| /* | 
 |  * Copyright 2020 Google LLC. | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 |  | 
 | #include "include/core/SkCanvas.h" | 
 | #include "include/core/SkImage.h" | 
 | #include "include/core/SkSurface.h" | 
 | #include "include/effects/SkGradientShader.h" | 
 | #include "include/gpu/GrDirectContext.h" | 
 | #include "src/core/SkAutoPixmapStorage.h" | 
 | #include "src/core/SkConvertPixels.h" | 
 | #include "src/gpu/GrDirectContextPriv.h" | 
 | #include "src/gpu/GrImageInfo.h" | 
 | #include "src/gpu/GrSurfaceContext.h" | 
 | #include "tests/Test.h" | 
 | #include "tests/TestUtils.h" | 
 | #include "tools/ToolUtils.h" | 
 | #include "tools/gpu/BackendSurfaceFactory.h" | 
 | #include "tools/gpu/BackendTextureImageFactory.h" | 
 | #include "tools/gpu/GrContextFactory.h" | 
 | #include "tools/gpu/ProxyUtils.h" | 
 |  | 
 | #include <initializer_list> | 
 |  | 
 | static constexpr int min_rgb_channel_bits(SkColorType ct) { | 
 |     switch (ct) { | 
 |         case kUnknown_SkColorType:            return 0; | 
 |         case kAlpha_8_SkColorType:            return 0; | 
 |         case kA16_unorm_SkColorType:          return 0; | 
 |         case kA16_float_SkColorType:          return 0; | 
 |         case kRGB_565_SkColorType:            return 5; | 
 |         case kARGB_4444_SkColorType:          return 4; | 
 |         case kR8G8_unorm_SkColorType:         return 8; | 
 |         case kR16G16_unorm_SkColorType:       return 16; | 
 |         case kR16G16_float_SkColorType:       return 16; | 
 |         case kRGBA_8888_SkColorType:          return 8; | 
 |         case kRGB_888x_SkColorType:           return 8; | 
 |         case kBGRA_8888_SkColorType:          return 8; | 
 |         case kRGBA_1010102_SkColorType:       return 10; | 
 |         case kRGB_101010x_SkColorType:        return 10; | 
 |         case kBGRA_1010102_SkColorType:       return 10; | 
 |         case kBGR_101010x_SkColorType:        return 10; | 
 |         case kGray_8_SkColorType:             return 8;   // counting gray as "rgb" | 
 |         case kRGBA_F16Norm_SkColorType:       return 10;  // just counting the mantissa | 
 |         case kRGBA_F16_SkColorType:           return 10;  // just counting the mantissa | 
 |         case kRGBA_F32_SkColorType:           return 23;  // just counting the mantissa | 
 |         case kR16G16B16A16_unorm_SkColorType: return 16; | 
 |     } | 
 |     SkUNREACHABLE; | 
 | } | 
 |  | 
 | static constexpr int alpha_channel_bits(SkColorType ct) { | 
 |     switch (ct) { | 
 |         case kUnknown_SkColorType:            return 0; | 
 |         case kAlpha_8_SkColorType:            return 8; | 
 |         case kA16_unorm_SkColorType:          return 16; | 
 |         case kA16_float_SkColorType:          return 16; | 
 |         case kRGB_565_SkColorType:            return 0; | 
 |         case kARGB_4444_SkColorType:          return 4; | 
 |         case kR8G8_unorm_SkColorType:         return 0; | 
 |         case kR16G16_unorm_SkColorType:       return 0; | 
 |         case kR16G16_float_SkColorType:       return 0; | 
 |         case kRGBA_8888_SkColorType:          return 8; | 
 |         case kRGB_888x_SkColorType:           return 0; | 
 |         case kBGRA_8888_SkColorType:          return 8; | 
 |         case kRGBA_1010102_SkColorType:       return 2; | 
 |         case kRGB_101010x_SkColorType:        return 0; | 
 |         case kBGRA_1010102_SkColorType:       return 2; | 
 |         case kBGR_101010x_SkColorType:        return 0; | 
 |         case kGray_8_SkColorType:             return 0; | 
 |         case kRGBA_F16Norm_SkColorType:       return 10;  // just counting the mantissa | 
 |         case kRGBA_F16_SkColorType:           return 10;  // just counting the mantissa | 
 |         case kRGBA_F32_SkColorType:           return 23;  // just counting the mantissa | 
 |         case kR16G16B16A16_unorm_SkColorType: return 16; | 
 |     } | 
 |     SkUNREACHABLE; | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | struct GpuReadPixelTestRules { | 
 |     // Test unpremul sources? We could omit this and detect that creating the source of the read | 
 |     // failed but having it lets us skip generating reference color data. | 
 |     bool fAllowUnpremulSrc = true; | 
 |     // Are reads that are overlapping but not contained by the src bounds expected to succeed? | 
 |     bool fUncontainedRectSucceeds = true; | 
 | }; | 
 |  | 
 | // Makes a src populated with the pixmap. The src should get its image info (or equivalent) from | 
 | // the pixmap. | 
 | template <typename T> using GpuSrcFactory = T(SkPixmap&); | 
 |  | 
 | enum class GpuReadResult { | 
 |     kFail, | 
 |     kSuccess, | 
 |     kExcusedFailure, | 
 | }; | 
 |  | 
 | // Does a read from the T into the pixmap. | 
 | template <typename T> | 
 | using GpuReadSrcFn = GpuReadResult(const T&, const SkIVector& offset, const SkPixmap&); | 
 |  | 
 | }  // anonymous namespace | 
 |  | 
 | template <typename T> | 
 | static void gpu_read_pixels_test_driver(skiatest::Reporter* reporter, | 
 |                                         const GpuReadPixelTestRules& rules, | 
 |                                         const std::function<GpuSrcFactory<T>>& srcFactory, | 
 |                                         const std::function<GpuReadSrcFn<T>>& read, | 
 |                                         SkString label) { | 
 |     if (!label.isEmpty()) { | 
 |         // Add space for printing. | 
 |         label.append(" "); | 
 |     } | 
