = fshaderTxt.c_str();
length = SkToInt(fshaderTxt.size());
GrSkSLtoGLSL(*fGLContext, GR_GL_FRAGMENT_SHADER, &str, &length, 1, settings, &glsl);
GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fClearColorProgram.fProgram,
GR_GL_FRAGMENT_SHADER, glsl.c_str(), glsl.size(),
&fStats, settings);
GL_CALL(LinkProgram(fClearColorProgram.fProgram));
GL_CALL(BindAttribLocation(fClearColorProgram.fProgram, 0, "a_vertex"));
GL_CALL_RET(fClearColorProgram.fColorUniform,
GetUniformLocation(fClearColorProgram.fProgram, "u_color"));
GL_CALL(DeleteShader(vshader));
GL_CALL(DeleteShader(fshader));
return true;
}
void GrGLGpu::clearColorAsDraw(const GrFixedClip& clip, GrGLfloat r, GrGLfloat g, GrGLfloat b,
GrGLfloat a, GrRenderTarget* dst, GrSurfaceOrigin origin) {
if (!fClearColorProgram.fProgram) {
if (!this->createClearColorProgram()) {
SkDebugf("Failed to create clear color program.\n");
return;
}
}
GrGLIRect dstVP;
this->bindSurfaceFBOForPixelOps(dst, GR_GL_FRAMEBUFFER, &dstVP, kDst_TempFBOTarget);
this->flushViewport(dstVP);
fHWBoundRenderTargetUniqueID.makeInvalid();
GL_CALL(UseProgram(fClearColorProgram.fProgram));
fHWProgramID = fClearColorProgram.fProgram;
fHWVertexArrayState.setVertexArrayID(this, 0);
GrGLAttribArrayState* attribs = fHWVertexArrayState.bindInternalVertexArray(this);
attribs->enableVertexArrays(this, 1);
attribs->set(this, 0, fClearProgramArrayBuffer.get(), kHalf2_GrVertexAttribType,
2 * sizeof(GrGLfloat), 0);
GrGLRenderTarget* glrt = static_cast<GrGLRenderTarget*>(dst);
this->flushScissor(clip.scissorState(), glrt->getViewport(), origin);
this->flushWindowRectangles(clip.windowRectsState(), glrt, origin);
GL_CALL(Uniform4f(fClearColorProgram.fColorUniform, r, g, b, a));
GrXferProcessor::BlendInfo blendInfo;
blendInfo.reset();
this->flushBlend(blendInfo, GrSwizzle::RGBA());
this->flushColorWrite(true);
this->flushHWAAState(nullptr, false, false);
this->disableStencil();
if (this->glCaps().srgbWriteControl()) {
this->flushFramebufferSRGB(true);
}
GL_CALL(DrawArrays(GR_GL_TRIANGLE_STRIP, 0, 4));
this->unbindTextureFBOForPixelOps(GR_GL_FRAMEBUFFER, dst);
this->didWriteToSurface(dst, origin, clip.scissorEnabled() ? &clip.scissorRect() : nullptr);
}
bool GrGLGpu::copySurfaceAsDraw(GrSurface* dst, GrSurfaceOrigin dstOrigin,
GrSurface* src, GrSurfaceOrigin srcOrigin,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
GrGLTexture* srcTex = static_cast<GrGLTexture*>(src->asTexture());
int progIdx = TextureToCopyProgramIdx(srcTex);
if (!fCopyPrograms[progIdx].fProgram) {
if (!this->createCopyProgram(srcTex)) {
SkDebugf("Failed to create copy program.\n");
return false;
}
}
int w = srcRect.width();
int h = srcRect.height();
this->bindTexture(0, GrSamplerState::ClampNearest(), true, srcTex, srcOrigin);
GrGLIRect dstVP;
this->bindSurfaceFBOForPixelOps(dst, GR_GL_FRAMEBUFFER, &dstVP, kDst_TempFBOTarget);
this->flushViewport(dstVP);
fHWBoundRenderTargetUniqueID.makeInvalid();
SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, w, h);
GL_CALL(UseProgram(fCopyPrograms[progIdx].fProgram));
fHWProgramID = fCopyPrograms[progIdx].fProgram;
fHWVertexArrayState.setVertexArrayID(this, 0);
GrGLAttribArrayState* attribs = fHWVertexArrayState.bindInternalVertexArray(this);
attribs->enableVertexArrays(this, 1);
attribs->set(this, 0, fCopyProgramArrayBuffer.get(), kHalf2_GrVertexAttribType,
2 * sizeof(GrGLfloat), 0);
// dst rect edges in NDC (-1 to 1)
int dw = dst->width();
int dh = dst->height();
GrGLfloat dx0 = 2.f * dstPoint.fX / dw - 1.f;
