blob: 04307be77e01fa9104664135a5fbd8c407301afe [file] [log] [blame]
/*
* Copyright 2010 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkPDFImage.h"
#include "SkBitmap.h"
#include "SkColor.h"
#include "SkColorPriv.h"
#include "SkPackBits.h"
#include "SkPDFCatalog.h"
#include "SkRect.h"
#include "SkStream.h"
#include "SkString.h"
#include "SkUnPreMultiply.h"
namespace {
void extractImageData(const SkBitmap& bitmap, const SkIRect& srcRect,
SkStream** imageData, SkStream** alphaData) {
SkMemoryStream* image = NULL;
SkMemoryStream* alpha = NULL;
bool hasAlpha = false;
bool isTransparent = false;
bitmap.lockPixels();
switch (bitmap.getConfig()) {
case SkBitmap::kIndex8_Config: {
const int rowBytes = srcRect.width();
image = new SkMemoryStream(rowBytes * srcRect.height());
uint8_t* dst = (uint8_t*)image->getMemoryBase();
for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
memcpy(dst, bitmap.getAddr8(srcRect.fLeft, y), rowBytes);
dst += rowBytes;
}
break;
}
case SkBitmap::kRLE_Index8_Config: {
const int rowBytes = srcRect.width();
image = new SkMemoryStream(rowBytes * srcRect.height());
uint8_t* dst = (uint8_t*)image->getMemoryBase();
const SkBitmap::RLEPixels* rle =
(const SkBitmap::RLEPixels*)bitmap.getPixels();
for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
SkPackBits::Unpack8(dst, srcRect.fLeft, rowBytes,
rle->packedAtY(y));
dst += rowBytes;
}
break;
}
case SkBitmap::kARGB_4444_Config: {
isTransparent = true;
const int rowBytes = (srcRect.width() * 3 + 1) / 2;
const int alphaRowBytes = (srcRect.width() + 1) / 2;
image = new SkMemoryStream(rowBytes * srcRect.height());
alpha = new SkMemoryStream(alphaRowBytes * srcRect.height());
uint8_t* dst = (uint8_t*)image->getMemoryBase();
uint8_t* alphaDst = (uint8_t*)alpha->getMemoryBase();
for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
uint16_t* src = bitmap.getAddr16(0, y);
int x;
for (x = srcRect.fLeft; x + 1 < srcRect.fRight; x += 2) {
dst[0] = (SkGetPackedR4444(src[x]) << 4) |
SkGetPackedG4444(src[x]);
dst[1] = (SkGetPackedB4444(src[x]) << 4) |
SkGetPackedR4444(src[x + 1]);
dst[2] = (SkGetPackedG4444(src[x + 1]) << 4) |
SkGetPackedB4444(src[x + 1]);
dst += 3;
alphaDst[0] = (SkGetPackedA4444(src[x]) << 4) |
SkGetPackedA4444(src[x + 1]);
if (alphaDst[0] != 0xFF) {
hasAlpha = true;
}
if (alphaDst[0]) {
isTransparent = false;
}
alphaDst++;
}
if (srcRect.width() & 1) {
dst[0] = (SkGetPackedR4444(src[x]) << 4) |
SkGetPackedG4444(src[x]);
dst[1] = (SkGetPackedB4444(src[x]) << 4);
dst += 2;
alphaDst[0] = (SkGetPackedA4444(src[x]) << 4);
if (alphaDst[0] != 0xF0) {
hasAlpha = true;
}
if (alphaDst[0] & 0xF0) {
isTransparent = false;
}
alphaDst++;
}
}
break;
}
case SkBitmap::kRGB_565_Config: {
const int rowBytes = srcRect.width() * 3;
image = new SkMemoryStream(rowBytes * srcRect.height());
uint8_t* dst = (uint8_t*)image->getMemoryBase();
for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
uint16_t* src = bitmap.getAddr16(0, y);
for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
dst[0] = SkGetPackedR16(src[x]);
dst[1] = SkGetPackedG16(src[x]);
dst[2] = SkGetPackedB16(src[x]);
dst += 3;
}
}