 |     // Separate this out just to give it some line width to breathe. Note 'srcPixels' should have | 
 |     // the same image info as src. We will do a converting readPixels() on it to get the data | 
 |     // to compare with the results of 'read'. | 
 |     auto runTest = [&](const T& src, | 
 |                        const SkPixmap& srcPixels, | 
 |                        const SkImageInfo& readInfo, | 
 |                        const SkIVector& offset) { | 
 |         const bool csConversion = | 
 |                 !SkColorSpace::Equals(readInfo.colorSpace(), srcPixels.info().colorSpace()); | 
 |         const auto readCT = readInfo.colorType(); | 
 |         const auto readAT = readInfo.alphaType(); | 
 |         const auto srcCT = srcPixels.info().colorType(); | 
 |         const auto srcAT = srcPixels.info().alphaType(); | 
 |         const auto rect = SkIRect::MakeWH(readInfo.width(), readInfo.height()).makeOffset(offset); | 
 |         const auto surfBounds = SkIRect::MakeWH(srcPixels.width(), srcPixels.height()); | 
 |         const size_t readBpp = SkColorTypeBytesPerPixel(readCT); | 
 |  | 
 |         // Make the row bytes in the dst be loose for extra stress. | 
 |         const size_t dstRB = readBpp * readInfo.width() + 10 * readBpp; | 
 |         // This will make the last row tight. | 
 |         const size_t dstSize = readInfo.computeByteSize(dstRB); | 
 |         std::unique_ptr<char[]> dstData(new char[dstSize]); | 
 |         SkPixmap dstPixels(readInfo, dstData.get(), dstRB); | 
 |         // Initialize with an arbitrary value for each byte. Later we will check that only the | 
 |         // correct part of the destination gets overwritten by 'read'. | 
 |         static constexpr auto kInitialByte = static_cast<char>(0x1B); | 
 |         std::fill_n(static_cast<char*>(dstPixels.writable_addr()), | 
 |                     dstPixels.computeByteSize(), | 
 |                     kInitialByte); | 
 |  | 
 |         const GpuReadResult result = read(src, offset, dstPixels); | 
 |  | 
 |         if (!SkIRect::Intersects(rect, surfBounds)) { | 
 |             REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess); | 
 |         } else if (readCT == kUnknown_SkColorType) { | 
 |             REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess); | 
 |         } else if ((readAT == kUnknown_SkAlphaType) != (srcAT == kUnknown_SkAlphaType)) { | 
 |             REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess); | 
 |         } else if (!rules.fUncontainedRectSucceeds && !surfBounds.contains(rect)) { | 
 |             REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess); | 
 |         } else if (result == GpuReadResult::kFail) { | 
 |             // TODO: Support RGB/BGR 101010x, BGRA 1010102 on the GPU. | 
 |             if (SkColorTypeToGrColorType(readCT) != GrColorType::kUnknown) { | 
 |                 ERRORF(reporter, | 
 |                        "Read failed. %sSrc CT: %s, Src AT: %s Read CT: %s, Read AT: %s, " | 
 |                        "Rect [%d, %d, %d, %d], CS conversion: %d\n", | 
 |                        label.c_str(), | 
 |                        ToolUtils::colortype_name(srcCT), ToolUtils::alphatype_name(srcAT), | 
 |                        ToolUtils::colortype_name(readCT), ToolUtils::alphatype_name(readAT), | 
 |                        rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion); | 
 |             } | 
 |             return result; | 
 |         } | 
 |  | 
 |         bool guardOk = true; | 
 |         auto guardCheck = [](char x) { return x == kInitialByte; }; | 
 |  | 
 |         // Considering the rect we tried to read and the surface bounds figure  out which pixels in | 
 |         // both src and dst space should actually have been read and written. | 
 |         SkIRect srcReadRect; | 
 |         if (result == GpuReadResult::kSuccess && srcReadRect.intersect(surfBounds, rect)) { | 
 |             SkIRect dstWriteRect = srcReadRect.makeOffset(-rect.fLeft, -rect.fTop); | 
 |  | 
 |             const bool lumConversion = | 
 |                     !(SkColorTypeChannelFlags(srcCT) & kGray_SkColorChannelFlag) && | 
 |                     (SkColorTypeChannelFlags(readCT) & kGray_SkColorChannelFlag); | 
 |             // A CS or luminance conversion allows a 3 value difference and otherwise a 2 value | 
 |             // difference. Note that sometimes read back on GPU can be lossy even when there no | 
 |             // conversion at all because GPU->CPU read may go to a lower bit depth format and then | 
 |             // be promoted back to the original type. For example, GL ES cannot read to 1010102, so | 
 |             // we go through 8888. | 
 |             float numer = (lumConversion || csConversion) ? 3.f : 2.f; | 
 |             // Allow some extra tolerance if unpremuling. | 
 |             if (srcAT == kPremul_SkAlphaType && readAT == kUnpremul_SkAlphaType) { | 
 |                 numer += 1; | 
 |             } | 
 |             int rgbBits = std::min({min_rgb_channel_bits(readCT), min_rgb_channel_bits(srcCT), 8}); | 
 |             float tol = numer / (1 << rgbBits); | 
 |             float alphaTol = 0; | 
 |             if (readAT != kOpaque_SkAlphaType && srcAT != kOpaque_SkAlphaType) { | 
 |                 // Alpha can also get squashed down to 8 bits going through an intermediate | 
 |                 // color format. | 
 |                 const int alphaBits = std::min({alpha_channel_bits(readCT), | 
 |                                                 alpha_channel_bits(srcCT), | 
