| /* |
| * Copyright 2010 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #include "SkGr.h" |
| #include "SkGrPriv.h" |
| |
| #include "GrCaps.h" |
| #include "GrContext.h" |
| #include "GrDrawContext.h" |
| #include "GrGpuResourcePriv.h" |
| #include "GrImageIDTextureAdjuster.h" |
| #include "GrTextureParamsAdjuster.h" |
| #include "GrTexturePriv.h" |
| #include "GrTypes.h" |
| #include "GrXferProcessor.h" |
| #include "GrYUVProvider.h" |
| |
| #include "SkBlendModePriv.h" |
| #include "SkColorFilter.h" |
| #include "SkConfig8888.h" |
| #include "SkCanvas.h" |
| #include "SkData.h" |
| #include "SkMaskFilter.h" |
| #include "SkMessageBus.h" |
| #include "SkMipMap.h" |
| #include "SkPixelRef.h" |
| #include "SkPM4fPriv.h" |
| #include "SkResourceCache.h" |
| #include "SkTemplates.h" |
| #include "SkYUVPlanesCache.h" |
| #include "effects/GrBicubicEffect.h" |
| #include "effects/GrConstColorProcessor.h" |
| #include "effects/GrDitherEffect.h" |
| #include "effects/GrPorterDuffXferProcessor.h" |
| #include "effects/GrXfermodeFragmentProcessor.h" |
| #include "effects/GrYUVEffect.h" |
| |
| #ifndef SK_IGNORE_ETC1_SUPPORT |
| # include "ktx.h" |
| # include "etc1.h" |
| #endif |
| |
| GrSurfaceDesc GrImageInfoToSurfaceDesc(const SkImageInfo& info, const GrCaps& caps) { |
| GrSurfaceDesc desc; |
| desc.fFlags = kNone_GrSurfaceFlags; |
| desc.fWidth = info.width(); |
| desc.fHeight = info.height(); |
| desc.fConfig = SkImageInfo2GrPixelConfig(info, caps); |
| desc.fSampleCnt = 0; |
| return desc; |
| } |
| |
| void GrMakeKeyFromImageID(GrUniqueKey* key, uint32_t imageID, const SkIRect& imageBounds) { |
| SkASSERT(key); |
| SkASSERT(imageID); |
| SkASSERT(!imageBounds.isEmpty()); |
| static const GrUniqueKey::Domain kImageIDDomain = GrUniqueKey::GenerateDomain(); |
| GrUniqueKey::Builder builder(key, kImageIDDomain, 5); |
| builder[0] = imageID; |
| builder[1] = imageBounds.fLeft; |
| builder[2] = imageBounds.fTop; |
| builder[3] = imageBounds.fRight; |
| builder[4] = imageBounds.fBottom; |
| } |
| |
| GrPixelConfig GrIsCompressedTextureDataSupported(GrContext* ctx, SkData* data, |
| int expectedW, int expectedH, |
| const void** outStartOfDataToUpload) { |
| *outStartOfDataToUpload = nullptr; |
| #ifndef SK_IGNORE_ETC1_SUPPORT |
| if (!ctx->caps()->isConfigTexturable(kETC1_GrPixelConfig)) { |
| return kUnknown_GrPixelConfig; |
| } |
| |
| const uint8_t* bytes = data->bytes(); |
| if (data->size() > ETC_PKM_HEADER_SIZE && etc1_pkm_is_valid(bytes)) { |
| // Does the data match the dimensions of the bitmap? If not, |
| // then we don't know how to scale the image to match it... |
| if (etc1_pkm_get_width(bytes) != (unsigned)expectedW || |
| etc1_pkm_get_height(bytes) != (unsigned)expectedH) |
| { |
| return kUnknown_GrPixelConfig; |
| } |
| |
| *outStartOfDataToUpload = bytes + ETC_PKM_HEADER_SIZE; |
| return kETC1_GrPixelConfig; |
| } else if (SkKTXFile::is_ktx(bytes, data->size())) { |
| SkKTXFile ktx(data); |
| |
| // Is it actually an ETC1 texture? |
| if (!ktx.isCompressedFormat(SkTextureCompressor::kETC1_Format)) { |
| return kUnknown_GrPixelConfig; |
| } |
| |
| // Does the data match the dimensions of the bitmap? If not, |
| // then we don't know how to scale the image to match it... |
| if (ktx.width() != expectedW || ktx.height() != expectedH) { |
| return kUnknown_GrPixelConfig; |
| } |
| |
| *outStartOfDataToUpload = ktx.pixelData(); |
| return kETC1_GrPixelConfig; |
| } |
| #endif |
| return kUnknown_GrPixelConfig; |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * Fill out buffer with the compressed format Ganesh expects from a colortable |
| * based bitmap. [palette (colortable) + indices]. |
| * |
| * At the moment Ganesh only supports 8bit version. If Ganesh allowed we others |
