| /* |
| * Copyright 2018 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/effects/GrYUVtoRGBEffect.h" |
| |
| #include "include/core/SkYUVAInfo.h" |
| #include "src/core/SkYUVMath.h" |
| #include "src/gpu/GrTexture.h" |
| #include "src/gpu/GrYUVATextureProxies.h" |
| #include "src/gpu/effects/GrMatrixEffect.h" |
| #include "src/gpu/glsl/GrGLSLFragmentProcessor.h" |
| #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "src/gpu/glsl/GrGLSLProgramBuilder.h" |
| #include "src/sksl/SkSLCPP.h" |
| #include "src/sksl/SkSLUtil.h" |
| |
| static void border_colors(const GrYUVATextureProxies& yuvaProxies, float planeBorders[4][4]) { |
| float m[20]; |
| SkColorMatrix_RGB2YUV(yuvaProxies.yuvaInfo().yuvColorSpace(), m); |
| for (int i = 0; i < SkYUVAInfo::kYUVAChannelCount; ++i) { |
| auto [plane, channel] = yuvaProxies.yuvaLocations()[i]; |
| if (plane == -1) { |
| return; |
| } |
| auto c = static_cast<int>(channel); |
| planeBorders[plane][c] = m[i*5 + 4]; |
| } |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrYUVtoRGBEffect::Make(const GrYUVATextureProxies& yuvaProxies, |
| GrSamplerState samplerState, |
| const GrCaps& caps, |
| const SkMatrix& localMatrix, |
| const SkRect* subset, |
| const SkRect* domain) { |
| int numPlanes = yuvaProxies.yuvaInfo().numPlanes(); |
| if (!yuvaProxies.isValid()) { |
| return nullptr; |
| } |
| |
| bool usesBorder = samplerState.wrapModeX() == GrSamplerState::WrapMode::kClampToBorder || |
| samplerState.wrapModeY() == GrSamplerState::WrapMode::kClampToBorder; |
| float planeBorders[4][4] = {}; |
| if (usesBorder) { |
| border_colors(yuvaProxies, planeBorders); |
| } |
| |
| bool snap[2] = {false, false}; |
| std::unique_ptr<GrFragmentProcessor> planeFPs[SkYUVAInfo::kMaxPlanes]; |
| for (int i = 0; i < numPlanes; ++i) { |
| GrSurfaceProxyView view = yuvaProxies.makeView(i); |
| SkMatrix planeMatrix = yuvaProxies.yuvaInfo().originMatrix(); |
| // The returned matrix is a view matrix but we need a local matrix. |
| SkAssertResult(planeMatrix.invert(&planeMatrix)); |
| SkRect planeSubset; |
| SkRect planeDomain; |
| bool makeLinearWithSnap = false; |
| auto [ssx, ssy] = yuvaProxies.yuvaInfo().planeSubsamplingFactors(i); |
| SkASSERT(ssx > 0 && ssx <= 4); |
| SkASSERT(ssy > 0 && ssy <= 2); |
| float scaleX = 1.f; |
| float scaleY = 1.f; |
| if (ssx > 1 || ssy > 1) { |
| // JPEG chroma subsampling of odd dimensions produces U and V planes with the ceiling of |
| // the image size divided by the subsampling factor (2). Our API for creating YUVA |
| // doesn't capture the intended subsampling (and we should fix that). This fixes up 2x |
| // subsampling for images with odd widths/heights (e.g. JPEG 420 or 422). |
| scaleX = 1.f/ssx; |
| scaleY = 1.f/ssy; |
| // We would want to add a translation to this matrix to handle other sitings. |
| SkASSERT(yuvaProxies.yuvaInfo().sitingX() == SkYUVAInfo::Siting::kCentered); |
| SkASSERT(yuvaProxies.yuvaInfo().sitingY() == SkYUVAInfo::Siting::kCentered); |
| planeMatrix.postConcat(SkMatrix::Scale(scaleX, scaleY)); |
| if (subset) { |
| planeSubset = {subset->fLeft *scaleX, |
| subset->fTop *scaleY, |
| subset->fRight *scaleX, |
| subset->fBottom*scaleY}; |
| } |
| if (domain) { |