GrGLfloat dx1 = 2.f * (dstPoint.fX + w) / dw - 1.f;
GrGLfloat dy0 = 2.f * dstPoint.fY / dh - 1.f;
GrGLfloat dy1 = 2.f * (dstPoint.fY + h) / dh - 1.f;
if (kBottomLeft_GrSurfaceOrigin == dstOrigin) {
dy0 = -dy0;
dy1 = -dy1;
}
GrGLfloat sx0 = (GrGLfloat)srcRect.fLeft;
GrGLfloat sx1 = (GrGLfloat)(srcRect.fLeft + w);
GrGLfloat sy0 = (GrGLfloat)srcRect.fTop;
GrGLfloat sy1 = (GrGLfloat)(srcRect.fTop + h);
int sw = src->width();
int sh = src->height();
if (kBottomLeft_GrSurfaceOrigin == srcOrigin) {
sy0 = sh - sy0;
sy1 = sh - sy1;
}
// src rect edges in normalized texture space (0 to 1)
sx0 /= sw;
sx1 /= sw;
sy0 /= sh;
sy1 /= sh;
GL_CALL(Uniform4f(fCopyPrograms[progIdx].fPosXformUniform, dx1 - dx0, dy1 - dy0, dx0, dy0));
GL_CALL(Uniform4f(fCopyPrograms[progIdx].fTexCoordXformUniform,
sx1 - sx0, sy1 - sy0, sx0, sy0));
GL_CALL(Uniform1i(fCopyPrograms[progIdx].fTextureUniform, 0));
GrXferProcessor::BlendInfo blendInfo;
blendInfo.reset();
this->flushBlend(blendInfo, GrSwizzle::RGBA());
this->flushColorWrite(true);
this->flushHWAAState(nullptr, false, false);
this->disableScissor();
this->disableWindowRectangles();
this->disableStencil();
if (this->glCaps().srgbWriteControl()) {
this->flushFramebufferSRGB(true);
}
GL_CALL(DrawArrays(GR_GL_TRIANGLE_STRIP, 0, 4));
this->unbindTextureFBOForPixelOps(GR_GL_FRAMEBUFFER, dst);
this->didWriteToSurface(dst, dstOrigin, &dstRect);
return true;
}
void GrGLGpu::copySurfaceAsCopyTexSubImage(GrSurface* dst, GrSurfaceOrigin dstOrigin,
GrSurface* src, GrSurfaceOrigin srcOrigin,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
SkASSERT(can_copy_texsubimage(dst, dstOrigin, src, srcOrigin, this));
GrGLIRect srcVP;
this->bindSurfaceFBOForPixelOps(src, GR_GL_FRAMEBUFFER, &srcVP, kSrc_TempFBOTarget);
GrGLTexture* dstTex = static_cast<GrGLTexture *>(dst->asTexture());
SkASSERT(dstTex);
// We modified the bound FBO
fHWBoundRenderTargetUniqueID.makeInvalid();
GrGLIRect srcGLRect;
srcGLRect.setRelativeTo(srcVP, srcRect, srcOrigin);
this->setScratchTextureUnit();
GL_CALL(BindTexture(dstTex->target(), dstTex->textureID()));
GrGLint dstY;
if (kBottomLeft_GrSurfaceOrigin == dstOrigin) {
dstY = dst->height() - (dstPoint.fY + srcGLRect.fHeight);
} else {
dstY = dstPoint.fY;
}
GL_CALL(CopyTexSubImage2D(dstTex->target(), 0,
dstPoint.fX, dstY,
srcGLRect.fLeft, srcGLRect.fBottom,
srcGLRect.fWidth, srcGLRect.fHeight));
this->unbindTextureFBOForPixelOps(GR_GL_FRAMEBUFFER, src);
SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY,
srcRect.width(), srcRect.height());
this->didWriteToSurface(dst, dstOrigin, &dstRect);
}
bool GrGLGpu::copySurfaceAsBlitFramebuffer(GrSurface* dst, GrSurfaceOrigin dstOrigin,
GrSurface* src, GrSurfaceOrigin srcOrigin,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
SkASSERT(can_blit_framebuffer_for_copy_surface(dst, dstOrigin, src, srcOrigin,
srcRect, dstPoint, this));
SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY,
srcRect.width(), srcRect.height());
if (dst == src) {
if (SkIRect::IntersectsNoEmptyCheck(dstRect, srcRect)) {
return false;
}
}
GrGLIRect dstVP;
GrGLIRect srcVP;
this->bindSurfaceFBOForPixelOps(dst, GR_GL_DRAW_FRAMEBUFFER, &dstVP, kDst_TempFBOTarget);
this->bindSurfaceFBOForPixelOps(src, GR_GL_READ_FRAMEBUFFER, &srcVP, kSrc_TempFBOTarget);
// We modified the bound FBO
fHWBoundRenderTargetUniqueID.makeInvalid();
GrGLIRect srcGLRect;
GrGLIRect dstGLRect;
srcGLRect.setRelativeTo(srcVP, srcRect, srcOrigin);
dstGLRect.setRelativeTo(dstVP, dstRect, dstOrigin);
// BlitFrameBuffer respects the scissor, so disable it.