| * we could detect that the colortable.count is <= 16, and then repack the |
| * indices as nibbles to save RAM, but it would take more time (i.e. a lot |
| * slower than memcpy), so skipping that for now. |
| * |
| * Ganesh wants a full 256 palette entry, even though Skia's ctable is only as big |
| * as the colortable.count says it is. |
| */ |
| static void build_index8_data(void* buffer, const SkPixmap& pixmap) { |
| SkASSERT(kIndex_8_SkColorType == pixmap.colorType()); |
| |
| const SkColorTable* ctable = pixmap.ctable(); |
| char* dst = (char*)buffer; |
| |
| const int count = ctable->count(); |
| |
| SkDstPixelInfo dstPI; |
| dstPI.fColorType = kRGBA_8888_SkColorType; |
| dstPI.fAlphaType = kPremul_SkAlphaType; |
| dstPI.fPixels = buffer; |
| dstPI.fRowBytes = count * sizeof(SkPMColor); |
| |
| SkSrcPixelInfo srcPI; |
| srcPI.fColorType = kN32_SkColorType; |
| srcPI.fAlphaType = kPremul_SkAlphaType; |
| srcPI.fPixels = ctable->readColors(); |
| srcPI.fRowBytes = count * sizeof(SkPMColor); |
| |
| srcPI.convertPixelsTo(&dstPI, count, 1); |
| |
| // always skip a full 256 number of entries, even if we memcpy'd fewer |
| dst += 256 * sizeof(GrColor); |
| |
| if ((unsigned)pixmap.width() == pixmap.rowBytes()) { |
| memcpy(dst, pixmap.addr(), pixmap.getSafeSize()); |
| } else { |
| // need to trim off the extra bytes per row |
| size_t width = pixmap.width(); |
| size_t rowBytes = pixmap.rowBytes(); |
| const uint8_t* src = pixmap.addr8(); |
| for (int y = 0; y < pixmap.height(); y++) { |
| memcpy(dst, src, width); |
| src += rowBytes; |
| dst += width; |
| } |
| } |
| } |
| |
| /** |
| * Once we have made SkImages handle all lazy/deferred/generated content, the YUV apis will |
| * be gone from SkPixelRef, and we can remove this subclass entirely. |
| */ |
| class PixelRef_GrYUVProvider : public GrYUVProvider { |
| SkPixelRef* fPR; |
| |
| public: |
| PixelRef_GrYUVProvider(SkPixelRef* pr) : fPR(pr) {} |
| |
| uint32_t onGetID() override { return fPR->getGenerationID(); } |
| bool onQueryYUV8(SkYUVSizeInfo* sizeInfo, SkYUVColorSpace* colorSpace) const override { |
| return fPR->queryYUV8(sizeInfo, colorSpace); |
| } |
| bool onGetYUV8Planes(const SkYUVSizeInfo& sizeInfo, void* planes[3]) override { |
| return fPR->getYUV8Planes(sizeInfo, planes); |
| } |
| }; |
| |
| static sk_sp<GrTexture> create_texture_from_yuv(GrContext* ctx, const SkBitmap& bm, |
| const GrSurfaceDesc& desc) { |
| // Subsets are not supported, the whole pixelRef is loaded when using YUV decoding |
| SkPixelRef* pixelRef = bm.pixelRef(); |
| if ((nullptr == pixelRef) || |
| (pixelRef->info().width() != bm.info().width()) || |
| (pixelRef->info().height() != bm.info().height())) { |
| return nullptr; |
| } |
| |
| PixelRef_GrYUVProvider provider(pixelRef); |
| |
| return provider.refAsTexture(ctx, desc, !bm.isVolatile()); |
| } |
| |
| static GrTexture* load_etc1_texture(GrContext* ctx, const SkBitmap &bm, GrSurfaceDesc desc) { |
| sk_sp<SkData> data(bm.pixelRef()->refEncodedData()); |
| if (!data) { |
| return nullptr; |
| } |
| |
| const void* startOfTexData; |
| desc.fConfig = GrIsCompressedTextureDataSupported(ctx, data.get(), bm.width(), bm.height(), |
| &startOfTexData); |
| if (kUnknown_GrPixelConfig == desc.fConfig) { |
| return nullptr; |
| } |
| |
| return ctx->textureProvider()->createTexture(desc, SkBudgeted::kYes, startOfTexData, 0); |
| } |
| |
| GrTexture* GrUploadBitmapToTexture(GrContext* ctx, const SkBitmap& bitmap) { |
| GrSurfaceDesc desc = GrImageInfoToSurfaceDesc(bitmap.info(), *ctx->caps()); |
| if (GrTexture *texture = load_etc1_texture(ctx, bitmap, desc)) { |
| return texture; |
| } |
| |
| sk_sp<GrTexture> texture(create_texture_from_yuv(ctx, bitmap, desc)); |
