blob: e8a2f253b0142229d38bfe0829e6319c6cdedb6d [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Test.h"
#include "SkChecksum.h"
#include "SkCityHash.h"
// Word size that is large enough to hold results of any checksum type.
typedef uint64_t checksum_result;
namespace skiatest {
class ChecksumTestClass : public Test {
public:
static Test* Factory(void*) {return SkNEW(ChecksumTestClass); }
protected:
virtual void onGetName(SkString* name) { name->set("Checksum"); }
virtual void onRun(Reporter* reporter) {
this->fReporter = reporter;
RunTest();
}
private:
enum Algorithm {
kSkChecksum,
kSkCityHash32,
kSkCityHash64
};
// Call Compute(data, size) on the appropriate checksum algorithm,
// depending on this->fWhichAlgorithm.
checksum_result ComputeChecksum(const char *data, size_t size) {
switch(fWhichAlgorithm) {
case kSkChecksum:
REPORTER_ASSERT_MESSAGE(fReporter,
reinterpret_cast<uintptr_t>(data) % 4 == 0,
"test data pointer is not 32-bit aligned");
REPORTER_ASSERT_MESSAGE(fReporter, SkIsAlign4(size),
"test data size is not 32-bit aligned");
return SkChecksum::Compute(reinterpret_cast<const uint32_t *>(data), size);
case kSkCityHash32:
return SkCityHash::Compute32(data, size);
case kSkCityHash64:
return SkCityHash::Compute64(data, size);
default:
SkString message("fWhichAlgorithm has unknown value ");
message.appendf("%d", fWhichAlgorithm);
fReporter->reportFailed(message);
}
// we never get here
return 0;
}
// Confirm that the checksum algorithm (specified by fWhichAlgorithm)
// generates the same results if called twice over the same data.
void TestChecksumSelfConsistency(size_t buf_size) {
SkAutoMalloc storage(buf_size);
char* ptr = reinterpret_cast<char *>(storage.get());
REPORTER_ASSERT(fReporter,
GetTestDataChecksum(8, 0) ==
GetTestDataChecksum(8, 0));
REPORTER_ASSERT(fReporter,
GetTestDataChecksum(8, 0) !=
GetTestDataChecksum(8, 1));
sk_bzero(ptr, buf_size);
checksum_result prev = 0;
// assert that as we change values (from 0 to non-zero) in
// our buffer, we get a different value
for (size_t i = 0; i < buf_size; ++i) {
ptr[i] = (i & 0x7f) + 1; // need some non-zero value here
// Try checksums of different-sized chunks, but always
// 32-bit aligned and big enough to contain all the
// nonzero bytes. (Remaining bytes will still be zero
// from the initial sk_bzero() call.)
size_t checksum_size = (((i/4)+1)*4);
REPORTER_ASSERT(fReporter, checksum_size <= buf_size);
checksum_result curr = ComputeChecksum(ptr, checksum_size);
REPORTER_ASSERT(fReporter, prev != curr);
checksum_result again = ComputeChecksum(ptr, checksum_size);
REPORTER_ASSERT(fReporter, again == curr);
prev = curr;
}
}
// Return the checksum of a buffer of bytes 'len' long.
// The pattern of values within the buffer will be consistent
// for every call, based on 'seed'.
checksum_result GetTestDataChecksum(size_t len, char seed=0) {
SkAutoMalloc storage(len);
char* start = reinterpret_cast<char *>(storage.get());
char* ptr = start;
for (size_t i = 0; i < len; ++i) {
*ptr++ = ((seed+i) & 0x7f);
}
checksum_result result = ComputeChecksum(start, len);
return result;
}
void RunTest() {
// Test self-consistency of checksum algorithms.
fWhichAlgorithm = kSkChecksum;
TestChecksumSelfConsistency(128);
fWhichAlgorithm = kSkCityHash32;
TestChecksumSelfConsistency(128);
fWhichAlgorithm = kSkCityHash64;
TestChecksumSelfConsistency(128);
// Test checksum results that should be consistent across
// versions and platforms.
fWhichAlgorithm = kSkChecksum;
REPORTER_ASSERT(fReporter, ComputeChecksum(NULL, 0) == 0);
fWhichAlgorithm = kSkCityHash32;
REPORTER_ASSERT(fReporter, ComputeChecksum(NULL, 0) == 0xdc56d17a);
REPORTER_ASSERT(fReporter, GetTestDataChecksum(4) == 0x616e1132);
REPORTER_ASSERT(fReporter, GetTestDataChecksum(8) == 0xeb0fd2d6);
REPORTER_ASSERT(fReporter, GetTestDataChecksum(128) == 0x5321e430);
REPORTER_ASSERT(fReporter, GetTestDataChecksum(132) == 0x924a10e4);
REPORTER_ASSERT(fReporter, GetTestDataChecksum(256) == 0xd4de9dc9);
REPORTER_ASSERT(fReporter, GetTestDataChecksum(260) == 0xecf0325d);
fWhichAlgorithm = kSkCityHash64;
REPORTER_ASSERT(fReporter, ComputeChecksum(NULL, 0) == 0x9ae16a3b2f90404fULL);
REPORTER_ASSERT(fReporter, GetTestDataChecksum(4) == 0x82bffd898958e540ULL);
REPORTER_ASSERT(fReporter, GetTestDataChecksum(8) == 0xad5a13e1e8e93b98ULL);
REPORTER_ASSERT(fReporter, GetTestDataChecksum(128) == 0x10b153630af1f395ULL);
REPORTER_ASSERT(fReporter, GetTestDataChecksum(132) == 0x7db71dc4adcc6647ULL);
REPORTER_ASSERT(fReporter, GetTestDataChecksum(256) == 0xeee763519b91b010ULL);
REPORTER_ASSERT(fReporter, GetTestDataChecksum(260) == 0x2fe19e0b2239bc23ULL);
// TODO: note the weakness exposed by these collisions...
// We need to improve the SkChecksum algorithm.
// We would prefer that these asserts FAIL!
// Filed as https://code.google.com/p/skia/issues/detail?id=981
// ('SkChecksum algorithm allows for way too many collisions')
fWhichAlgorithm = kSkChecksum;
REPORTER_ASSERT(fReporter,
GetTestDataChecksum(128) == GetTestDataChecksum(256));
REPORTER_ASSERT(fReporter,
GetTestDataChecksum(132) == GetTestDataChecksum(260));
}
Reporter* fReporter;
Algorithm fWhichAlgorithm;
};
static TestRegistry gReg(ChecksumTestClass::Factory);
}