 |                                                 8}); | 
 |                 alphaTol = 2.f / (1 << alphaBits); | 
 |             } | 
 |  | 
 |             const float tols[4] = {tol, tol, tol, alphaTol}; | 
 |             auto error = std::function<ComparePixmapsErrorReporter>([&](int x, int y, | 
 |                                                                         const float diffs[4]) { | 
 |                 SkASSERT(x >= 0 && y >= 0); | 
 |                 ERRORF(reporter, | 
 |                        "%sSrc CT: %s, Src AT: %s, Read CT: %s, Read AT: %s, Rect [%d, %d, %d, %d]" | 
 |                        ", CS conversion: %d\n" | 
 |                        "Error at %d, %d. Diff in floats: (%f, %f, %f %f)", | 
 |                        label.c_str(), | 
 |                        ToolUtils::colortype_name(srcCT), ToolUtils::alphatype_name(srcAT), | 
 |                        ToolUtils::colortype_name(readCT), ToolUtils::alphatype_name(readAT), | 
 |                        rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion, x, y, | 
 |                        diffs[0], diffs[1], diffs[2], diffs[3]); | 
 |             }); | 
 |             SkAutoPixmapStorage ref; | 
 |             SkImageInfo refInfo = readInfo.makeDimensions(dstWriteRect.size()); | 
 |             ref.alloc(refInfo); | 
 |             if (readAT == kUnknown_SkAlphaType) { | 
 |                 // Do a spoofed read where src and dst alpha type are both kUnpremul. This will | 
 |                 // allow SkPixmap readPixels to succeed and won't do any alpha type conversion. | 
 |                 SkPixmap unpremulRef(refInfo.makeAlphaType(kUnpremul_SkAlphaType), | 
 |                                      ref.addr(), | 
 |                                      ref.rowBytes()); | 
 |                 SkPixmap unpremulSRc(srcPixels.info().makeAlphaType(kUnpremul_SkAlphaType), | 
 |                                      srcPixels.addr(), | 
 |                                      srcPixels.rowBytes()); | 
 |  | 
 |                 unpremulSRc.readPixels(unpremulRef, srcReadRect.x(), srcReadRect.y()); | 
 |             } else { | 
 |                 srcPixels.readPixels(ref, srcReadRect.x(), srcReadRect.y()); | 
 |             } | 
 |             // This is the part of dstPixels that should have been updated. | 
 |             SkPixmap actual; | 
 |             SkAssertResult(dstPixels.extractSubset(&actual, dstWriteRect)); | 
 |             ComparePixels(ref, actual, tols, error); | 
 |  | 
 |             const auto* v = dstData.get(); | 
 |             const auto* end = dstData.get() + dstSize; | 
 |             guardOk = std::all_of(v, v + dstWriteRect.top() * dstPixels.rowBytes(), guardCheck); | 
 |             v += dstWriteRect.top() * dstPixels.rowBytes(); | 
 |             for (int y = dstWriteRect.top(); y < dstWriteRect.bottom(); ++y) { | 
 |                 guardOk |= std::all_of(v, v + dstWriteRect.left() * readBpp, guardCheck); | 
 |                 auto pad = v + dstWriteRect.right() * readBpp; | 
 |                 auto rowEnd = std::min(end, v + dstPixels.rowBytes()); | 
 |                 // min protects against reading past the end of the tight last row. | 
 |                 guardOk |= std::all_of(pad, rowEnd, guardCheck); | 
 |                 v = rowEnd; | 
 |             } | 
 |             guardOk |= std::all_of(v, end, guardCheck); | 
 |         } else { | 
 |             guardOk = std::all_of(dstData.get(), dstData.get() + dstSize, guardCheck); | 
 |         } | 
 |         if (!guardOk) { | 
 |             ERRORF(reporter, | 
 |                    "Result pixels modified result outside read rect [%d, %d, %d, %d]. " | 
 |                    "%sSrc CT: %s, Read CT: %s, CS conversion: %d", | 
 |                    rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, label.c_str(), | 
 |                    ToolUtils::colortype_name(srcCT), ToolUtils::colortype_name(readCT), | 
 |                    csConversion); | 
 |         } | 
 |         return result; | 
 |     }; | 
 |  | 
 |     static constexpr int kW = 16; | 
 |     static constexpr int kH = 16; | 
 |  | 
 |     // Makes the reference data that is used to populate the src. Always F32 regardless of srcCT. | 
 |     auto make_ref_f32_data = [](SkAlphaType srcAT, SkColorType srcCT) -> SkAutoPixmapStorage { | 
 |         // Make src data in F32 with srcAT. We will convert it to each color type we test to | 
 |         // initialize the src. | 
 |         auto surfInfo = SkImageInfo::Make(kW, kH, | 
 |                                           kRGBA_F32_SkColorType, | 
 |                                           srcAT, | 
 |                                           SkColorSpace::MakeSRGB()); | 
 |         // Can't make a kUnknown_SkAlphaType surface. | 
 |         if (srcAT == kUnknown_SkAlphaType) { | 
 |             surfInfo = surfInfo.makeAlphaType(kUnpremul_SkAlphaType); | 
 |         } | 
 |         auto refSurf = SkSurface::MakeRaster(surfInfo); | 
 |         static constexpr SkPoint kPts1[] = {{0, 0}, {kW, kH}}; | 
 |         static constexpr SkColor kColors1[] = {SK_ColorGREEN, SK_ColorRED}; | 
 |         SkPaint paint; | 
 |         paint.setShader( | 
 |                 SkGradientShader::MakeLinear(kPts1, kColors1, nullptr, 2, SkTileMode::kClamp)); | 
 |         refSurf->getCanvas()->drawPaint(paint); | 
 |         static constexpr SkPoint kPts2[] = {{kW, 0}, {0, kH}}; | 
 |         static constexpr SkColor kColors2[] = {SK_ColorBLUE, SK_ColorBLACK}; | 
 |         paint.setShader( | 
