| /* |
| * Copyright 2020 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef GrMiddleOutPolygonTriangulator_DEFINED |
| #define GrMiddleOutPolygonTriangulator_DEFINED |
| |
| #include "include/core/SkPath.h" |
| #include "include/core/SkPoint.h" |
| #include "include/private/SkTemplates.h" |
| #include "src/core/SkMathPriv.h" |
| #include "src/core/SkPathPriv.h" |
| |
| // This class emits a polygon triangulation with a "middle-out" topology. Conceptually, middle-out |
| // emits one large triangle with vertices on both endpoints and a middle point, then recurses on |
| // both sides of the new triangle. i.e.: |
| // |
| // void emit_middle_out_triangulation(int startIdx, int endIdx) { |
| // if (startIdx + 1 == endIdx) { |
| // return; |
| // } |
| // int middleIdx = startIdx + SkNextPow2(endIdx - startIdx) / 2; |
| // |
| // // Recurse on the left half. |
| // emit_middle_out_triangulation(startIdx, middleIdx); |
| // |
| // // Emit a large triangle with vertices on both endpoints and a middle point. |
| // emit_triangle(vertices[startIdx], vertices[middleIdx], vertices[endIdx - 1]); |
| // |
| // // Recurse on the right half. |
| // emit_middle_out_triangulation(middleIdx, endIdx); |
| // } |
| // |
| // Middle-out produces drastically less work for the rasterizer as compared a linear triangle strip |
| // or fan. |
| // |
| // This class is designed to not know or store all the vertices in the polygon at once. The caller |
| // pushes each vertex in linear order (perhaps while parsing a path), then rather than relying on |
| // recursion, we manipulate an O(log N) stack to determine the correct middle-out triangulation. |
| class GrMiddleOutPolygonTriangulator { |
| public: |
| GrMiddleOutPolygonTriangulator(SkPoint* vertexData, int perTriangleVertexAdvance, |
| int maxPushVertexCalls) |
| : fVertexData(vertexData) |
| , fPerTriangleVertexAdvance(perTriangleVertexAdvance) { |
| // Determine the deepest our stack can ever go. |
| int maxStackDepth = SkNextLog2(maxPushVertexCalls) + 1; |
| if (maxStackDepth > kStackPreallocCount) { |
| fVertexStack.reset(maxStackDepth); |
| } |
| SkDEBUGCODE(fStackAllocCount = maxStackDepth;) |
| // The stack will always contain a starting point. This is an implicit moveTo(0, 0) |
| // initially, but will be overridden if moveTo() gets called before adding geometry. |
| fVertexStack[0] = {0, {0, 0}}; |
| fTop = fVertexStack; |
| } |
| |
| void pushVertex(const SkPoint& pt) { |
| if (pt == fVertexStack[0].fPoint) { |
| this->close(); |
| return; |
| } |
| // This new vertex we are about to add is one vertex away from the top of the stack. |
| // i.e., it is guaranteed to be the next vertex in the polygon after the one stored in fTop. |
| int vertexIdxDelta = 1; |
| // Our topology wants triangles that have the same vertexIdxDelta on both sides: |
| // e.g., a run of 9 points should be triangulated as: |
| // |
| // [0, 1, 2], [2, 3, 4], [4, 5, 6], [6, 7, 8] // vertexIdxDelta == 1 |
| // [0, 2, 4], [4, 6, 8] // vertexIdxDelta == 2 |
| // [0, 4, 8] // vertexIdxDelta == 4 |
| // |
| // Emit as many new triangles as we can with equal-delta sides and pop their vertices off |
| // the stack before pushing this new vertex. |
| // |
| // (This is a stack-based implementation of the recursive example method from the class |
| // comment.) |
| while (vertexIdxDelta == fTop->fVertexIdxDelta) { |
| this->popTopTriangle(pt); |
| vertexIdxDelta *= 2; |