| if (texture) { |
| return texture.release(); |
| } |
| |
| SkAutoLockPixels alp(bitmap); |
| if (!bitmap.readyToDraw()) { |
| return nullptr; |
| } |
| SkPixmap pixmap; |
| if (!bitmap.peekPixels(&pixmap)) { |
| return nullptr; |
| } |
| return GrUploadPixmapToTexture(ctx, pixmap, SkBudgeted::kYes); |
| } |
| |
| GrTexture* GrUploadPixmapToTexture(GrContext* ctx, const SkPixmap& pixmap, SkBudgeted budgeted) { |
| const SkPixmap* pmap = &pixmap; |
| SkPixmap tmpPixmap; |
| SkBitmap tmpBitmap; |
| |
| const GrCaps* caps = ctx->caps(); |
| GrSurfaceDesc desc = GrImageInfoToSurfaceDesc(pixmap.info(), *caps); |
| |
| if (caps->srgbSupport() && |
| pixmap.info().colorSpace() && pixmap.info().colorSpace()->gammaCloseToSRGB() && |
| !(GrPixelConfigIsSRGB(desc.fConfig) || |
| kRGBA_half_GrPixelConfig == desc.fConfig || |
| kRGBA_float_GrPixelConfig == desc.fConfig)) { |
| // We were supplied an sRGB-like color space, but we don't have a suitable pixel config. |
| // Convert to 8888 sRGB so we can handle the data correctly. The raster backend doesn't |
| // handle sRGB Index8 -> sRGB 8888 correctly (yet), so lie about both the source and |
| // destination (claim they're linear): |
| SkImageInfo linSrcInfo = SkImageInfo::Make(pixmap.width(), pixmap.height(), |
| pixmap.colorType(), pixmap.alphaType()); |
| SkPixmap linSrcPixmap(linSrcInfo, pixmap.addr(), pixmap.rowBytes(), pixmap.ctable()); |
| |
| SkImageInfo dstInfo = SkImageInfo::Make(pixmap.width(), pixmap.height(), |
| kN32_SkColorType, kPremul_SkAlphaType, |
| sk_ref_sp(pixmap.info().colorSpace())); |
| |
| tmpBitmap.allocPixels(dstInfo); |
| |
| SkImageInfo linDstInfo = SkImageInfo::MakeN32Premul(pixmap.width(), pixmap.height()); |
| if (!linSrcPixmap.readPixels(linDstInfo, tmpBitmap.getPixels(), tmpBitmap.rowBytes())) { |
| return nullptr; |
| } |
| if (!tmpBitmap.peekPixels(&tmpPixmap)) { |
| return nullptr; |
| } |
| pmap = &tmpPixmap; |
| // must rebuild desc, since we've forced the info to be N32 |
| desc = GrImageInfoToSurfaceDesc(pmap->info(), *caps); |
| } else if (kGray_8_SkColorType == pixmap.colorType()) { |
| // We don't have Gray8 support as a pixel config, so expand to 8888 |
| |
| // We should have converted sRGB Gray8 above (if we have sRGB support): |
| SkASSERT(!caps->srgbSupport() || !pixmap.info().colorSpace() || |
| !pixmap.info().colorSpace()->gammaCloseToSRGB()); |
| |
| SkImageInfo info = SkImageInfo::MakeN32(pixmap.width(), pixmap.height(), |
| kOpaque_SkAlphaType); |
| tmpBitmap.allocPixels(info); |
| if (!pixmap.readPixels(info, tmpBitmap.getPixels(), tmpBitmap.rowBytes())) { |
| return nullptr; |
| } |
| if (!tmpBitmap.peekPixels(&tmpPixmap)) { |
| return nullptr; |
| } |
| pmap = &tmpPixmap; |
| // must rebuild desc, since we've forced the info to be N32 |
| desc = GrImageInfoToSurfaceDesc(pmap->info(), *caps); |
| } else if (kIndex_8_SkColorType == pixmap.colorType()) { |
| if (caps->isConfigTexturable(kIndex_8_GrPixelConfig)) { |
| size_t imageSize = GrCompressedFormatDataSize(kIndex_8_GrPixelConfig, |
| pixmap.width(), pixmap.height()); |
| SkAutoMalloc storage(imageSize); |
| build_index8_data(storage.get(), pixmap); |
| |
| // our compressed data will be trimmed, so pass width() for its |
| // "rowBytes", since they are the same now. |
| return ctx->textureProvider()->createTexture(desc, budgeted, storage.get(), |
| pixmap.width()); |
| } else { |
| SkImageInfo info = SkImageInfo::MakeN32Premul(pixmap.width(), pixmap.height()); |
| tmpBitmap.allocPixels(info); |
| if (!pixmap.readPixels(info, tmpBitmap.getPixels(), tmpBitmap.rowBytes())) { |
| return nullptr; |
| } |
| if (!tmpBitmap.peekPixels(&tmpPixmap)) { |
| return nullptr; |
| } |
| pmap = &tmpPixmap; |
| // must rebuild desc, since we've forced the info to be N32 |
