blob: 5ca66c50e207c4809f41396e907d354d4d78a17d [file] [log] [blame]
#include "DMSrcSink.h"
#include "SamplePipeControllers.h"
#include "SkCommonFlags.h"
#include "SkCodec.h"
#include "SkDocument.h"
#include "SkError.h"
#include "SkMultiPictureDraw.h"
#include "SkNullCanvas.h"
#include "SkOSFile.h"
#include "SkPictureRecorder.h"
#include "SkRandom.h"
#include "SkSVGCanvas.h"
#include "SkStream.h"
#include "SkXMLWriter.h"
DEFINE_bool(codec, false, "Use SkCodec instead of SkImageDecoder");
namespace DM {
GMSrc::GMSrc(skiagm::GMRegistry::Factory factory) : fFactory(factory) {}
Error GMSrc::draw(SkCanvas* canvas) const {
SkAutoTDelete<skiagm::GM> gm(fFactory(NULL));
canvas->concat(gm->getInitialTransform());
gm->draw(canvas);
return "";
}
SkISize GMSrc::size() const {
SkAutoTDelete<skiagm::GM> gm(fFactory(NULL));
return gm->getISize();
}
Name GMSrc::name() const {
SkAutoTDelete<skiagm::GM> gm(fFactory(NULL));
return gm->getName();
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
ImageSrc::ImageSrc(Path path, int divisor) : fPath(path), fDivisor(divisor) {}
Error ImageSrc::draw(SkCanvas* canvas) const {
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
if (!encoded) {
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
}
const SkColorType dstColorType = canvas->imageInfo().colorType();
if (fDivisor == 0) {
// Decode the full image.
SkBitmap bitmap;
if (FLAGS_codec) {
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded));
if (!codec) {
return SkStringPrintf("Couldn't decode %s.", fPath.c_str());
}
SkImageInfo info;
if (!codec->getInfo(&info)) {
return SkStringPrintf("Couldn't getInfo %s.", fPath.c_str());
}
info = info.makeColorType(dstColorType);
if (info.alphaType() == kUnpremul_SkAlphaType) {
// FIXME: Currently we cannot draw unpremultiplied sources.
info = info.makeAlphaType(kPremul_SkAlphaType);
}
if (!bitmap.tryAllocPixels(info)) {
return SkStringPrintf("Image(%s) is too large (%d x %d)\n", fPath.c_str(),
info.width(), info.height());
}
SkAutoLockPixels alp(bitmap);
const SkImageGenerator::Result result = codec->getPixels(info, bitmap.getPixels(),
bitmap.rowBytes());
switch (result) {
case SkImageGenerator::kSuccess:
// We consider incomplete to be valid, since we should still decode what is
// available.
case SkImageGenerator::kIncompleteInput:
break;
case SkImageGenerator::kInvalidConversion:
return Error::Nonfatal("Incompatible colortype conversion");
default:
// Everything else is considered a failure.
return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str());
}
} else {
if (!SkImageDecoder::DecodeMemory(encoded->data(), encoded->size(), &bitmap,
dstColorType, SkImageDecoder::kDecodePixels_Mode)) {
return SkStringPrintf("Couldn't decode %s.", fPath.c_str());
}
if (kRGB_565_SkColorType == dstColorType && !bitmap.isOpaque()) {
// Do not draw a bitmap with alpha to a destination without alpha.
return Error::Nonfatal("Uninteresting to decode image with alpha into 565.");
}
}
encoded.reset((SkData*)NULL); // Might as well drop this when we're done with it.
canvas->drawBitmap(bitmap, 0,0);
return "";
}
// Decode subsets. This is a little involved.