 |                 SkGradientShader::MakeLinear(kPts2, kColors2, nullptr, 2, SkTileMode::kClamp)); | 
 |         paint.setBlendMode(SkBlendMode::kPlus); | 
 |         refSurf->getCanvas()->drawPaint(paint); | 
 |         // Keep everything opaque if the src alpha type is opaque. Also, there is an issue with | 
 |         // 1010102 (the only color type where the number of alpha bits is non-zero and not the | 
 |         // same as r, g, and b). Because of the different precisions the draw below can create | 
 |         // data that isn't strictly premul (e.g. alpha is 1/3 but green is .4). SW will clamp | 
 |         // r, g, b to a if the dst is premul and a different color type. GPU doesn't do this. | 
 |         // We could but 1010102 premul is kind of dubious anyway. So for now just keep the data | 
 |         // opaque. | 
 |         if (srcAT != kOpaque_SkAlphaType && | 
 |             (srcAT == kPremul_SkAlphaType && srcCT != kRGBA_1010102_SkColorType && | 
 |              srcCT != kBGRA_1010102_SkColorType)) { | 
 |             static constexpr SkColor kColors3[] = {SK_ColorWHITE, | 
 |                                                    SK_ColorWHITE, | 
 |                                                    0x60FFFFFF, | 
 |                                                    SK_ColorWHITE, | 
 |                                                    SK_ColorWHITE}; | 
 |             static constexpr SkScalar kPos3[] = {0.f, 0.15f, 0.5f, 0.85f, 1.f}; | 
 |             paint.setShader(SkGradientShader::MakeRadial({kW / 2.f, kH / 2.f}, (kW + kH) / 10.f, | 
 |                                                          kColors3, kPos3, 5, SkTileMode::kMirror)); | 
 |             paint.setBlendMode(SkBlendMode::kDstIn); | 
 |             refSurf->getCanvas()->drawPaint(paint); | 
 |         } | 
 |  | 
 |         const auto srcInfo = SkImageInfo::Make(kW, kH, srcCT, srcAT, SkColorSpace::MakeSRGB()); | 
 |         SkAutoPixmapStorage srcPixels; | 
 |         srcPixels.alloc(srcInfo); | 
 |         SkPixmap readPixmap = srcPixels; | 
 |         // Spoof the alpha type to kUnpremul so the read will succeed without doing any conversion | 
 |         // (because we made our surface also be kUnpremul). | 
 |         if (srcAT == kUnknown_SkAlphaType) { | 
 |             readPixmap.reset(srcPixels.info().makeAlphaType(kUnpremul_SkAlphaType), | 
 |                              srcPixels.addr(), | 
 |                              srcPixels.rowBytes()); | 
 |         } | 
 |         refSurf->readPixels(readPixmap, 0, 0); | 
 |         return srcPixels; | 
 |     }; | 
 |     const std::vector<SkIRect> longRectArray = { | 
 |             // entire thing | 
 |             SkIRect::MakeWH(kW, kH), | 
 |             // larger on all sides | 
 |             SkIRect::MakeLTRB(-10, -10, kW + 10, kH + 10), | 
 |             // fully contained | 
 |             SkIRect::MakeLTRB(kW / 4, kH / 4, 3 * kW / 4, 3 * kH / 4), | 
 |             // outside top left | 
 |             SkIRect::MakeLTRB(-10, -10, -1, -1), | 
 |             // touching top left corner | 
 |             SkIRect::MakeLTRB(-10, -10, 0, 0), | 
 |             // overlapping top left corner | 
 |             SkIRect::MakeLTRB(-10, -10, kW / 4, kH / 4), | 
 |             // overlapping top left and top right corners | 
 |             SkIRect::MakeLTRB(-10, -10, kW + 10, kH / 4), | 
 |             // touching entire top edge | 
 |             SkIRect::MakeLTRB(-10, -10, kW + 10, 0), | 
 |             // overlapping top right corner | 
 |             SkIRect::MakeLTRB(3 * kW / 4, -10, kW + 10, kH / 4), | 
 |             // contained in x, overlapping top edge | 
 |             SkIRect::MakeLTRB(kW / 4, -10, 3 * kW / 4, kH / 4), | 
 |             // outside top right corner | 
 |             SkIRect::MakeLTRB(kW + 1, -10, kW + 10, -1), | 
 |             // touching top right corner | 
 |             SkIRect::MakeLTRB(kW, -10, kW + 10, 0), | 
 |             // overlapping top left and bottom left corners | 
 |             SkIRect::MakeLTRB(-10, -10, kW / 4, kH + 10), | 
 |             // touching entire left edge | 
 |             SkIRect::MakeLTRB(-10, -10, 0, kH + 10), | 
 |             // overlapping bottom left corner | 
 |             SkIRect::MakeLTRB(-10, 3 * kH / 4, kW / 4, kH + 10), | 
 |             // contained in y, overlapping left edge | 
 |             SkIRect::MakeLTRB(-10, kH / 4, kW / 4, 3 * kH / 4), | 
 |             // outside bottom left corner | 
 |             SkIRect::MakeLTRB(-10, kH + 1, -1, kH + 10), | 
 |             // touching bottom left corner | 
 |             SkIRect::MakeLTRB(-10, kH, 0, kH + 10), | 
 |             // overlapping bottom left and bottom right corners | 
 |             SkIRect::MakeLTRB(-10, 3 * kH / 4, kW + 10, kH + 10), | 
 |             // touching entire left edge | 
 |             SkIRect::MakeLTRB(0, kH, kW, kH + 10), | 
 |             // overlapping bottom right corner | 
 |             SkIRect::MakeLTRB(3 * kW / 4, 3 * kH / 4, kW + 10, kH + 10), | 
 |             // overlapping top right and bottom right corners | 
 |             SkIRect::MakeLTRB(3 * kW / 4, -10, kW + 10, kH + 10), | 
 |     }; | 
 |     const std::vector<SkIRect> shortRectArray = { | 
 |             // entire thing | 
 |             SkIRect::MakeWH(kW, kH), | 
 |             // fully contained | 
 |             SkIRect::MakeLTRB(kW / 4, kH / 4, 3 * kW / 4, 3 * kH / 4), | 
 |             // overlapping top right corner | 
 |             SkIRect::MakeLTRB(3 * kW / 4, -10, kW + 10, kH / 4), | 
 |     }; | 