| } |
| this->pushVertex(vertexIdxDelta, pt); |
| } |
| |
| int close() { |
| if (fTop == fVertexStack) { // The stack only contains one point (the starting point). |
| return fTotalClosedTriangleCount; |
| } |
| // We will count vertices by walking the stack backwards. |
| int finalVertexCount = 1; |
| // Add an implicit line back to the starting point, then triangulate the rest of the |
| // polygon. Since we simply have to finish now, we aren't picky anymore about making the |
| // vertexIdxDeltas match. |
| const SkPoint& p0 = fVertexStack[0].fPoint; |
| SkASSERT(fTop->fPoint != p0); // We should have detected and handled this case earlier. |
| while (fTop - 1 > fVertexStack) { |
| finalVertexCount += fTop->fVertexIdxDelta; |
| this->popTopTriangle(p0); |
| } |
| SkASSERT(fTop == fVertexStack + 1); |
| finalVertexCount += fTop->fVertexIdxDelta; |
| SkASSERT(fVertexStack[0].fVertexIdxDelta == 0); |
| fTop = fVertexStack; |
| int numTriangles = finalVertexCount - 2; |
| SkASSERT(numTriangles >= 0); |
| fTotalClosedTriangleCount += numTriangles; |
| return fTotalClosedTriangleCount; |
| } |
| |
| void closeAndMove(const SkPoint& startPt) { |
| this->close(); |
| SkASSERT(fTop == fVertexStack); // The stack should only contain a starting point now. |
| fTop->fPoint = startPt; // Modify the starting point. |
| SkASSERT(fTop->fVertexIdxDelta == 0); // Ensure we are in the initial stack state. |
| } |
| |
| static int WritePathInnerFan(SkPoint* vertexData, int perTriangleVertexAdvance, |
| const SkPath& path) { |
| GrMiddleOutPolygonTriangulator middleOut(vertexData, perTriangleVertexAdvance, |
| path.countVerbs()); |
| for (auto [verb, pts, w] : SkPathPriv::Iterate(path)) { |
| switch (verb) { |
| case SkPathVerb::kMove: |
| middleOut.closeAndMove(pts[0]); |
| break; |
| case SkPathVerb::kLine: |
| case SkPathVerb::kQuad: |
| case SkPathVerb::kConic: |
| case SkPathVerb::kCubic: |
| middleOut.pushVertex(pts[SkPathPriv::PtsInIter((unsigned)verb) - 1]); |
| break; |
| case SkPathVerb::kClose: |
| break; |
| } |
| } |
| return middleOut.close(); |
| } |
| |
| private: |
| struct StackVertex { |
| // How many polygon vertices away is this vertex from the previous vertex on the stack? |
| // i.e., the ith stack element's vertex index in the original polygon is: |
| // |
| // fVertexStack[i].fVertexIdxDelta + fVertexStack[i - 1].fVertexIdxDelta + ... + |
| // fVertexStack[1].fVertexIdxDelta. |
| // |
| // NOTE: fVertexStack[0].fVertexIdxDelta always == 0. |
| int fVertexIdxDelta; |
| SkPoint fPoint; |
| }; |
| |
| void pushVertex(int vertexIdxDelta, const SkPoint& point) { |
| ++fTop; |
| // We should never push deeper than fStackAllocCount. |
| SkASSERT(fTop < fVertexStack + fStackAllocCount); |
| fTop->fVertexIdxDelta = vertexIdxDelta; |
| fTop->fPoint = point; |
| } |
| |
| void popTopTriangle(const SkPoint& lastPt) { |
| SkASSERT(fTop > fVertexStack); // We should never pop the starting point. |
| --fTop; |
| fVertexData[0] = fTop[0].fPoint; |
| fVertexData[1] = fTop[1].fPoint; |
| fVertexData[2] = lastPt; |
| fVertexData += fPerTriangleVertexAdvance; |
| } |
| |
| constexpr static int kStackPreallocCount = 32; |
| SkAutoSTMalloc<kStackPreallocCount, StackVertex> fVertexStack; |
| SkDEBUGCODE(int fStackAllocCount;) |
| StackVertex* fTop; |
| SkPoint* fVertexData; |
| int fPerTriangleVertexAdvance; |
| int fTotalClosedTriangleCount = 0; |
| }; |
| |
| #endif |