break;
}
case SkBitmap::kARGB_8888_Config: {
isTransparent = true;
const int rowBytes = srcRect.width() * 3;
image = new SkMemoryStream(rowBytes * srcRect.height());
alpha = new SkMemoryStream(srcRect.width() * srcRect.height());
uint8_t* dst = (uint8_t*)image->getMemoryBase();
uint8_t* alphaDst = (uint8_t*)alpha->getMemoryBase();
for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
uint32_t* src = bitmap.getAddr32(0, y);
for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
dst[0] = SkGetPackedR32(src[x]);
dst[1] = SkGetPackedG32(src[x]);
dst[2] = SkGetPackedB32(src[x]);
dst += 3;
alphaDst[0] = SkGetPackedA32(src[x]);
if (alphaDst[0] != 0xFF) {
hasAlpha = true;
}
if (alphaDst[0]) {
isTransparent = false;
}
alphaDst++;
}
}
break;
}
case SkBitmap::kA1_Config: {
isTransparent = true;
image = new SkMemoryStream(1);
((uint8_t*)image->getMemoryBase())[0] = 0;
const int alphaRowBytes = (srcRect.width() + 7) / 8;
alpha = new SkMemoryStream(alphaRowBytes * srcRect.height());
uint8_t* alphaDst = (uint8_t*)alpha->getMemoryBase();
int offset1 = srcRect.fLeft % 8;
int offset2 = 8 - offset1;
for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
uint8_t* src = bitmap.getAddr1(0, y);
// This may read up to one byte after src, but the potentially
// invalid bits are never used for computation.
for (int x = srcRect.fLeft; x < srcRect.fRight; x += 8) {
if (offset1) {
alphaDst[0] = src[x / 8] << offset1 |
src[x / 8 + 1] >> offset2;
} else {
alphaDst[0] = src[x / 8];
}
if (x + 7 < srcRect.fRight && alphaDst[0] != 0xFF) {
hasAlpha = true;
}
if (x + 7 < srcRect.fRight && alphaDst[0]) {
isTransparent = false;
}
alphaDst++;
}
// Calculate the mask of bits we're interested in within the
// last byte of alphaDst.
// width mod 8 == 1 -> 0x80 ... width mod 8 == 7 -> 0xFE
uint8_t mask = ~((1 << (8 - (srcRect.width() % 8))) - 1);
if (srcRect.width() % 8 && (alphaDst[-1] & mask) != mask) {
hasAlpha = true;
}
if (srcRect.width() % 8 && (alphaDst[-1] & mask)) {
isTransparent = false;
}
}
break;
}
case SkBitmap::kA8_Config: {
isTransparent = true;
image = new SkMemoryStream(1);
((uint8_t*)image->getMemoryBase())[0] = 0;
const int alphaRowBytes = srcRect.width();
alpha = new SkMemoryStream(alphaRowBytes * srcRect.height());
uint8_t* alphaDst = (uint8_t*)alpha->getMemoryBase();
for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
uint8_t* src = bitmap.getAddr8(0, y);
for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
alphaDst[0] = src[x];
if (alphaDst[0] != 0xFF) {
hasAlpha = true;
}
if (alphaDst[0]) {
isTransparent = false;
}
alphaDst++;
}
}
break;
}
default:
SkASSERT(false);
}
bitmap.unlockPixels();
if (isTransparent) {
SkSafeUnref(image);
} else {
*imageData = image;
}
if (isTransparent || !hasAlpha) {
SkSafeUnref(alpha);
} else {
*alphaData = alpha;
}
}
SkPDFArray* makeIndexedColorSpace(SkColorTable* table) {
SkPDFArray* result = new SkPDFArray();
result->reserve(4);
result->appendName("Indexed");
result->appendName("DeviceRGB");
result->appendInt(table->count() - 1);
// Potentially, this could be represented in fewer bytes with a stream.
// Max size as a string is 1.5k.