| desc = GrImageInfoToSurfaceDesc(pmap->info(), *caps); |
| } |
| } |
| |
| return ctx->textureProvider()->createTexture(desc, budgeted, pmap->addr(), |
| pmap->rowBytes()); |
| } |
| |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| void GrInstallBitmapUniqueKeyInvalidator(const GrUniqueKey& key, SkPixelRef* pixelRef) { |
| class Invalidator : public SkPixelRef::GenIDChangeListener { |
| public: |
| explicit Invalidator(const GrUniqueKey& key) : fMsg(key) {} |
| private: |
| GrUniqueKeyInvalidatedMessage fMsg; |
| |
| void onChange() override { SkMessageBus<GrUniqueKeyInvalidatedMessage>::Post(fMsg); } |
| }; |
| |
| pixelRef->addGenIDChangeListener(new Invalidator(key)); |
| } |
| |
| GrTexture* GrGenerateMipMapsAndUploadToTexture(GrContext* ctx, const SkBitmap& bitmap, |
| SkSourceGammaTreatment gammaTreatment) |
| { |
| GrSurfaceDesc desc = GrImageInfoToSurfaceDesc(bitmap.info(), *ctx->caps()); |
| if (kIndex_8_SkColorType != bitmap.colorType() && !bitmap.readyToDraw()) { |
| GrTexture* texture = load_etc1_texture(ctx, bitmap, desc); |
| if (texture) { |
| return texture; |
| } |
| } |
| |
| sk_sp<GrTexture> texture(create_texture_from_yuv(ctx, bitmap, desc)); |
| if (texture) { |
| return texture.release(); |
| } |
| |
| // We don't support Gray8 directly in the GL backend, so fail-over to GrUploadBitmapToTexture. |
| // That will transform the Gray8 to 8888, then use the driver/GPU to build mipmaps. If we build |
| // the mips on the CPU here, they'll all be Gray8, which isn't useful. (They get treated as A8). |
| // TODO: A better option might be to transform the initial bitmap here to 8888, then run the |
| // CPU mip-mapper on that data before uploading. This is much less code for a rare case though: |
| if (kGray_8_SkColorType == bitmap.colorType()) { |
| return nullptr; |
| } |
| |
| SkASSERT(sizeof(int) <= sizeof(uint32_t)); |
| if (bitmap.width() < 0 || bitmap.height() < 0) { |
| return nullptr; |
| } |
| |
| SkAutoPixmapUnlock srcUnlocker; |
| if (!bitmap.requestLock(&srcUnlocker)) { |
| return nullptr; |
| } |
| const SkPixmap& pixmap = srcUnlocker.pixmap(); |
| // Try to catch where we might have returned nullptr for src crbug.com/492818 |
| if (nullptr == pixmap.addr()) { |
| sk_throw(); |
| } |
| |
| SkAutoTDelete<SkMipMap> mipmaps(SkMipMap::Build(pixmap, gammaTreatment, nullptr)); |
| if (!mipmaps) { |
| return nullptr; |
| } |
| |
| const int mipLevelCount = mipmaps->countLevels() + 1; |
| if (mipLevelCount < 1) { |
| return nullptr; |
| } |
| |
| const bool isMipMapped = mipLevelCount > 1; |
| desc.fIsMipMapped = isMipMapped; |
| |
| SkAutoTDeleteArray<GrMipLevel> texels(new GrMipLevel[mipLevelCount]); |
| |
| texels[0].fPixels = pixmap.addr(); |
| texels[0].fRowBytes = pixmap.rowBytes(); |
| |
| for (int i = 1; i < mipLevelCount; ++i) { |
| SkMipMap::Level generatedMipLevel; |
| mipmaps->getLevel(i - 1, &generatedMipLevel); |
| texels[i].fPixels = generatedMipLevel.fPixmap.addr(); |
| texels[i].fRowBytes = generatedMipLevel.fPixmap.rowBytes(); |
| } |
| |
| { |
| GrTexture* texture = ctx->textureProvider()->createMipMappedTexture(desc, |
| SkBudgeted::kYes, |
| texels.get(), |
| mipLevelCount); |
| if (texture) { |
| texture->texturePriv().setGammaTreatment(gammaTreatment); |
| } |
| return texture; |
| } |
| } |
| |
| GrTexture* GrUploadMipMapToTexture(GrContext* ctx, const SkImageInfo& info, |
| const GrMipLevel* texels, int mipLevelCount) { |
| const GrCaps* caps = ctx->caps(); |
| return ctx->textureProvider()->createMipMappedTexture(GrImageInfoToSurfaceDesc(info, *caps), |
| SkBudgeted::kYes, texels, |
| mipLevelCount); |
| } |
| |
| GrTexture* GrRefCachedBitmapTexture(GrContext* ctx, const SkBitmap& bitmap, |
| const GrTextureParams& params, |