 |     // We ensure we use the long array once per src and read color type and otherwise use the | 
 |     // short array to improve test run time. | 
 |     // Also, some color types have no alpha values and thus Opaque Premul and Unpremul are | 
 |     // equivalent. Just ensure each redundant AT is tested once with each CT (src and read). | 
 |     // Similarly, alpha-only color types behave the same for all alpha types so just test premul | 
 |     // after one iter. | 
 |     // We consider a src or read CT thoroughly tested once it has run through the short rect array | 
 |     // and full complement of alpha types with one successful read in the loop. | 
 |     std::array<bool, kLastEnum_SkColorType + 1> srcCTTestedThoroughly  = {}, | 
 |                                                 readCTTestedThoroughly = {}; | 
 |     for (int sat = 0; sat < kLastEnum_SkAlphaType; ++sat) { | 
 |         const auto srcAT = static_cast<SkAlphaType>(sat); | 
 |         if (srcAT == kUnpremul_SkAlphaType && !rules.fAllowUnpremulSrc) { | 
 |             continue; | 
 |         } | 
 |         for (int sct = 0; sct <= kLastEnum_SkColorType; ++sct) { | 
 |             const auto srcCT = static_cast<SkColorType>(sct); | 
 |             // Note that we only currently use srcCT for a 1010102 workaround. If we remove this we | 
 |             // can also put the ref data setup above the srcCT loop. | 
 |             SkAutoPixmapStorage srcPixels = make_ref_f32_data(srcAT, srcCT); | 
 |             auto src = srcFactory(srcPixels); | 
 |             if (!src) { | 
 |                 continue; | 
 |             } | 
 |             if (SkColorTypeIsAlwaysOpaque(srcCT) && srcCTTestedThoroughly[srcCT] && | 
 |                 (kPremul_SkAlphaType == srcAT || kUnpremul_SkAlphaType == srcAT)) { | 
 |                 continue; | 
 |             } | 
 |             if (SkColorTypeIsAlphaOnly(srcCT) && srcCTTestedThoroughly[srcCT] && | 
 |                 (kUnpremul_SkAlphaType == srcAT || | 
 |                  kOpaque_SkAlphaType   == srcAT || | 
 |                  kUnknown_SkAlphaType  == srcAT)) { | 
 |                 continue; | 
 |             } | 
 |             for (int rct = 0; rct <= kLastEnum_SkColorType; ++rct) { | 
 |                 const auto readCT = static_cast<SkColorType>(rct); | 
 |                 for (const sk_sp<SkColorSpace>& readCS : | 
 |                      {SkColorSpace::MakeSRGB(), SkColorSpace::MakeSRGBLinear()}) { | 
 |                     for (int at = 0; at <= kLastEnum_SkAlphaType; ++at) { | 
 |                         const auto readAT = static_cast<SkAlphaType>(at); | 
 |                         if (srcAT != kOpaque_SkAlphaType && readAT == kOpaque_SkAlphaType) { | 
 |                             // This doesn't make sense. | 
 |                             continue; | 
 |                         } | 
 |                         if (SkColorTypeIsAlwaysOpaque(readCT) && readCTTestedThoroughly[readCT] && | 
 |                             (kPremul_SkAlphaType == readAT || kUnpremul_SkAlphaType == readAT)) { | 
 |                             continue; | 
 |                         } | 
 |                         if (SkColorTypeIsAlphaOnly(readCT) && readCTTestedThoroughly[readCT] && | 
 |                             (kUnpremul_SkAlphaType == readAT || | 
 |                              kOpaque_SkAlphaType   == readAT || | 
 |                              kUnknown_SkAlphaType  == readAT)) { | 
 |                             continue; | 
 |                         } | 
 |                         const auto& rects = | 
 |                                 srcCTTestedThoroughly[sct] && readCTTestedThoroughly[rct] | 
 |                                         ? shortRectArray | 
 |                                         : longRectArray; | 
 |                         for (const auto& rect : rects) { | 
 |                             const auto readInfo = SkImageInfo::Make(rect.width(), rect.height(), | 
 |                                                                     readCT, readAT, readCS); | 
 |                             const SkIVector offset = rect.topLeft(); | 
 |                             GpuReadResult r = runTest(src, srcPixels, readInfo, offset); | 
 |                             if (r == GpuReadResult::kSuccess) { | 
 |                                 srcCTTestedThoroughly[sct] = true; | 
 |                                 readCTTestedThoroughly[rct] = true; | 
 |                             } | 
 |                         } | 
 |                     } | 
 |                 } | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SurfaceContextReadPixels, reporter, ctxInfo) { | 
 |     using Surface = std::unique_ptr<GrSurfaceContext>; | 
 |     GrDirectContext* direct = ctxInfo.directContext(); | 
 |     auto reader = std::function<GpuReadSrcFn<Surface>>( | 
 |             [direct](const Surface& surface, const SkIVector& offset, const SkPixmap& pixels) { | 
 |                 if (surface->readPixels(direct, pixels, {offset.fX, offset.fY})) { | 
 |                     return GpuReadResult::kSuccess; | 
 |                 } else { | 
 |                     // Reading from a non-renderable format is not guaranteed to work on GL. | 
 |                     // We'd have to be able to force a copy or draw draw to a renderable format. | 
 |                     const auto& caps = *direct->priv().caps(); | 
 |                     if (direct->backend() == GrBackendApi::kOpenGL && | 
 |                         !caps.isFormatRenderable(surface->asSurfaceProxy()->backendFormat(), 1)) { | 
