| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "DataTypes.h" |
| |
| // Sources |
| // computer-aided design - volume 22 number 9 november 1990 pp 538 - 549 |
| // online at http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf |
| |
| // This turns a line segment into a parameterized line, of the form |
| // ax + by + c = 0 |
| // When a^2 + b^2 == 1, the line is normalized. |
| // The distance to the line for (x, y) is d(x,y) = ax + by + c |
| // |
| // Note that the distances below are not necessarily normalized. To get the true |
| // distance, it's necessary to either call normalize() after xxxEndPoints(), or |
| // divide the result of xxxDistance() by sqrt(normalSquared()) |
| |
| class LineParameters { |
| public: |
| void cubicEndPoints(const Cubic& pts) { |
| cubicEndPoints(pts, 0, 3); |
| } |
| |
| void cubicEndPoints(const Cubic& pts, int s, int e) { |
| a = approximately_pin(pts[s].y - pts[e].y); |
| b = approximately_pin(pts[e].x - pts[s].x); |
| c = pts[s].x * pts[e].y - pts[e].x * pts[s].y; |
| } |
| |
| void lineEndPoints(const _Line& pts) { |
| a = approximately_pin(pts[0].y - pts[1].y); |
| b = approximately_pin(pts[1].x - pts[0].x); |
| c = pts[0].x * pts[1].y - pts[1].x * pts[0].y; |
| } |
| |
| void quadEndPoints(const Quadratic& pts) { |
| quadEndPoints(pts, 0, 2); |
| } |
| |
| void quadEndPoints(const Quadratic& pts, int s, int e) { |
| a = approximately_pin(pts[s].y - pts[e].y); |
| b = approximately_pin(pts[e].x - pts[s].x); |
| c = pts[s].x * pts[e].y - pts[e].x * pts[s].y; |
| } |
| |
| double normalSquared() const { |
| return a * a + b * b; |
| } |
| |
| bool normalize() { |
| double normal = sqrt(normalSquared()); |
| if (approximately_zero(normal)) { |
| a = b = c = 0; |
| return false; |
| } |
| double reciprocal = 1 / normal; |
| a *= reciprocal; |
| b *= reciprocal; |
| c *= reciprocal; |
| return true; |
| } |
| |
| void cubicDistanceY(const Cubic& pts, Cubic& distance) const { |
| double oneThird = 1 / 3.0; |
| for (int index = 0; index < 4; ++index) { |
| distance[index].x = index * oneThird; |
| distance[index].y = a * pts[index].x + b * pts[index].y + c; |
| } |
| } |
| |
| void quadDistanceY(const Quadratic& pts, Quadratic& distance) const { |
| double oneHalf = 1 / 2.0; |
| for (int index = 0; index < 3; ++index) { |
| distance[index].x = index * oneHalf; |
| distance[index].y = a * pts[index].x + b * pts[index].y + c; |
| } |
| } |
| |
| double controlPtDistance(const Cubic& pts, int index) const { |
| SkASSERT(index == 1 || index == 2); |
| return a * pts[index].x + b * pts[index].y + c; |
| } |
| |
| double controlPtDistance(const Quadratic& pts) const { |
| return a * pts[1].x + b * pts[1].y + c; |
| } |
| |
| double pointDistance(const _Point& pt) const { |
| return a * pt.x + b * pt.y + c; |
| } |
| |
| double dx() const { |
| return b; |
| } |
| |
| double dy() const { |
| return -a; |
| } |
| |
| private: |
| double a; |
| double b; |
| double c; |
| }; |