| planeDomain = {domain->fLeft *scaleX, |
| domain->fTop *scaleY, |
| domain->fRight *scaleX, |
| domain->fBottom*scaleY}; |
| } |
| // This promotion of nearest to linear filtering for UV planes exists to mimic |
| // libjpeg[-turbo]'s do_fancy_upsampling option. We will filter the subsampled plane, |
| // however we want to filter at a fixed point for each logical image pixel to simulate |
| // nearest neighbor. |
| if (samplerState.filter() == GrSamplerState::Filter::kNearest) { |
| bool snapX = (ssx != 1), |
| snapY = (ssy != 1); |
| makeLinearWithSnap = snapX || snapY; |
| snap[0] |= snapX; |
| snap[1] |= snapY; |
| if (domain) { |
| // The outer YUVToRGB effect will ensure sampling happens at pixel centers |
| // within this plane. |
| planeDomain = {std::floor(planeDomain.fLeft) + 0.5f, |
| std::floor(planeDomain.fTop) + 0.5f, |
| std::floor(planeDomain.fRight) + 0.5f, |
| std::floor(planeDomain.fBottom) + 0.5f}; |
| } |
| } |
| } else { |
| if (subset) { |
| planeSubset = *subset; |
| } |
| if (domain) { |
| planeDomain = *domain; |
| } |
| } |
| if (subset) { |
| SkASSERT(samplerState.mipmapped() == GrMipmapped::kNo); |
| if (makeLinearWithSnap) { |
| // The plane is subsampled and we have an overall subset on the image. We're |
| // emulating do_fancy_upsampling using linear filtering but snapping look ups to the |
| // y-plane pixel centers. Consider a logical image pixel at the edge of the subset. |
| // When computing the logical pixel color value we should use a 50/50 blend of two |
| // values from the subsampled plane. Depending on where the subset edge falls in |
| // actual subsampled plane, one of those values may come from outside the subset. |
| // Hence, we use this custom inset factory which applies the wrap mode to |
| // planeSubset but allows linear filtering to read pixels from the plane that are |
| // just outside planeSubset. |
| SkRect* domainRect = domain ? &planeDomain : nullptr; |
| planeFPs[i] = GrTextureEffect::MakeCustomLinearFilterInset(std::move(view), |
| kUnknown_SkAlphaType, |
| planeMatrix, |
| samplerState.wrapModeX(), |
| samplerState.wrapModeY(), |
| planeSubset, |
| domainRect, |
| {scaleX/2.f, scaleY/2.f}, |
| caps, |
| planeBorders[i]); |
| } else if (domain) { |
| planeFPs[i] = GrTextureEffect::MakeSubset(std::move(view), |
| kUnknown_SkAlphaType, |
| planeMatrix, |
| samplerState, |
| planeSubset, |
| planeDomain, |
| caps, |
| planeBorders[i]); |
| } else { |
| planeFPs[i] = GrTextureEffect::MakeSubset(std::move(view), |
| kUnknown_SkAlphaType, |
| planeMatrix, |
| samplerState, |
| planeSubset, |
| caps, |
| planeBorders[i]); |
| } |
| } else { |
| GrSamplerState planeSampler = samplerState; |
| if (makeLinearWithSnap) { |
| planeSampler.setFilterMode(GrSamplerState::Filter::kLinear); |
| } |
| planeFPs[i] = GrTextureEffect::Make(std::move(view), |
| kUnknown_SkAlphaType, |
| planeMatrix, |
| planeSampler, |
| caps, |
| planeBorders[i]); |
| } |
| } |
| std::unique_ptr<GrFragmentProcessor> fp( |
| new GrYUVtoRGBEffect(planeFPs, |
| numPlanes, |
| yuvaProxies.yuvaLocations(), |
| snap, |
| yuvaProxies.yuvaInfo().yuvColorSpace())); |
| return GrMatrixEffect::Make(localMatrix, std::move(fp)); |
| } |
| |