 |                         return GpuReadResult::kExcusedFailure; | 
 |                     } | 
 |                     return GpuReadResult::kFail; | 
 |                 } | 
 |             }); | 
 |     GpuReadPixelTestRules rules; | 
 |     rules.fAllowUnpremulSrc = true; | 
 |     rules.fUncontainedRectSucceeds = true; | 
 |  | 
 |     for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) { | 
 |         for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) { | 
 |             auto factory = std::function<GpuSrcFactory<Surface>>( | 
 |                     [direct, origin, renderable](const SkPixmap& src) { | 
 |                         if (src.colorType() == kRGB_888x_SkColorType) { | 
 |                             return Surface(); | 
 |                         } | 
 |                         auto surfContext = GrSurfaceContext::Make( | 
 |                                 direct, src.info(), SkBackingFit::kExact, origin, renderable); | 
 |                         if (surfContext) { | 
 |                             surfContext->writePixels(direct, src, {0, 0}); | 
 |                         } | 
 |                         return surfContext; | 
 |                     }); | 
 |             auto label = SkStringPrintf("Renderable: %d, Origin: %d", (int)renderable, origin); | 
 |             gpu_read_pixels_test_driver(reporter, rules, factory, reader, label); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | namespace { | 
 | struct AsyncContext { | 
 |     bool fCalled = false; | 
 |     std::unique_ptr<const SkImage::AsyncReadResult> fResult; | 
 | }; | 
 | }  // anonymous namespace | 
 |  | 
 | // Making this a lambda in the test functions caused: | 
 | //   "error: cannot compile this forwarded non-trivially copyable parameter yet" | 
 | // on x86/Win/Clang bot, referring to 'result'. | 
 | static void async_callback(void* c, std::unique_ptr<const SkImage::AsyncReadResult> result) { | 
 |     auto context = static_cast<AsyncContext*>(c); | 
 |     context->fResult = std::move(result); | 
 |     context->fCalled = true; | 
 | }; | 
 |  | 
 | DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SurfaceAsyncReadPixels, reporter, ctxInfo) { | 
 |     using Surface = sk_sp<SkSurface>; | 
 |     auto reader = std::function<GpuReadSrcFn<Surface>>( | 
 |             [](const Surface& surface, const SkIVector& offset, const SkPixmap& pixels) { | 
 |                 auto direct = surface->recordingContext()->asDirectContext(); | 
 |                 SkASSERT(direct); | 
 |  | 
 |                 AsyncContext context; | 
 |                 auto rect = SkIRect::MakeSize(pixels.dimensions()).makeOffset(offset); | 
 |  | 
 |                 // Rescale quality and linearity don't matter since we're doing a non-scaling | 
 |                 // readback. | 
 |                 surface->asyncRescaleAndReadPixels(pixels.info(), rect, | 
 |                                                    SkImage::RescaleGamma::kSrc, | 
 |                                                    SkImage::RescaleMode::kNearest, | 
 |                                                    async_callback, &context); | 
 |                 direct->submit(); | 
 |                 while (!context.fCalled) { | 
 |                     direct->checkAsyncWorkCompletion(); | 
 |                 } | 
 |                 if (!context.fResult) { | 
 |                     return GpuReadResult::kFail; | 
 |                 } | 
 |                 SkRectMemcpy(pixels.writable_addr(), pixels.rowBytes(), context.fResult->data(0), | 
 |                              context.fResult->rowBytes(0), pixels.info().minRowBytes(), | 
 |                              pixels.height()); | 
 |                 return GpuReadResult::kSuccess; | 
 |             }); | 
 |     GpuReadPixelTestRules rules; | 
 |     rules.fAllowUnpremulSrc = false; | 
 |     rules.fUncontainedRectSucceeds = false; | 
 |  | 
 |     for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) { | 
 |         auto factory = std::function<GpuSrcFactory<Surface>>( | 
 |                 [context = ctxInfo.directContext(), origin](const SkPixmap& src) { | 
 |                     if (src.colorType() == kRGB_888x_SkColorType) { | 
 |                         return Surface(); | 
 |                     } | 
 |                     auto surf = SkSurface::MakeRenderTarget(context, | 
 |                                                             SkBudgeted::kYes, | 
 |                                                             src.info(), | 
 |                                                             1, | 
 |                                                             origin, | 
 |                                                             nullptr); | 
 |                     if (surf) { | 
 |                         surf->writePixels(src, 0, 0); | 
 |                     } | 
 |                     return surf; | 
 |                 }); | 
 |         auto label = SkStringPrintf("Origin: %d", origin); | 
 |         gpu_read_pixels_test_driver(reporter, rules, factory, reader, label); | 
 |         auto backendRTFactory = std::function<GpuSrcFactory<Surface>>( | 
 |                 [context = ctxInfo.directContext(), origin](const SkPixmap& src) { | 
 |                   if (src.colorType() == kRGB_888x_SkColorType) { | 
 |                       return Surface(); | 
 |                   } | 
 |                   // Dawn backend implementation of backend render targets doesn't support reading. | 