| SkSourceGammaTreatment gammaTreatment) { |
| return GrBitmapTextureMaker(ctx, bitmap).refTextureForParams(params, gammaTreatment); |
| } |
| |
| sk_sp<GrTexture> GrMakeCachedBitmapTexture(GrContext* ctx, const SkBitmap& bitmap, |
| const GrTextureParams& params, |
| SkSourceGammaTreatment gammaTreatment) { |
| GrTexture* tex = GrBitmapTextureMaker(ctx, bitmap).refTextureForParams(params, gammaTreatment); |
| return sk_sp<GrTexture>(tex); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| GrColor4f SkColorToPremulGrColor4f(SkColor c, SkColorSpace* dstColorSpace) { |
| // We want to premultiply after linearizing, so this is easy: |
| return SkColorToUnpremulGrColor4f(c, dstColorSpace).premul(); |
| } |
| |
| GrColor4f SkColorToUnpremulGrColor4f(SkColor c, SkColorSpace* dstColorSpace) { |
| if (dstColorSpace) { |
| auto srgbColorSpace = SkColorSpace::MakeNamed(SkColorSpace::kSRGB_Named); |
| auto gamutXform = GrColorSpaceXform::Make(srgbColorSpace.get(), dstColorSpace); |
| return SkColorToUnpremulGrColor4f(c, true, gamutXform.get()); |
| } else { |
| return SkColorToUnpremulGrColor4f(c, false, nullptr); |
| } |
| } |
| |
| GrColor4f SkColorToPremulGrColor4f(SkColor c, bool gammaCorrect, GrColorSpaceXform* gamutXform) { |
| // We want to premultiply after linearizing, so this is easy: |
| return SkColorToUnpremulGrColor4f(c, gammaCorrect, gamutXform).premul(); |
| } |
| |
| GrColor4f SkColorToUnpremulGrColor4f(SkColor c, bool gammaCorrect, GrColorSpaceXform* gamutXform) { |
| // You can't be color-space aware in legacy mode |
| SkASSERT(gammaCorrect || !gamutXform); |
| |
| GrColor4f color; |
| if (gammaCorrect) { |
| // SkColor4f::FromColor does sRGB -> Linear |
| color = GrColor4f::FromSkColor4f(SkColor4f::FromColor(c)); |
| } else { |
| // GrColor4f::FromGrColor just multiplies by 1/255 |
| color = GrColor4f::FromGrColor(SkColorToUnpremulGrColor(c)); |
| } |
| |
| if (gamutXform) { |
| color = gamutXform->apply(color); |
| } |
| |
| return color; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // alphatype is ignore for now, but if GrPixelConfig is expanded to encompass |
| // alpha info, that will be considered. |
| GrPixelConfig SkImageInfo2GrPixelConfig(SkColorType ct, SkAlphaType, const SkColorSpace* cs, |
| const GrCaps& caps) { |
| // We intentionally ignore profile type for non-8888 formats. Anything we can't support |
| // in hardware will be expanded to sRGB 8888 in GrUploadPixmapToTexture. |
| switch (ct) { |
| case kUnknown_SkColorType: |
| return kUnknown_GrPixelConfig; |
| case kAlpha_8_SkColorType: |
| return kAlpha_8_GrPixelConfig; |
| case kRGB_565_SkColorType: |
| return kRGB_565_GrPixelConfig; |
| case kARGB_4444_SkColorType: |
| return kRGBA_4444_GrPixelConfig; |
| case kRGBA_8888_SkColorType: |
| return (caps.srgbSupport() && cs && cs->gammaCloseToSRGB()) |
| ? kSRGBA_8888_GrPixelConfig : kRGBA_8888_GrPixelConfig; |
| case kBGRA_8888_SkColorType: |
| return (caps.srgbSupport() && cs && cs->gammaCloseToSRGB()) |
| ? kSBGRA_8888_GrPixelConfig : kBGRA_8888_GrPixelConfig; |
| case kIndex_8_SkColorType: |
| return kIndex_8_GrPixelConfig; |
| case kGray_8_SkColorType: |
| return kAlpha_8_GrPixelConfig; // TODO: gray8 support on gpu |
| case kRGBA_F16_SkColorType: |
| return kRGBA_half_GrPixelConfig; |
| } |
| SkASSERT(0); // shouldn't get here |
| return kUnknown_GrPixelConfig; |
| } |
| |
| bool GrPixelConfigToColorType(GrPixelConfig config, SkColorType* ctOut) { |
| SkColorType ct; |
| switch (config) { |
| case kAlpha_8_GrPixelConfig: |
| ct = kAlpha_8_SkColorType; |
| break; |
| case kIndex_8_GrPixelConfig: |
| ct = kIndex_8_SkColorType; |
| break; |
| case kRGB_565_GrPixelConfig: |
| ct = kRGB_565_SkColorType; |
| break; |
| case kRGBA_4444_GrPixelConfig: |