SkString index;
for (int i = 0; i < table->count(); i++) {
char buf[3];
SkColor color = SkUnPreMultiply::PMColorToColor((*table)[i]);
buf[0] = SkGetPackedR32(color);
buf[1] = SkGetPackedG32(color);
buf[2] = SkGetPackedB32(color);
index.append(buf, 3);
}
result->append(new SkPDFString(index))->unref();
return result;
}
}; // namespace
// static
SkPDFImage* SkPDFImage::CreateImage(const SkBitmap& bitmap,
const SkIRect& srcRect,
EncodeToDCTStream encoder) {
if (bitmap.getConfig() == SkBitmap::kNo_Config) {
return NULL;
}
SkStream* imageData = NULL;
SkStream* alphaData = NULL;
extractImageData(bitmap, srcRect, &imageData, &alphaData);
SkAutoUnref unrefImageData(imageData);
SkAutoUnref unrefAlphaData(alphaData);
if (!imageData) {
SkASSERT(!alphaData);
return NULL;
}
SkPDFImage* image =
SkNEW_ARGS(SkPDFImage, (imageData, bitmap, srcRect, false, encoder));
if (alphaData != NULL) {
// Don't try to use DCT compression with alpha because alpha is small
// anyway and it could lead to artifacts.
image->addSMask(SkNEW_ARGS(SkPDFImage, (alphaData, bitmap, srcRect, true, NULL)))->unref();
}
return image;
}
SkPDFImage::~SkPDFImage() {
fResources.unrefAll();
}
SkPDFImage* SkPDFImage::addSMask(SkPDFImage* mask) {
fResources.push(mask);
mask->ref();
insert("SMask", new SkPDFObjRef(mask))->unref();
return mask;
}
void SkPDFImage::getResources(const SkTSet<SkPDFObject*>& knownResourceObjects,
SkTSet<SkPDFObject*>* newResourceObjects) {
GetResourcesHelper(&fResources, knownResourceObjects, newResourceObjects);
}
SkPDFImage::SkPDFImage(SkStream* imageData,
const SkBitmap& bitmap,
const SkIRect& srcRect,
bool doingAlpha,
EncodeToDCTStream encoder)
: SkPDFImageStream(imageData, bitmap, srcRect, encoder) {
SkBitmap::Config config = bitmap.getConfig();
bool alphaOnly = (config == SkBitmap::kA1_Config ||
config == SkBitmap::kA8_Config);
insertName("Type", "XObject");
insertName("Subtype", "Image");
if (!doingAlpha && alphaOnly) {
// For alpha only images, we stretch a single pixel of black for
// the color/shape part.
SkAutoTUnref<SkPDFInt> one(new SkPDFInt(1));
insert("Width", one.get());
insert("Height", one.get());
} else {
insertInt("Width", srcRect.width());
insertInt("Height", srcRect.height());
}
// if (!image mask) {
if (doingAlpha || alphaOnly) {
insertName("ColorSpace", "DeviceGray");
} else if (config == SkBitmap::kIndex8_Config ||
config == SkBitmap::kRLE_Index8_Config) {
insert("ColorSpace",
makeIndexedColorSpace(bitmap.getColorTable()))->unref();
} else {
insertName("ColorSpace", "DeviceRGB");
}
// }
int bitsPerComp = 8;
if (config == SkBitmap::kARGB_4444_Config) {
bitsPerComp = 4;
} else if (doingAlpha && config == SkBitmap::kA1_Config) {
bitsPerComp = 1;
}
insertInt("BitsPerComponent", bitsPerComp);
if (config == SkBitmap::kRGB_565_Config) {
SkAutoTUnref<SkPDFInt> zeroVal(new SkPDFInt(0));
SkAutoTUnref<SkPDFScalar> scale5Val(
new SkPDFScalar(SkFloatToScalar(8.2258f))); // 255/2^5-1
SkAutoTUnref<SkPDFScalar> scale6Val(
new SkPDFScalar(SkFloatToScalar(4.0476f))); // 255/2^6-1
SkAutoTUnref<SkPDFArray> decodeValue(new SkPDFArray());
decodeValue->reserve(6);
decodeValue->append(zeroVal.get());
decodeValue->append(scale5Val.get());
decodeValue->append(zeroVal.get());
decodeValue->append(scale6Val.get());
decodeValue->append(zeroVal.get());
decodeValue->append(scale5Val.get());
insert("Decode", decodeValue.get());
}
}