SkAutoTDelete<SkMemoryStream> stream(new SkMemoryStream(encoded));
SkAutoTDelete<SkImageDecoder> decoder(SkImageDecoder::Factory(stream.get()));
if (!decoder) {
return SkStringPrintf("Can't find a good decoder for %s.", fPath.c_str());
}
stream->rewind();
int w,h;
if (!decoder->buildTileIndex(stream.detach(), &w, &h) || w*h == 1) {
return Error::Nonfatal("Subset decoding not supported.");
}
// Divide the image into subsets that cover the entire image.
if (fDivisor > w || fDivisor > h) {
return SkStringPrintf("divisor %d is too big for %s with dimensions (%d x %d)",
fDivisor, fPath.c_str(), w, h);
}
const int subsetWidth = w / fDivisor,
subsetHeight = h / fDivisor;
for (int y = 0; y < h; y += subsetHeight) {
for (int x = 0; x < w; x += subsetWidth) {
SkBitmap subset;
SkIRect rect = SkIRect::MakeXYWH(x, y, subsetWidth, subsetHeight);
if (!decoder->decodeSubset(&subset, rect, dstColorType)) {
return SkStringPrintf("Could not decode subset (%d, %d, %d, %d).",
x, y, x+subsetWidth, y+subsetHeight);
}
if (kRGB_565_SkColorType == dstColorType && !subset.isOpaque()) {
// Do not draw a bitmap with alpha to a destination without alpha.
// This is not an error, but there is nothing interesting to show.
// This should only happen on the first iteration through the loop.
SkASSERT(0 == x && 0 == y);
return Error::Nonfatal("Uninteresting to decode image with alpha into 565.");
}
canvas->drawBitmap(subset, SkIntToScalar(x), SkIntToScalar(y));
}
}
return "";
}
SkISize ImageSrc::size() const {
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
SkBitmap bitmap;
if (!encoded || !SkImageDecoder::DecodeMemory(encoded->data(),
encoded->size(),
&bitmap,
kUnknown_SkColorType,
SkImageDecoder::kDecodeBounds_Mode)) {
return SkISize::Make(0,0);
}
return bitmap.dimensions();
}
Name ImageSrc::name() const {
return SkOSPath::Basename(fPath.c_str());
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
static const SkRect kSKPViewport = {0,0, 1000,1000};
SKPSrc::SKPSrc(Path path) : fPath(path) {}
Error SKPSrc::draw(SkCanvas* canvas) const {
SkAutoTDelete<SkStream> stream(SkStream::NewFromFile(fPath.c_str()));
if (!stream) {
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
}
SkAutoTUnref<SkPicture> pic(SkPicture::CreateFromStream(stream));
if (!pic) {
return SkStringPrintf("Couldn't decode %s as a picture.", fPath.c_str());
}
stream.reset((SkStream*)NULL); // Might as well drop this when we're done with it.
canvas->clipRect(kSKPViewport);
canvas->drawPicture(pic);
return "";
}
SkISize SKPSrc::size() const {
// This may be unnecessarily large.
return kSKPViewport.roundOut().size();
}
Name SKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); }
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
Error NullSink::draw(const Src& src, SkBitmap*, SkWStream*, SkString*) const {
SkAutoTDelete<SkCanvas> canvas(SkCreateNullCanvas());
return src.draw(canvas);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
DEFINE_bool(gpuStats, false, "Append GPU stats to the log for each GPU task?");
GPUSink::GPUSink(GrContextFactory::GLContextType ct,
GrGLStandard api,
int samples,
bool dfText,
bool threaded)
: fContextType(ct)
, fGpuAPI(api)
, fSampleCount(samples)
, fUseDFText(dfText)
, fThreaded(threaded) {}
int GPUSink::enclave() const {
return fThreaded ? kAnyThread_Enclave : kGPU_Enclave;
}
void PreAbandonGpuContextErrorHandler(SkError, void*) {}
Error GPUSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log) const {
GrContextFactory factory;
const SkISize size = src.size();
const SkImageInfo info =
SkImageInfo::Make(size.width(), size.height(), kN32_SkColorType, kPremul_SkAlphaType);
SkAutoTUnref<SkSurface> surface(
NewGpuSurface(&factory, fContextType, fGpuAPI, info, fSampleCount, fUseDFText));
if (!surface) {
return "Could not create a surface.";
}
if (FLAGS_preAbandonGpuContext) {
SkSetErrorCallback(&PreAbandonGpuContextErrorHandler, NULL);
factory.abandonContexts();
}
SkCanvas* canvas = surface->getCanvas();
Error err = src.draw(canvas);
if (!err.isEmpty()) {
return err;
}
canvas->flush();
if (FLAGS_gpuStats) {
canvas->getGrContext()->dumpCacheStats(log);
canvas->getGrContext()->dumpGpuStats(log);
}
dst->allocPixels(info);
canvas->readPixels(dst, 0, 0);
if (FLAGS_abandonGpuContext) {
factory.abandonContexts();
}
return "";
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
static Error draw_skdocument(const Src& src, SkDocument* doc, SkWStream* dst) {
// Print the given DM:Src to a document, breaking on 8.5x11 pages.