this->disableScissor();
this->disableWindowRectangles();
GrGLint srcY0;
GrGLint srcY1;
// Does the blit need to y-mirror or not?
if (srcOrigin == dstOrigin) {
srcY0 = srcGLRect.fBottom;
srcY1 = srcGLRect.fBottom + srcGLRect.fHeight;
} else {
srcY0 = srcGLRect.fBottom + srcGLRect.fHeight;
srcY1 = srcGLRect.fBottom;
}
GL_CALL(BlitFramebuffer(srcGLRect.fLeft,
srcY0,
srcGLRect.fLeft + srcGLRect.fWidth,
srcY1,
dstGLRect.fLeft,
dstGLRect.fBottom,
dstGLRect.fLeft + dstGLRect.fWidth,
dstGLRect.fBottom + dstGLRect.fHeight,
GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST));
this->unbindTextureFBOForPixelOps(GR_GL_DRAW_FRAMEBUFFER, dst);
this->unbindTextureFBOForPixelOps(GR_GL_READ_FRAMEBUFFER, src);
this->didWriteToSurface(dst, dstOrigin, &dstRect);
return true;
}
// Manual implementation of mipmap generation, to work around driver bugs w/sRGB.
// Uses draw calls to do a series of downsample operations to successive mips.
// If this returns false, then the calling code falls back to using glGenerateMipmap.
bool GrGLGpu::generateMipmap(GrGLTexture* texture, GrSurfaceOrigin textureOrigin,
bool gammaCorrect) {
// Our iterative downsample requires the ability to limit which level we're sampling:
if (!this->glCaps().doManualMipmapping()) {
return false;
}
// Mipmaps are only supported on 2D textures:
if (GR_GL_TEXTURE_2D != texture->target()) {
return false;
}
// We need to be able to render to the texture for this to work:
if (!this->glCaps().canConfigBeFBOColorAttachment(texture->config())) {
return false;
}
// If we're mipping an sRGB texture, we need to ensure FB sRGB is correct:
if (GrPixelConfigIsSRGB(texture->config())) {
// If we have write-control, just set the state that we want:
if (this->glCaps().srgbWriteControl()) {
this->flushFramebufferSRGB(gammaCorrect);
} else if (!gammaCorrect) {
// If we don't have write-control we can't do non-gamma-correct mipmapping:
return false;
}
}
int width = texture->width();
int height = texture->height();
int levelCount = SkMipMap::ComputeLevelCount(width, height) + 1;
// Define all mips, if we haven't previously done so:
if (0 == texture->texturePriv().maxMipMapLevel()) {
GrGLenum internalFormat;
GrGLenum externalFormat;
GrGLenum externalType;
if (!this->glCaps().getTexImageFormats(texture->config(), texture->config(),
&internalFormat, &externalFormat, &externalType)) {
return false;
}
this->unbindCpuToGpuXferBuffer();
for (GrGLint level = 1; level < levelCount; ++level) {
// Define the next mip:
width = SkTMax(1, width / 2);
height = SkTMax(1, height / 2);
GL_ALLOC_CALL(this->glInterface(), TexImage2D(GR_GL_TEXTURE_2D, level, internalFormat,
width, height, 0,
externalFormat, externalType, nullptr));
}
}
// Create (if necessary), then bind temporary FBO:
if (0 == fTempDstFBOID) {
GL_CALL(GenFramebuffers(1, &fTempDstFBOID));
}
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, fTempDstFBOID));
fHWBoundRenderTargetUniqueID.makeInvalid();
// Bind the texture, to get things configured for filtering.