 |                   if (context->backend() == GrBackendApi::kDawn) { | 
 |                       return Surface(); | 
 |                   } | 
 |                   auto surf = sk_gpu_test::MakeBackendRenderTargetSurface(context, | 
 |                                                                           src.info(), | 
 |                                                                           origin, | 
 |                                                                           1); | 
 |                   if (surf) { | 
 |                       surf->writePixels(src, 0, 0); | 
 |                   } | 
 |                   return surf; | 
 |                 }); | 
 |         label = SkStringPrintf("BERT Origin: %d", origin); | 
 |         gpu_read_pixels_test_driver(reporter, rules, backendRTFactory, reader, label); | 
 |     } | 
 | } | 
 |  | 
 | DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageAsyncReadPixels, reporter, ctxInfo) { | 
 |     using Image = sk_sp<SkImage>; | 
 |     auto context = ctxInfo.directContext(); | 
 |     auto reader = std::function<GpuReadSrcFn<Image>>([context](const Image& image, | 
 |                                                                const SkIVector& offset, | 
 |                                                                const SkPixmap& pixels) { | 
 |         AsyncContext asyncContext; | 
 |         auto rect = SkIRect::MakeSize(pixels.dimensions()).makeOffset(offset); | 
 |         // The GPU implementation is based on rendering and will fail for non-renderable color | 
 |         // types. | 
 |         auto ct = SkColorTypeToGrColorType(image->colorType()); | 
 |         auto format = context->priv().caps()->getDefaultBackendFormat(ct, GrRenderable::kYes); | 
 |         if (!context->priv().caps()->isFormatAsColorTypeRenderable(ct, format)) { | 
 |             return GpuReadResult::kExcusedFailure; | 
 |         } | 
 |  | 
 |         // Rescale quality and linearity don't matter since we're doing a non-scaling readback. | 
 |         image->asyncRescaleAndReadPixels(pixels.info(), rect, | 
 |                                          SkImage::RescaleGamma::kSrc, | 
 |                                          SkImage::RescaleMode::kNearest, | 
 |                                          async_callback, &asyncContext); | 
 |         context->submit(); | 
 |         while (!asyncContext.fCalled) { | 
 |             context->checkAsyncWorkCompletion(); | 
 |         } | 
 |         if (!asyncContext.fResult) { | 
 |             return GpuReadResult::kFail; | 
 |         } | 
 |         SkRectMemcpy(pixels.writable_addr(), pixels.rowBytes(), asyncContext.fResult->data(0), | 
 |                      asyncContext.fResult->rowBytes(0), pixels.info().minRowBytes(), | 
 |                      pixels.height()); | 
 |         return GpuReadResult::kSuccess; | 
 |     }); | 
 |  | 
 |     GpuReadPixelTestRules rules; | 
 |     rules.fAllowUnpremulSrc = true; | 
 |     rules.fUncontainedRectSucceeds = false; | 
 |  | 
 |     for (auto origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) { | 
 |         for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) { | 
 |             auto factory = std::function<GpuSrcFactory<Image>>([&](const SkPixmap& src) { | 
 |                 if (src.colorType() == kRGB_888x_SkColorType) { | 
 |                     return Image(); | 
 |                 } | 
 |                 return sk_gpu_test::MakeBackendTextureImage(ctxInfo.directContext(), src, | 
 |                                                             renderable, origin); | 
 |             }); | 
 |             auto label = SkStringPrintf("Renderable: %d, Origin: %d", (int)renderable, origin); | 
 |             gpu_read_pixels_test_driver(reporter, rules, factory, reader, label); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | DEF_GPUTEST(AsyncReadPixelsContextShutdown, reporter, options) { | 
 |     const auto ii = SkImageInfo::Make(10, 10, kRGBA_8888_SkColorType, kPremul_SkAlphaType, | 
 |                                       SkColorSpace::MakeSRGB()); | 
 |     enum class ShutdownSequence { | 
 |         kFreeResult_DestroyContext, | 
 |         kDestroyContext_FreeResult, | 
 |         kFreeResult_ReleaseAndAbandon_DestroyContext, | 
 |         kFreeResult_Abandon_DestroyContext, | 
 |         kReleaseAndAbandon_FreeResult_DestroyContext, | 
 |         kAbandon_FreeResult_DestroyContext, | 
 |         kReleaseAndAbandon_DestroyContext_FreeResult, | 
 |         kAbandon_DestroyContext_FreeResult, | 
 |     }; | 
 |     for (int t = 0; t < sk_gpu_test::GrContextFactory::kContextTypeCnt; ++t) { | 
 |         auto type = static_cast<sk_gpu_test::GrContextFactory::ContextType>(t); | 
 |         for (auto sequence : {ShutdownSequence::kFreeResult_DestroyContext, | 
 |                               ShutdownSequence::kDestroyContext_FreeResult, | 
 |                               ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext, | 
 |                               ShutdownSequence::kFreeResult_Abandon_DestroyContext, | 
 |                               ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext, | 
 |                               ShutdownSequence::kAbandon_FreeResult_DestroyContext, | 
 |                               ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult, | 
 |                               ShutdownSequence::kAbandon_DestroyContext_FreeResult}) { | 
 |             // Vulkan context abandoning without resource release has issues outside of the scope of | 