| ct = kARGB_4444_SkColorType; |
| break; |
| case kRGBA_8888_GrPixelConfig: |
| ct = kRGBA_8888_SkColorType; |
| break; |
| case kBGRA_8888_GrPixelConfig: |
| ct = kBGRA_8888_SkColorType; |
| break; |
| case kSRGBA_8888_GrPixelConfig: |
| ct = kRGBA_8888_SkColorType; |
| break; |
| case kSBGRA_8888_GrPixelConfig: |
| ct = kBGRA_8888_SkColorType; |
| break; |
| case kRGBA_half_GrPixelConfig: |
| ct = kRGBA_F16_SkColorType; |
| break; |
| default: |
| return false; |
| } |
| if (ctOut) { |
| *ctOut = ct; |
| } |
| return true; |
| } |
| |
| GrPixelConfig GrRenderableConfigForColorSpace(const SkColorSpace* colorSpace) { |
| if (!colorSpace) { |
| return kRGBA_8888_GrPixelConfig; |
| } else if (colorSpace->gammaIsLinear()) { |
| return kRGBA_half_GrPixelConfig; |
| } else if (colorSpace->gammaCloseToSRGB()) { |
| return kSRGBA_8888_GrPixelConfig; |
| } else { |
| SkDEBUGFAIL("No renderable config exists for color space with strange gamma"); |
| return kUnknown_GrPixelConfig; |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| static inline bool blend_requires_shader(const SkXfermode::Mode mode, bool primitiveIsSrc) { |
| if (primitiveIsSrc) { |
| return SkXfermode::kSrc_Mode != mode; |
| } else { |
| return SkXfermode::kDst_Mode != mode; |
| } |
| } |
| |
| static inline bool skpaint_to_grpaint_impl(GrContext* context, |
| GrDrawContext* dc, |
| const SkPaint& skPaint, |
| const SkMatrix& viewM, |
| sk_sp<GrFragmentProcessor>* shaderProcessor, |
| SkXfermode::Mode* primColorMode, |
| bool primitiveIsSrc, |
| GrPaint* grPaint) { |
| grPaint->setAntiAlias(skPaint.isAntiAlias()); |
| grPaint->setAllowSRGBInputs(dc->isGammaCorrect()); |
| |
| // Convert SkPaint color to 4f format, including optional linearizing and gamut conversion. |
| GrColor4f origColor = SkColorToUnpremulGrColor4f(skPaint.getColor(), dc->isGammaCorrect(), |
| dc->getColorXformFromSRGB()); |
| |
| // Setup the initial color considering the shader, the SkPaint color, and the presence or not |
| // of per-vertex colors. |
| sk_sp<GrFragmentProcessor> shaderFP; |
| if (!primColorMode || blend_requires_shader(*primColorMode, primitiveIsSrc)) { |
| if (shaderProcessor) { |
| shaderFP = *shaderProcessor; |
| } else if (const SkShader* shader = skPaint.getShader()) { |
| shaderFP = shader->asFragmentProcessor(SkShader::AsFPArgs(context, &viewM, nullptr, |
| skPaint.getFilterQuality(), |
| dc->getColorSpace(), |
| dc->sourceGammaTreatment())); |
| if (!shaderFP) { |
| return false; |
| } |
| } |
| } |
| |
| // Set this in below cases if the output of the shader/paint-color/paint-alpha/primXfermode is |
| // a known constant value. In that case we can simply apply a color filter during this |
| // conversion without converting the color filter to a GrFragmentProcessor. |
| bool applyColorFilterToPaintColor = false; |
| if (shaderFP) { |
| if (primColorMode) { |
| // There is a blend between the primitive color and the shader color. The shader sees |
| // the opaque paint color. The shader's output is blended using the provided mode by |
| // the primitive color. The blended color is then modulated by the paint's alpha. |
| |
| // The geometry processor will insert the primitive color to start the color chain, so |
| // the GrPaint color will be ignored. |
| |
| GrColor4f shaderInput = origColor.opaque(); |
| shaderFP = GrFragmentProcessor::OverrideInput(shaderFP, shaderInput); |
| if (primitiveIsSrc) { |
| shaderFP = GrXfermodeFragmentProcessor::MakeFromDstProcessor(std::move(shaderFP), |
| *primColorMode); |
| } else { |
| shaderFP = GrXfermodeFragmentProcessor::MakeFromSrcProcessor(std::move(shaderFP), |
| *primColorMode); |
| } |
| // The above may return null if compose results in a pass through of the prim color. |