SkASSERT(doc);
int width = src.size().width(),
height = src.size().height();
const int kLetterWidth = 612, // 8.5 * 72
kLetterHeight = 792; // 11 * 72
const SkRect letter = SkRect::MakeWH(SkIntToScalar(kLetterWidth),
SkIntToScalar(kLetterHeight));
int xPages = ((width - 1) / kLetterWidth) + 1;
int yPages = ((height - 1) / kLetterHeight) + 1;
for (int y = 0; y < yPages; ++y) {
for (int x = 0; x < xPages; ++x) {
int w = SkTMin(kLetterWidth, width - (x * kLetterWidth));
int h = SkTMin(kLetterHeight, height - (y * kLetterHeight));
SkCanvas* canvas =
doc->beginPage(SkIntToScalar(w), SkIntToScalar(h));
canvas->clipRect(letter);
canvas->translate(-letter.width() * x, -letter.height() * y);
Error err = src.draw(canvas);
if (!err.isEmpty()) {
return err;
}
doc->endPage();
}
}
doc->close();
dst->flush();
return "";
}
PDFSink::PDFSink() {}
Error PDFSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
SkAutoTUnref<SkDocument> doc(SkDocument::CreatePDF(dst));
if (!doc) {
return "SkDocument::CreatePDF() returned NULL";
}
return draw_skdocument(src, doc.get(), dst);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
XPSSink::XPSSink() {}
Error XPSSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
SkAutoTUnref<SkDocument> doc(SkDocument::CreateXPS(dst));
if (!doc) {
return "SkDocument::CreateXPS() returned NULL";
}
return draw_skdocument(src, doc.get(), dst);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
SKPSink::SKPSink() {}
Error SKPSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
SkSize size;
size = src.size();
SkPictureRecorder recorder;
Error err = src.draw(recorder.beginRecording(size.width(), size.height()));
if (!err.isEmpty()) {
return err;
}
SkAutoTUnref<SkPicture> pic(recorder.endRecording());
pic->serialize(dst);
return "";
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
SVGSink::SVGSink() {}
Error SVGSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
SkAutoTDelete<SkXMLWriter> xmlWriter(SkNEW_ARGS(SkXMLStreamWriter, (dst)));
SkAutoTUnref<SkCanvas> canvas(SkSVGCanvas::Create(
SkRect::MakeWH(SkIntToScalar(src.size().width()), SkIntToScalar(src.size().height())),
xmlWriter));
return src.draw(canvas);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
RasterSink::RasterSink(SkColorType colorType) : fColorType(colorType) {}
Error RasterSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString*) const {
const SkISize size = src.size();
// If there's an appropriate alpha type for this color type, use it, otherwise use premul.