// We'll be changing our base level further below:
this->setTextureUnit(0);
this->bindTexture(0, GrSamplerState::ClampBilerp(), gammaCorrect, texture, textureOrigin);
// Vertex data:
if (!fMipmapProgramArrayBuffer) {
static const GrGLfloat vdata[] = {
0, 0,
0, 1,
1, 0,
1, 1
};
fMipmapProgramArrayBuffer.reset(GrGLBuffer::Create(this, sizeof(vdata),
kVertex_GrBufferType,
kStatic_GrAccessPattern, vdata));
}
if (!fMipmapProgramArrayBuffer) {
return false;
}
fHWVertexArrayState.setVertexArrayID(this, 0);
GrGLAttribArrayState* attribs = fHWVertexArrayState.bindInternalVertexArray(this);
attribs->enableVertexArrays(this, 1);
attribs->set(this, 0, fMipmapProgramArrayBuffer.get(), kHalf2_GrVertexAttribType,
2 * sizeof(GrGLfloat), 0);
// Set "simple" state once:
GrXferProcessor::BlendInfo blendInfo;
blendInfo.reset();
this->flushBlend(blendInfo, GrSwizzle::RGBA());
this->flushColorWrite(true);
this->flushHWAAState(nullptr, false, false);
this->disableScissor();
this->disableWindowRectangles();
this->disableStencil();
// Do all the blits:
width = texture->width();
height = texture->height();
GrGLIRect viewport;
viewport.fLeft = 0;
viewport.fBottom = 0;
for (GrGLint level = 1; level < levelCount; ++level) {
// Get and bind the program for this particular downsample (filter shape can vary):
int progIdx = TextureSizeToMipmapProgramIdx(width, height);
if (!fMipmapPrograms[progIdx].fProgram) {
if (!this->createMipmapProgram(progIdx)) {
SkDebugf("Failed to create mipmap program.\n");
return false;
}
}
GL_CALL(UseProgram(fMipmapPrograms[progIdx].fProgram));
fHWProgramID = fMipmapPrograms[progIdx].fProgram;
// Texcoord uniform is expected to contain (1/w, (w-1)/w, 1/h, (h-1)/h)
const float invWidth = 1.0f / width;
const float invHeight = 1.0f / height;
GL_CALL(Uniform4f(fMipmapPrograms[progIdx].fTexCoordXformUniform,
invWidth, (width - 1) * invWidth, invHeight, (height - 1) * invHeight));
GL_CALL(Uniform1i(fMipmapPrograms[progIdx].fTextureUniform, 0));
// Only sample from previous mip
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_BASE_LEVEL, level - 1));
GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D, texture->textureID(), level));
width = SkTMax(1, width / 2);
height = SkTMax(1, height / 2);
viewport.fWidth = width;
viewport.fHeight = height;
this->flushViewport(viewport);
GL_CALL(DrawArrays(GR_GL_TRIANGLE_STRIP, 0, 4));
}
// Unbind:
GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D, 0, 0));
return true;
}
void GrGLGpu::xferBarrier(GrRenderTarget* rt, GrXferBarrierType type) {
SkASSERT(type);
switch (type) {
case kTexture_GrXferBarrierType: {
GrGLRenderTarget* glrt = static_cast<GrGLRenderTarget*>(rt);
SkASSERT(glrt->textureFBOID() != 0 && glrt->renderFBOID() != 0);
if (glrt->textureFBOID() != glrt->renderFBOID()) {
// The render target uses separate storage so no need for glTextureBarrier.