| if (shaderFP) { |
| grPaint->addColorFragmentProcessor(shaderFP); |
| } |
| |
| // We can ignore origColor here - alpha is unchanged by gamma |
| GrColor paintAlpha = SkColorAlphaToGrColor(skPaint.getColor()); |
| if (GrColor_WHITE != paintAlpha) { |
| grPaint->addColorFragmentProcessor(GrConstColorProcessor::Make( |
| paintAlpha, GrConstColorProcessor::kModulateRGBA_InputMode)); |
| } |
| } else { |
| // The shader's FP sees the paint unpremul color |
| grPaint->setColor4f(origColor); |
| grPaint->addColorFragmentProcessor(std::move(shaderFP)); |
| } |
| } else { |
| if (primColorMode) { |
| // There is a blend between the primitive color and the paint color. The blend considers |
| // the opaque paint color. The paint's alpha is applied to the post-blended color. |
| // SRGBTODO: Preserve 4f on this code path |
| sk_sp<GrFragmentProcessor> processor( |
| GrConstColorProcessor::Make(origColor.opaque().toGrColor(), |
| GrConstColorProcessor::kIgnore_InputMode)); |
| if (primitiveIsSrc) { |
| processor = GrXfermodeFragmentProcessor::MakeFromDstProcessor(std::move(processor), |
| *primColorMode); |
| } else { |
| processor = GrXfermodeFragmentProcessor::MakeFromSrcProcessor(std::move(processor), |
| *primColorMode); |
| } |
| if (processor) { |
| grPaint->addColorFragmentProcessor(std::move(processor)); |
| } |
| |
| grPaint->setColor4f(origColor.opaque()); |
| |
| // We can ignore origColor here - alpha is unchanged by gamma |
| GrColor paintAlpha = SkColorAlphaToGrColor(skPaint.getColor()); |
| if (GrColor_WHITE != paintAlpha) { |
| grPaint->addColorFragmentProcessor(GrConstColorProcessor::Make( |
| paintAlpha, GrConstColorProcessor::kModulateRGBA_InputMode)); |
| } |
| } else { |
| // No shader, no primitive color. |
| grPaint->setColor4f(origColor.premul()); |
| applyColorFilterToPaintColor = true; |
| } |
| } |
| |
| SkColorFilter* colorFilter = skPaint.getColorFilter(); |
| if (colorFilter) { |
| if (applyColorFilterToPaintColor) { |
| // If we're in legacy mode, we *must* avoid using the 4f version of the color filter, |
| // because that will combine with the linearized version of the stored color. |
| if (dc->isGammaCorrect()) { |
| grPaint->setColor4f(GrColor4f::FromSkColor4f( |
| colorFilter->filterColor4f(origColor.toSkColor4f())).premul()); |
| } else { |
| grPaint->setColor4f(SkColorToPremulGrColor4f( |
| colorFilter->filterColor(skPaint.getColor()), false, nullptr)); |
| } |
| } else { |
| sk_sp<GrFragmentProcessor> cfFP(colorFilter->asFragmentProcessor(context)); |
| if (cfFP) { |
| grPaint->addColorFragmentProcessor(std::move(cfFP)); |
| } else { |
| return false; |
| } |
| } |
| } |
| |
| SkMaskFilter* maskFilter = skPaint.getMaskFilter(); |
| if (maskFilter) { |
| GrFragmentProcessor* mfFP; |
| if (maskFilter->asFragmentProcessor(&mfFP, nullptr, viewM)) { |
| grPaint->addCoverageFragmentProcessor(sk_sp<GrFragmentProcessor>(mfFP)); |
| } |
| } |
| |
| // When the xfermode is null on the SkPaint (meaning kSrcOver) we need the XPFactory field on |
| // the GrPaint to also be null (also kSrcOver). |
| SkASSERT(!grPaint->getXPFactory()); |
| if (!skPaint.isSrcOver()) { |
| grPaint->setXPFactory(SkBlendMode_AsXPFactory(skPaint.getBlendMode())); |
| } |
| |
| #ifndef SK_IGNORE_GPU_DITHER |
| if (skPaint.isDither() && grPaint->numColorFragmentProcessors() > 0 && !dc->isGammaCorrect()) { |
| grPaint->addColorFragmentProcessor(GrDitherEffect::Make()); |
| } |
| #endif |
| return true; |
| } |
| |
| bool SkPaintToGrPaint(GrContext* context, GrDrawContext* dc, const SkPaint& skPaint, |
| const SkMatrix& viewM, GrPaint* grPaint) { |
| return skpaint_to_grpaint_impl(context, dc, skPaint, viewM, nullptr, nullptr, false, grPaint); |
| } |
| |