SkAlphaType alphaType = kPremul_SkAlphaType;
(void)SkColorTypeValidateAlphaType(fColorType, alphaType, &alphaType);
dst->allocPixels(SkImageInfo::Make(size.width(), size.height(), fColorType, alphaType));
dst->eraseColor(SK_ColorTRANSPARENT);
SkCanvas canvas(*dst);
return src.draw(&canvas);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
static SkISize auto_compute_translate(SkMatrix* matrix, int srcW, int srcH) {
SkRect bounds = SkRect::MakeIWH(srcW, srcH);
matrix->mapRect(&bounds);
matrix->postTranslate(-bounds.x(), -bounds.y());
return SkISize::Make(SkScalarRoundToInt(bounds.width()), SkScalarRoundToInt(bounds.height()));
}
ViaMatrix::ViaMatrix(SkMatrix matrix, Sink* sink) : fMatrix(matrix), fSink(sink) {}
Error ViaMatrix::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
// We turn our arguments into a Src, then draw that Src into our Sink to fill bitmap or stream.
struct ProxySrc : public Src {
const Src& fSrc;
SkMatrix fMatrix;
SkISize fSize;
ProxySrc(const Src& src, SkMatrix matrix) : fSrc(src), fMatrix(matrix) {
fSize = auto_compute_translate(&fMatrix, src.size().width(), src.size().height());
}
Error draw(SkCanvas* canvas) const SK_OVERRIDE {
canvas->concat(fMatrix);
return fSrc.draw(canvas);
}
SkISize size() const SK_OVERRIDE { return fSize; }
Name name() const SK_OVERRIDE { sk_throw(); return ""; } // No one should be calling this.
} proxy(src, fMatrix);
return fSink->draw(proxy, bitmap, stream, log);
}
// Undoes any flip or 90 degree rotate without changing the scale of the bitmap.
// This should be pixel-preserving.
ViaUpright::ViaUpright(SkMatrix matrix, Sink* sink) : fMatrix(matrix), fSink(sink) {}
Error ViaUpright::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
Error err = fSink->draw(src, bitmap, stream, log);
if (!err.isEmpty()) {
return err;
}
SkMatrix inverse;
if (!fMatrix.rectStaysRect() || !fMatrix.invert(&inverse)) {
return "Cannot upright --matrix.";
}
SkMatrix upright = SkMatrix::I();
upright.setScaleX(SkScalarSignAsScalar(inverse.getScaleX()));
upright.setScaleY(SkScalarSignAsScalar(inverse.getScaleY()));
upright.setSkewX(SkScalarSignAsScalar(inverse.getSkewX()));
upright.setSkewY(SkScalarSignAsScalar(inverse.getSkewY()));
SkBitmap uprighted;
SkISize size = auto_compute_translate(&upright, bitmap->width(), bitmap->height());
uprighted.allocPixels(bitmap->info().makeWH(size.width(), size.height()));
SkCanvas canvas(uprighted);
canvas.concat(upright);
SkPaint paint;
paint.setXfermodeMode(SkXfermode::kSrc_Mode);
canvas.drawBitmap(*bitmap, 0, 0, &paint);
*bitmap = uprighted;
bitmap->lockPixels();
return "";
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
ViaPipe::ViaPipe(Sink* sink) : fSink(sink) {}
Error ViaPipe::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
// We turn ourselves into another Src that draws our argument into bitmap/stream via pipe.
struct ProxySrc : public Src {
const Src& fSrc;
ProxySrc(const Src& src) : fSrc(src) {}
Error draw(SkCanvas* canvas) const SK_OVERRIDE {
SkISize size = this->size();
PipeController controller(canvas, &SkImageDecoder::DecodeMemory);
SkGPipeWriter pipe;
const uint32_t kFlags = 0; // We mirror SkDeferredCanvas, which doesn't use any flags.
return fSrc.draw(pipe.startRecording(&controller, kFlags, size.width(), size.height()));
}
SkISize size() const SK_OVERRIDE { return fSrc.size(); }
Name name() const SK_OVERRIDE { sk_throw(); return ""; } // No one should be calling this.
} proxy(src);
return fSink->draw(proxy, bitmap, stream, log);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
ViaSerialization::ViaSerialization(Sink* sink) : fSink(sink) {}
Error ViaSerialization::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log)
const {
// Record our Src into a picture.