// FIXME: The render target will resolve automatically when its texture is bound,
// but we could resolve only the bounds that will be read if we do it here instead.
return;
}
SkASSERT(this->caps()->textureBarrierSupport());
GL_CALL(TextureBarrier());
return;
}
case kBlend_GrXferBarrierType:
SkASSERT(GrCaps::kAdvanced_BlendEquationSupport ==
this->caps()->blendEquationSupport());
GL_CALL(BlendBarrier());
return;
default: break; // placate compiler warnings that kNone not handled
}
}
#if GR_TEST_UTILS
GrBackendTexture GrGLGpu::createTestingOnlyBackendTexture(const void* pixels, int w, int h,
GrPixelConfig config, bool /*isRT*/,
GrMipMapped mipMapped) {
this->handleDirtyContext();
if (!this->caps()->isConfigTexturable(config)) {
return GrBackendTexture(); // invalid
}
// Currently we don't support uploading pixel data when mipped.
if (pixels && GrMipMapped::kYes == mipMapped) {
return GrBackendTexture(); // invalid
}
GrGLTextureInfo info;
info.fTarget = GR_GL_TEXTURE_2D;
info.fID = 0;
GL_CALL(GenTextures(1, &info.fID));
GL_CALL(ActiveTexture(GR_GL_TEXTURE0));
GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, 1));
GL_CALL(BindTexture(info.fTarget, info.fID));
fHWBoundTextureUniqueIDs[0].makeInvalid();
GL_CALL(TexParameteri(info.fTarget, GR_GL_TEXTURE_MAG_FILTER, GR_GL_NEAREST));
GL_CALL(TexParameteri(info.fTarget, GR_GL_TEXTURE_MIN_FILTER, GR_GL_NEAREST));
GL_CALL(TexParameteri(info.fTarget, GR_GL_TEXTURE_WRAP_S, GR_GL_CLAMP_TO_EDGE));
GL_CALL(TexParameteri(info.fTarget, GR_GL_TEXTURE_WRAP_T, GR_GL_CLAMP_TO_EDGE));
GrGLenum internalFormat;
GrGLenum externalFormat;
GrGLenum externalType;
if (!this->glCaps().getTexImageFormats(config, config, &internalFormat, &externalFormat,
&externalType)) {
return GrBackendTexture(); // invalid
}
info.fFormat = this->glCaps().configSizedInternalFormat(config);
this->unbindCpuToGpuXferBuffer();
// Figure out the number of mip levels.
int mipLevels = 1;
if (GrMipMapped::kYes == mipMapped) {
mipLevels = SkMipMap::ComputeLevelCount(w, h) + 1;
}
size_t bpp = GrBytesPerPixel(config);
size_t baseLayerSize = bpp * w * h;
SkAutoMalloc defaultStorage(baseLayerSize);
if (!pixels) {
// Fill in the texture with all zeros so we don't have random garbage
pixels = defaultStorage.get();
memset(defaultStorage.get(), 0, baseLayerSize);
}
int width = w;
int height = h;
for (int i = 0; i < mipLevels; ++i) {
GL_CALL(TexImage2D(info.fTarget, i, internalFormat, width, height, 0, externalFormat,
externalType, pixels));
width = SkTMax(1, width / 2);
height = SkTMax(1, height / 2);
}
// unbind the texture from the texture unit to avoid asserts
GL_CALL(BindTexture(info.fTarget, 0));
return GrBackendTexture(w, h, mipMapped, info);
}
bool GrGLGpu::isTestingOnlyBackendTexture(const GrBackendTexture& tex) const {
SkASSERT(kOpenGL_GrBackend == tex.backend());
const GrGLTextureInfo* info = tex.getGLTextureInfo();
if (!info) {
return false;
}
GrGLboolean result;
GL_CALL_RET(result, IsTexture(info->fID));
return (GR_GL_TRUE == result);
}
void GrGLGpu::deleteTestingOnlyBackendTexture(const GrBackendTexture& tex) {
SkASSERT(kOpenGL_GrBackend == tex.backend());
if (const auto* info = tex.getGLTextureInfo()) {
GL_CALL(DeleteTextures(1, &info->fID));
}
}
GrBackendRenderTarget GrGLGpu::createTestingOnlyBackendRenderTarget(int w, int h,
GrColorType colorType,
GrSRGBEncoded srgbEncoded) {
this->handleDirtyContext();
auto config = GrColorTypeToPixelConfig(colorType, srgbEncoded);
GrGLenum colorBufferFormat;
if (!this->glCaps().getRenderbufferFormat(config, &colorBufferFormat)) {
return {};
}
int sFormatIdx = this->getCompatibleStencilIndex(config);