 |             // this test. | 
 |             if (type == sk_gpu_test::GrContextFactory::kVulkan_ContextType && | 
 |                 (sequence == ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext || | 
 |                  sequence == ShutdownSequence::kFreeResult_Abandon_DestroyContext || | 
 |                  sequence == ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext || | 
 |                  sequence == ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult || | 
 |                  sequence == ShutdownSequence::kAbandon_FreeResult_DestroyContext || | 
 |                  sequence == ShutdownSequence::kAbandon_DestroyContext_FreeResult)) { | 
 |                 continue; | 
 |             } | 
 |             for (bool yuv : {false, true}) { | 
 |                 sk_gpu_test::GrContextFactory factory(options); | 
 |                 auto direct = factory.get(type); | 
 |                 if (!direct) { | 
 |                     continue; | 
 |                 } | 
 |                 // This test is only meaningful for contexts that support transfer buffers for | 
 |                 // reads. | 
 |                 if (!direct->priv().caps()->transferFromSurfaceToBufferSupport()) { | 
 |                     continue; | 
 |                 } | 
 |                 auto surf = SkSurface::MakeRenderTarget(direct, SkBudgeted::kYes, ii, 1, nullptr); | 
 |                 if (!surf) { | 
 |                     continue; | 
 |                 } | 
 |                 AsyncContext cbContext; | 
 |                 if (yuv) { | 
 |                     surf->asyncRescaleAndReadPixelsYUV420( | 
 |                             kIdentity_SkYUVColorSpace, SkColorSpace::MakeSRGB(), ii.bounds(), | 
 |                             ii.dimensions(), SkImage::RescaleGamma::kSrc, | 
 |                             SkImage::RescaleMode::kNearest, &async_callback, &cbContext); | 
 |                 } else { | 
 |                     surf->asyncRescaleAndReadPixels(ii, ii.bounds(), SkImage::RescaleGamma::kSrc, | 
 |                                                     SkImage::RescaleMode::kNearest, &async_callback, | 
 |                                                     &cbContext); | 
 |                 } | 
 |                 direct->submit(); | 
 |                 while (!cbContext.fCalled) { | 
 |                     direct->checkAsyncWorkCompletion(); | 
 |                 } | 
 |                 if (!cbContext.fResult) { | 
 |                     ERRORF(reporter, "Callback failed on %s. is YUV: %d", | 
 |                            sk_gpu_test::GrContextFactory::ContextTypeName(type), yuv); | 
 |                     continue; | 
 |                 } | 
 |                 // For vulkan we need to release all refs to the GrDirectContext before trying to | 
 |                 // destroy the test context. The surface here is holding a ref. | 
 |                 surf.reset(); | 
 |  | 
 |                 // The real test is that we don't crash, get Vulkan validation errors, etc, during | 
 |                 // this shutdown sequence. | 
 |                 switch (sequence) { | 
 |                     case ShutdownSequence::kFreeResult_DestroyContext: | 
 |                     case ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext: | 
 |                     case ShutdownSequence::kFreeResult_Abandon_DestroyContext: | 
 |                         break; | 
 |                     case ShutdownSequence::kDestroyContext_FreeResult: | 
 |                         factory.destroyContexts(); | 
 |                         break; | 
 |                     case ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext: | 
 |                         factory.releaseResourcesAndAbandonContexts(); | 
 |                         break; | 
 |                     case ShutdownSequence::kAbandon_FreeResult_DestroyContext: | 
 |                         factory.abandonContexts(); | 
 |                         break; | 
 |                     case ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult: | 
 |                         factory.releaseResourcesAndAbandonContexts(); | 
 |                         factory.destroyContexts(); | 
 |                         break; | 
 |                     case ShutdownSequence::kAbandon_DestroyContext_FreeResult: | 
 |                         factory.abandonContexts(); | 
 |                         factory.destroyContexts(); | 
 |                         break; | 
 |                 } | 
 |                 cbContext.fResult.reset(); | 
 |                 switch (sequence) { | 
 |                     case ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext: | 
 |                         factory.releaseResourcesAndAbandonContexts(); | 
 |                         break; | 
 |                     case ShutdownSequence::kFreeResult_Abandon_DestroyContext: | 
 |                         factory.abandonContexts(); | 
 |                         break; | 
 |                     case ShutdownSequence::kFreeResult_DestroyContext: | 
 |                     case ShutdownSequence::kDestroyContext_FreeResult: | 
 |                     case ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext: | 
 |                     case ShutdownSequence::kAbandon_FreeResult_DestroyContext: | 
 |                     case ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult: | 
 |                     case ShutdownSequence::kAbandon_DestroyContext_FreeResult: | 
 |                         break; | 
 |                 } | 
 |             } | 
 |         } | 
 |     } | 
 | } |