SkSize size;
size = src.size();
SkPictureRecorder recorder;
Error err = src.draw(recorder.beginRecording(size.width(), size.height()));
if (!err.isEmpty()) {
return err;
}
SkAutoTUnref<SkPicture> pic(recorder.endRecording());
// Serialize it and then deserialize it.
SkDynamicMemoryWStream wStream;
pic->serialize(&wStream);
SkAutoTDelete<SkStream> rStream(wStream.detachAsStream());
SkAutoTUnref<SkPicture> deserialized(SkPicture::CreateFromStream(rStream));
// Turn that deserialized picture into a Src, draw it into our Sink to fill bitmap or stream.
struct ProxySrc : public Src {
const SkPicture* fPic;
const SkISize fSize;
ProxySrc(const SkPicture* pic, SkISize size) : fPic(pic), fSize(size) {}
Error draw(SkCanvas* canvas) const SK_OVERRIDE {
canvas->drawPicture(fPic);
return "";
}
SkISize size() const SK_OVERRIDE { return fSize; }
Name name() const SK_OVERRIDE { sk_throw(); return ""; } // No one should be calling this.
} proxy(deserialized, src.size());
return fSink->draw(proxy, bitmap, stream, log);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
ViaTiles::ViaTiles(int w, int h, SkBBHFactory* factory, Sink* sink)
: fW(w)
, fH(h)
, fFactory(factory)
, fSink(sink) {}
Error ViaTiles::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
// Record our Src into a picture.
SkSize size;
size = src.size();
SkPictureRecorder recorder;
Error err = src.draw(recorder.beginRecording(size.width(), size.height(), fFactory.get()));
if (!err.isEmpty()) {
return err;
}
SkAutoTUnref<SkPicture> pic(recorder.endRecording());
// Turn that picture into a Src that draws into our Sink via tiles + MPD.
struct ProxySrc : public Src {
const int fW, fH;
const SkPicture* fPic;
const SkISize fSize;
ProxySrc(int w, int h, const SkPicture* pic, SkISize size)
: fW(w), fH(h), fPic(pic), fSize(size) {}
Error draw(SkCanvas* canvas) const SK_OVERRIDE {
const int xTiles = (fSize.width() + fW - 1) / fW,
yTiles = (fSize.height() + fH - 1) / fH;
SkMultiPictureDraw mpd(xTiles*yTiles);
SkTDArray<SkSurface*> surfaces;
surfaces.setReserve(xTiles*yTiles);
SkImageInfo info = canvas->imageInfo().makeWH(fW, fH);
for (int j = 0; j < yTiles; j++) {
for (int i = 0; i < xTiles; i++) {
// This lets our ultimate Sink determine the best kind of surface.
// E.g., if it's a GpuSink, the surfaces and images are textures.
SkSurface* s = canvas->newSurface(info);
if (!s) {
s = SkSurface::NewRaster(info); // Some canvases can't create surfaces.
}
surfaces.push(s);
SkCanvas* c = s->getCanvas();
c->translate(SkIntToScalar(-i * fW),
SkIntToScalar(-j * fH)); // Line up the canvas with this tile.
mpd.add(c, fPic);
}
}
mpd.draw();
for (int j = 0; j < yTiles; j++) {
for (int i = 0; i < xTiles; i++) {
SkAutoTUnref<SkImage> image(surfaces[i+xTiles*j]->newImageSnapshot());
canvas->drawImage(image, SkIntToScalar(i*fW), SkIntToScalar(j*fH));
}
}
surfaces.unrefAll();
return "";
}
SkISize size() const SK_OVERRIDE { return fSize; }
Name name() const SK_OVERRIDE { sk_throw(); return ""; } // No one should be calling this.
} proxy(fW, fH, pic, src.size());
return fSink->draw(proxy, bitmap, stream, log);
}
} // namespace DM