if (sFormatIdx < 0) {
return {};
}
GrGLuint rbIDs[] = {0, 0};
GL_CALL(GenRenderbuffers(2, rbIDs));
if (!rbIDs[0] || !rbIDs[1]) {
if (!rbIDs[0]) {
GL_CALL(DeleteRenderbuffers(1, &rbIDs[0]));
}
if (!rbIDs[1]) {
GL_CALL(DeleteRenderbuffers(1, &rbIDs[1]));
}
return {};
}
GrGLFramebufferInfo info;
info.fFBOID = 0;
GL_CALL(GenFramebuffers(1, &info.fFBOID));
if (!info.fFBOID) {
GL_CALL(DeleteRenderbuffers(2, rbIDs));
return GrBackendRenderTarget();
}
this->invalidateBoundRenderTarget();
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, info.fFBOID));
GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, rbIDs[0]));
GL_ALLOC_CALL(this->glInterface(),
RenderbufferStorage(GR_GL_RENDERBUFFER, colorBufferFormat, w, h));
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_RENDERBUFFER,
rbIDs[0]));
GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, rbIDs[1]));
auto stencilBufferFormat = this->glCaps().stencilFormats()[sFormatIdx].fInternalFormat;
GL_ALLOC_CALL(this->glInterface(),
RenderbufferStorage(GR_GL_RENDERBUFFER, stencilBufferFormat, w, h));
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, GR_GL_RENDERBUFFER,
rbIDs[1]));
if (this->glCaps().stencilFormats()[sFormatIdx].fPacked) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, rbIDs[1]));
}
// We don't want to have to recover the renderbuffer IDs later to delete them. OpenGL has this
// rule that if a renderbuffer is deleted and a FBO other than the current FBO has the RB
// attached then deletion is delayed. So we unbind the FBO here and delete the renderbuffers.
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, 0));
GL_CALL(DeleteRenderbuffers(2, rbIDs));
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, info.fFBOID));
GrGLenum status;
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (GR_GL_FRAMEBUFFER_COMPLETE != status) {
GL_CALL(DeleteFramebuffers(1, &info.fFBOID));
return {};
}
auto stencilBits = SkToInt(this->glCaps().stencilFormats()[sFormatIdx].fStencilBits);
return {w, h, 1, stencilBits, config, info};
}
void GrGLGpu::deleteTestingOnlyBackendRenderTarget(const GrBackendRenderTarget& backendRT) {
SkASSERT(kOpenGL_GrBackend == backendRT.backend());
if (auto info = backendRT.getGLFramebufferInfo()) {
if (info->fFBOID) {
GL_CALL(DeleteFramebuffers(1, &info->fFBOID));
}
}
}
void GrGLGpu::testingOnly_flushGpuAndSync() {
GL_CALL(Finish());
}
#endif
///////////////////////////////////////////////////////////////////////////////
GrGLAttribArrayState* GrGLGpu::HWVertexArrayState::bindInternalVertexArray(GrGLGpu* gpu,
const GrBuffer* ibuf) {
GrGLAttribArrayState* attribState;
if (gpu->glCaps().isCoreProfile()) {
if (!fCoreProfileVertexArray) {
GrGLuint arrayID;
GR_GL_CALL(gpu->glInterface(), GenVertexArrays(1, &arrayID));
int attrCount = gpu->glCaps().maxVertexAttributes();
fCoreProfileVertexArray = new GrGLVertexArray(arrayID, attrCount);
}
if (ibuf) {
attribState = fCoreProfileVertexArray->bindWithIndexBuffer(gpu, ibuf);
} else {
attribState = fCoreProfileVertexArray->bind(gpu);
}
} else {
if (ibuf) {
// bindBuffer implicitly binds VAO 0 when binding an index buffer.
gpu->bindBuffer(kIndex_GrBufferType, ibuf);
} else {
this->setVertexArrayID(gpu, 0);
}
int attrCount = gpu->glCaps().maxVertexAttributes();
if (fDefaultVertexArrayAttribState.count() != attrCount) {
fDefaultVertexArrayAttribState.resize(attrCount);
}
attribState = &fDefaultVertexArrayAttribState;
}
return attribState;
}
void GrGLGpu::onFinishFlush(bool insertedSemaphore) {
// If we inserted semaphores during the flush, we need to call GLFlush.