| static SkAlphaType alpha_type(const SkYUVAInfo::YUVALocations locations) { |
| return locations[SkYUVAInfo::YUVAChannels::kA].fPlane >= 0 ? kPremul_SkAlphaType |
| : kOpaque_SkAlphaType; |
| } |
| |
| GrYUVtoRGBEffect::GrYUVtoRGBEffect(std::unique_ptr<GrFragmentProcessor> planeFPs[4], |
| int numPlanes, |
| const SkYUVAInfo::YUVALocations& locations, |
| const bool snap[2], |
| SkYUVColorSpace yuvColorSpace) |
| : GrFragmentProcessor(kGrYUVtoRGBEffect_ClassID, |
| ModulateForClampedSamplerOptFlags(alpha_type(locations))) |
| , fLocations(locations) |
| , fYUVColorSpace(yuvColorSpace) { |
| std::copy_n(snap, 2, fSnap); |
| |
| if (fSnap[0] || fSnap[1]) { |
| // Need this so that we can access coords in SKSL to perform snapping. |
| this->setUsesSampleCoordsDirectly(); |
| for (int i = 0; i < numPlanes; ++i) { |
| this->registerChild(std::move(planeFPs[i]), SkSL::SampleUsage::Explicit()); |
| } |
| } else { |
| for (int i = 0; i < numPlanes; ++i) { |
| this->registerChild(std::move(planeFPs[i])); |
| } |
| } |
| } |
| |
| #if GR_TEST_UTILS |
| SkString GrYUVtoRGBEffect::onDumpInfo() const { |
| SkString str("("); |
| for (int i = 0; i < SkYUVAInfo::kYUVAChannelCount; ++i) { |
| str.appendf("Locations[%d]=%d %d, ", |
| i, fLocations[i].fPlane, static_cast<int>(fLocations[i].fChannel)); |
| } |
| str.appendf("YUVColorSpace=%d, snap=(%d, %d))", |
| static_cast<int>(fYUVColorSpace), fSnap[0], fSnap[1]); |
| return str; |
| } |
| #endif |
| |
| GrGLSLFragmentProcessor* GrYUVtoRGBEffect::onCreateGLSLInstance() const { |
| class GrGLSLYUVtoRGBEffect : public GrGLSLFragmentProcessor { |
| public: |
| GrGLSLYUVtoRGBEffect() {} |
| |
| void emitCode(EmitArgs& args) override { |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| const GrYUVtoRGBEffect& yuvEffect = args.fFp.cast<GrYUVtoRGBEffect>(); |
| |
| int numPlanes = yuvEffect.numChildProcessors(); |
| |
| const char* sampleCoords = ""; |
| if (yuvEffect.fSnap[0] || yuvEffect.fSnap[1]) { |
| fragBuilder->codeAppendf("float2 snappedCoords = %s;", args.fSampleCoord); |
| if (yuvEffect.fSnap[0]) { |
| fragBuilder->codeAppend("snappedCoords.x = floor(snappedCoords.x) + 0.5;"); |
| } |
| if (yuvEffect.fSnap[1]) { |
| fragBuilder->codeAppend("snappedCoords.y = floor(snappedCoords.y) + 0.5;"); |
| } |
| sampleCoords = "snappedCoords"; |
| } |
| |
| fragBuilder->codeAppendf("half4 planes[%d];", numPlanes); |
| for (int i = 0; i < numPlanes; ++i) { |
| SkString tempVar = this->invokeChild(i, args, sampleCoords); |
| fragBuilder->codeAppendf("planes[%d] = %s;", i, tempVar.c_str()); |
| } |
| |
| bool hasAlpha = yuvEffect.fLocations[SkYUVAInfo::YUVAChannels::kA].fPlane >= 0; |
| SkString rgba[4]; |
| rgba[3] = "1"; |
| for (int i = 0; i < (hasAlpha ? 4 : 3); ++i) { |
| auto [plane, channel] = yuvEffect.fLocations[i]; |
| auto letter = "rgba"[static_cast<int>(channel)]; |
| rgba[i].printf("planes[%d].%c", plane, letter); |
| } |
| |
| fragBuilder->codeAppendf("half4 color = half4(%s, %s, %s, %s);", |
| rgba[0].c_str(), rgba[1].c_str(), rgba[2].c_str(), rgba[3].c_str()); |
| |
| if (kIdentity_SkYUVColorSpace != yuvEffect.fYUVColorSpace) { |
| fColorSpaceMatrixVar = args.fUniformHandler->addUniform(&yuvEffect, |
| kFragment_GrShaderFlag, kHalf3x3_GrSLType, "colorSpaceMatrix"); |