| /** Replaces the SkShader (if any) on skPaint with the passed in GrFragmentProcessor. */ |
| bool SkPaintToGrPaintReplaceShader(GrContext* context, |
| GrDrawContext* dc, |
| const SkPaint& skPaint, |
| sk_sp<GrFragmentProcessor> shaderFP, |
| GrPaint* grPaint) { |
| if (!shaderFP) { |
| return false; |
| } |
| return skpaint_to_grpaint_impl(context, dc, skPaint, SkMatrix::I(), &shaderFP, nullptr, false, |
| grPaint); |
| } |
| |
| /** Ignores the SkShader (if any) on skPaint. */ |
| bool SkPaintToGrPaintNoShader(GrContext* context, |
| GrDrawContext* dc, |
| const SkPaint& skPaint, |
| GrPaint* grPaint) { |
| // Use a ptr to a nullptr to to indicate that the SkShader is ignored and not replaced. |
| static sk_sp<GrFragmentProcessor> kNullShaderFP(nullptr); |
| static sk_sp<GrFragmentProcessor>* kIgnoreShader = &kNullShaderFP; |
| return skpaint_to_grpaint_impl(context, dc, skPaint, SkMatrix::I(), kIgnoreShader, nullptr, |
| false, grPaint); |
| } |
| |
| /** Blends the SkPaint's shader (or color if no shader) with a per-primitive color which must |
| be setup as a vertex attribute using the specified SkXfermode::Mode. */ |
| bool SkPaintToGrPaintWithXfermode(GrContext* context, |
| GrDrawContext* dc, |
| const SkPaint& skPaint, |
| const SkMatrix& viewM, |
| SkXfermode::Mode primColorMode, |
| bool primitiveIsSrc, |
| GrPaint* grPaint) { |
| return skpaint_to_grpaint_impl(context, dc, skPaint, viewM, nullptr, &primColorMode, |
| primitiveIsSrc, grPaint); |
| } |
| |
| bool SkPaintToGrPaintWithTexture(GrContext* context, |
| GrDrawContext* dc, |
| const SkPaint& paint, |
| const SkMatrix& viewM, |
| sk_sp<GrFragmentProcessor> fp, |
| bool textureIsAlphaOnly, |
| GrPaint* grPaint) { |
| sk_sp<GrFragmentProcessor> shaderFP; |
| if (textureIsAlphaOnly) { |
| if (const SkShader* shader = paint.getShader()) { |
| shaderFP = shader->asFragmentProcessor(SkShader::AsFPArgs(context, |
| &viewM, |
| nullptr, |
| paint.getFilterQuality(), |
| dc->getColorSpace(), |
| dc->sourceGammaTreatment())); |
| if (!shaderFP) { |
| return false; |
| } |
| sk_sp<GrFragmentProcessor> fpSeries[] = { std::move(shaderFP), std::move(fp) }; |
| shaderFP = GrFragmentProcessor::RunInSeries(fpSeries, 2); |
| } else { |
| shaderFP = GrFragmentProcessor::MulOutputByInputUnpremulColor(fp); |
| } |
| } else { |
| shaderFP = GrFragmentProcessor::MulOutputByInputAlpha(fp); |
| } |
| |
| return SkPaintToGrPaintReplaceShader(context, dc, paint, std::move(shaderFP), grPaint); |
| } |
| |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| GrTextureParams::FilterMode GrSkFilterQualityToGrFilterMode(SkFilterQuality paintFilterQuality, |
| const SkMatrix& viewM, |
| const SkMatrix& localM, |
| bool* doBicubic) { |
| *doBicubic = false; |
| GrTextureParams::FilterMode textureFilterMode; |
| switch (paintFilterQuality) { |
| case kNone_SkFilterQuality: |
| textureFilterMode = GrTextureParams::kNone_FilterMode; |
| break; |
| case kLow_SkFilterQuality: |
| textureFilterMode = GrTextureParams::kBilerp_FilterMode; |
| break; |
| case kMedium_SkFilterQuality: { |
| SkMatrix matrix; |
| matrix.setConcat(viewM, localM); |
| if (matrix.getMinScale() < SK_Scalar1) { |
| textureFilterMode = GrTextureParams::kMipMap_FilterMode; |
| } else { |
| // Don't trigger MIP level generation unnecessarily. |
| textureFilterMode = GrTextureParams::kBilerp_FilterMode; |
| } |
| break; |
| } |
| case kHigh_SkFilterQuality: { |
| SkMatrix matrix; |
| matrix.setConcat(viewM, localM); |
| *doBicubic = GrBicubicEffect::ShouldUseBicubic(matrix, &textureFilterMode); |
| break; |
| } |
| default: |
| // Should be unreachable. If not, fall back to mipmaps. |
| textureFilterMode = GrTextureParams::kMipMap_FilterMode; |
| break; |
| |
| } |
| return textureFilterMode; |
| } |