if (insertedSemaphore) {
GL_CALL(Flush());
}
}
GrFence SK_WARN_UNUSED_RESULT GrGLGpu::insertFence() {
SkASSERT(this->caps()->fenceSyncSupport());
GrGLsync sync;
GL_CALL_RET(sync, FenceSync(GR_GL_SYNC_GPU_COMMANDS_COMPLETE, 0));
GR_STATIC_ASSERT(sizeof(GrFence) >= sizeof(GrGLsync));
return (GrFence)sync;
}
bool GrGLGpu::waitFence(GrFence fence, uint64_t timeout) {
GrGLenum result;
GL_CALL_RET(result, ClientWaitSync((GrGLsync)fence, GR_GL_SYNC_FLUSH_COMMANDS_BIT, timeout));
return (GR_GL_CONDITION_SATISFIED == result);
}
void GrGLGpu::deleteFence(GrFence fence) const {
this->deleteSync((GrGLsync)fence);
}
sk_sp<GrSemaphore> SK_WARN_UNUSED_RESULT GrGLGpu::makeSemaphore(bool isOwned) {
SkASSERT(this->caps()->fenceSyncSupport());
return GrGLSemaphore::Make(this, isOwned);
}
sk_sp<GrSemaphore> GrGLGpu::wrapBackendSemaphore(const GrBackendSemaphore& semaphore,
GrResourceProvider::SemaphoreWrapType wrapType,
GrWrapOwnership ownership) {
SkASSERT(this->caps()->fenceSyncSupport());
return GrGLSemaphore::MakeWrapped(this, semaphore.glSync(), ownership);
}
void GrGLGpu::insertSemaphore(sk_sp<GrSemaphore> semaphore, bool flush) {
GrGLSemaphore* glSem = static_cast<GrGLSemaphore*>(semaphore.get());
GrGLsync sync;
GL_CALL_RET(sync, FenceSync(GR_GL_SYNC_GPU_COMMANDS_COMPLETE, 0));
glSem->setSync(sync);
if (flush) {
GL_CALL(Flush());
}
}
void GrGLGpu::waitSemaphore(sk_sp<GrSemaphore> semaphore) {
GrGLSemaphore* glSem = static_cast<GrGLSemaphore*>(semaphore.get());
GL_CALL(WaitSync(glSem->sync(), 0, GR_GL_TIMEOUT_IGNORED));
}
void GrGLGpu::deleteSync(GrGLsync sync) const {
GL_CALL(DeleteSync(sync));
}
void GrGLGpu::insertEventMarker(const char* msg) {
GL_CALL(InsertEventMarker(strlen(msg), msg));
}
sk_sp<GrSemaphore> GrGLGpu::prepareTextureForCrossContextUsage(GrTexture* texture) {
// Set up a semaphore to be signaled once the data is ready, and flush GL
sk_sp<GrSemaphore> semaphore = this->makeSemaphore(true);
this->insertSemaphore(semaphore, true);
return semaphore;
}
int GrGLGpu::TextureToCopyProgramIdx(GrTexture* texture) {
switch (texture->texturePriv().samplerType()) {
case kTexture2DSampler_GrSLType:
return 0;
case kTexture2DRectSampler_GrSLType:
return 1;
case kTextureExternalSampler_GrSLType:
return 2;
default:
SK_ABORT("Unexpected samper type");
return 0;
}
}
void GrGLGpu::onDumpJSON(SkJSONWriter* writer) const {
// We are called by the base class, which has already called beginObject(). We choose to nest
// all of our caps information in a named sub-object.
writer->beginObject("GL GPU");
const GrGLubyte* str;
GL_CALL_RET(str, GetString(GR_GL_VERSION));
writer->appendString("GL_VERSION", (const char*)(str));
GL_CALL_RET(str, GetString(GR_GL_RENDERER));
writer->appendString("GL_RENDERER", (const char*)(str));
GL_CALL_RET(str, GetString(GR_GL_VENDOR));
writer->appendString("GL_VENDOR", (const char*)(str));
GL_CALL_RET(str, GetString(GR_GL_SHADING_LANGUAGE_VERSION));
writer->appendString("GL_SHADING_LANGUAGE_VERSION", (const char*)(str));
writer->appendName("extensions");
glInterface()->fExtensions.dumpJSON(writer);
writer->endObject();
}