| fColorSpaceTranslateVar = args.fUniformHandler->addUniform(&yuvEffect, |
| kFragment_GrShaderFlag, kHalf3_GrSLType, "colorSpaceTranslate"); |
| fragBuilder->codeAppendf( |
| "color.rgb = saturate(color.rgb * %s + %s);", |
| args.fUniformHandler->getUniformCStr(fColorSpaceMatrixVar), |
| args.fUniformHandler->getUniformCStr(fColorSpaceTranslateVar)); |
| } |
| |
| if (hasAlpha) { |
| // premultiply alpha |
| fragBuilder->codeAppendf("color.rgb *= color.a;"); |
| } |
| fragBuilder->codeAppendf("return color;"); |
| } |
| |
| private: |
| void onSetData(const GrGLSLProgramDataManager& pdman, |
| const GrFragmentProcessor& proc) override { |
| const GrYUVtoRGBEffect& yuvEffect = proc.cast<GrYUVtoRGBEffect>(); |
| |
| if (yuvEffect.fYUVColorSpace != kIdentity_SkYUVColorSpace) { |
| SkASSERT(fColorSpaceMatrixVar.isValid()); |
| float yuvM[20]; |
| SkColorMatrix_YUV2RGB(yuvEffect.fYUVColorSpace, yuvM); |
| // We drop the fourth column entirely since the transformation |
| // should not depend on alpha. The fifth column is sent as a separate |
| // vector. The fourth row is also dropped entirely because alpha should |
| // never be modified. |
| SkASSERT(yuvM[3] == 0 && yuvM[8] == 0 && yuvM[13] == 0 && yuvM[18] == 1); |
| SkASSERT(yuvM[15] == 0 && yuvM[16] == 0 && yuvM[17] == 0 && yuvM[19] == 0); |
| float mtx[9] = { |
| yuvM[ 0], yuvM[ 1], yuvM[ 2], |
| yuvM[ 5], yuvM[ 6], yuvM[ 7], |
| yuvM[10], yuvM[11], yuvM[12], |
| }; |
| float v[3] = {yuvM[4], yuvM[9], yuvM[14]}; |
| pdman.setMatrix3f(fColorSpaceMatrixVar, mtx); |
| pdman.set3fv(fColorSpaceTranslateVar, 1, v); |
| } |
| } |
| |
| UniformHandle fColorSpaceMatrixVar; |
| UniformHandle fColorSpaceTranslateVar; |
| }; |
| |
| return new GrGLSLYUVtoRGBEffect; |
| } |
| void GrYUVtoRGBEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps, |
| GrProcessorKeyBuilder* b) const { |
| uint32_t packed = 0; |
| int i = 0; |
| for (auto [plane, channel] : fLocations) { |
| if (plane < 0) { |
| continue; |
| } |
| |
| uint8_t chann = static_cast<int>(channel); |
| |
| SkASSERT(plane < 4 && chann < 4); |
| |
| packed |= (plane | (chann << 2)) << (i++ * 4); |
| } |
| if (fYUVColorSpace == kIdentity_SkYUVColorSpace) { |
| packed |= 1 << 16; |
| } |
| if (fSnap[0]) { |
| packed |= 1 << 17; |
| } |
| if (fSnap[1]) { |
| packed |= 1 << 18; |
| } |
| b->add32(packed); |
| } |
| |
| bool GrYUVtoRGBEffect::onIsEqual(const GrFragmentProcessor& other) const { |
| const GrYUVtoRGBEffect& that = other.cast<GrYUVtoRGBEffect>(); |
| |
| return fLocations == that.fLocations && |
| std::equal(fSnap, fSnap + 2, that.fSnap) && |
| fYUVColorSpace == that.fYUVColorSpace; |
| } |
| |
| GrYUVtoRGBEffect::GrYUVtoRGBEffect(const GrYUVtoRGBEffect& src) |
| : GrFragmentProcessor(kGrYUVtoRGBEffect_ClassID, src.optimizationFlags()) |
| , fLocations((src.fLocations)) |
| , fYUVColorSpace(src.fYUVColorSpace) { |
| this->cloneAndRegisterAllChildProcessors(src); |
| if (src.fSnap[0] || src.fSnap[1]) { |
| this->setUsesSampleCoordsDirectly(); |
| } |
| |
| std::copy_n(src.fSnap, 2, fSnap); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrYUVtoRGBEffect::clone() const { |
| return std::unique_ptr<GrFragmentProcessor>(new GrYUVtoRGBEffect(*this)); |
| } |