| /* |
| * Copyright 2020 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/GrClipStack.h" |
| |
| #include "include/core/SkMatrix.h" |
| #include "src/core/SkRRectPriv.h" |
| #include "src/core/SkRectPriv.h" |
| #include "src/core/SkTaskGroup.h" |
| #include "src/gpu/GrClip.h" |
| #include "src/gpu/GrDirectContextPriv.h" |
| #include "src/gpu/GrProxyProvider.h" |
| #include "src/gpu/GrRecordingContextPriv.h" |
| #include "src/gpu/GrSWMaskHelper.h" |
| #include "src/gpu/GrStencilMaskHelper.h" |
| #include "src/gpu/ccpr/GrCoverageCountingPathRenderer.h" |
| #include "src/gpu/effects/GrBlendFragmentProcessor.h" |
| #include "src/gpu/effects/GrConvexPolyEffect.h" |
| #include "src/gpu/effects/GrRRectEffect.h" |
| #include "src/gpu/effects/GrTextureEffect.h" |
| #include "src/gpu/effects/generated/GrAARectEffect.h" |
| #include "src/gpu/effects/generated/GrDeviceSpaceEffect.h" |
| #include "src/gpu/geometry/GrQuadUtils.h" |
| |
| namespace { |
| |
| // This captures which of the two elements in (A op B) would be required when they are combined, |
| // where op is intersect or difference. |
| enum class ClipGeometry { |
| kEmpty, |
| kAOnly, |
| kBOnly, |
| kBoth |
| }; |
| |
| // A and B can be Element, SaveRecord, or Draw. Supported combinations are, order not mattering, |
| // (Element, Element), (Element, SaveRecord), (Element, Draw), and (SaveRecord, Draw). |
| template<typename A, typename B> |
| static ClipGeometry get_clip_geometry(const A& a, const B& b) { |
| // NOTE: SkIRect::Intersects() returns false when two rectangles touch at an edge (so the result |
| // is empty). This behavior is desired for the following clip effect policies. |
| if (a.op() == SkClipOp::kIntersect) { |
| if (b.op() == SkClipOp::kIntersect) { |
| // Intersect (A) + Intersect (B) |
| if (!SkIRect::Intersects(a.outerBounds(), b.outerBounds())) { |
| // Regions with non-zero coverage are disjoint, so intersection = empty |
| return ClipGeometry::kEmpty; |
| } else if (b.contains(a)) { |
| // B's full coverage region contains entirety of A, so intersection = A |
| return ClipGeometry::kAOnly; |
| } else if (a.contains(b)) { |
| // A's full coverage region contains entirety of B, so intersection = B |
| return ClipGeometry::kBOnly; |
| } else { |
| // The shapes intersect in some non-trivial manner |
| return ClipGeometry::kBoth; |
| } |
| } else { |
| SkASSERT(b.op() == SkClipOp::kDifference); |
| // Intersect (A) + Difference (B) |
| if (!SkIRect::Intersects(a.outerBounds(), b.outerBounds())) { |
| // A only intersects B's full coverage region, so intersection = A |
| return ClipGeometry::kAOnly; |
| } else if (b.contains(a)) { |
| // B's zero coverage region completely contains A, so intersection = empty |
| return ClipGeometry::kEmpty; |
| } else { |
| // Intersection cannot be simplified. Note that the combination of a intersect |
| // and difference op in this order cannot produce kBOnly |
| return ClipGeometry::kBoth; |
| } |
| } |
| } else { |
| SkASSERT(a.op() == SkClipOp::kDifference); |
| if (b.op() == SkClipOp::kIntersect) { |
| // Difference (A) + Intersect (B) - the mirror of Intersect(A) + Difference(B), |
| // but combining is commutative so this is equivalent barring naming. |
| if (!SkIRect::Intersects(b.outerBounds(), a.outerBounds())) { |
| // B only intersects A's full coverage region, so intersection = B |
| return ClipGeometry::kBOnly; |
| } else if (a.contains(b)) { |
| // A's zero coverage region completely contains B, so intersection = empty |
| return ClipGeometry::kEmpty; |
| } else { |
| // Cannot be simplified |
| return ClipGeometry::kBoth; |
| } |
| } else { |
| SkASSERT(b.op() == SkClipOp::kDifference); |
| // Difference (A) + Difference (B) |
| if (a.contains(b)) { |
| // A's zero coverage region contains B, so B doesn't remove any extra |
| // coverage from their intersection. |
| return ClipGeometry::kAOnly; |
| } else if (b.contains(a)) { |
| // Mirror of the above case, intersection = B instead |
| return ClipGeometry::kBOnly; |
| } else { |
| // Intersection of the two differences cannot be simplified. Note that for |
| // this op combination it is not possible to produce kEmpty. |
| return ClipGeometry::kBoth; |
| } |
| } |
| } |
| } |
| |
| // a.contains(b) where a's local space is defined by 'aToDevice', and b's possibly separate local |
| // space is defined by 'bToDevice'. 'a' and 'b' geometry are provided in their local spaces. |
| // Automatically takes into account if the anti-aliasing policies differ. When the policies match, |
| // we assume that coverage AA or GPU's non-AA rasterization will apply to A and B equivalently, so |
| // we can compare the original shapes. When the modes are mixed, we outset B in device space first. |
| static bool shape_contains_rect( |
| const GrShape& a, const SkMatrix& aToDevice, const SkMatrix& deviceToA, |
| const SkRect& b, const SkMatrix& bToDevice, bool mixedAAMode) { |
| if (!a.convex()) { |
| return false; |
| } |
| |
| if (!mixedAAMode && aToDevice == bToDevice) { |
| // A and B are in the same coordinate space, so don't bother mapping |
| return a.conservativeContains(b); |
| } else if (bToDevice.isIdentity() && aToDevice.preservesAxisAlignment()) { |
| // Optimize the common case of draws (B, with identity matrix) and axis-aligned shapes, |
| // instead of checking the four corners separately. |
| SkRect bInA = b; |
| if (mixedAAMode) { |
| bInA.outset(0.5f, 0.5f); |
| } |
| SkAssertResult(deviceToA.mapRect(&bInA)); |
| return a.conservativeContains(bInA); |
| } |
| |
| // Test each corner for contains; since a is convex, if all 4 corners of b's bounds are |
| // contained, then the entirety of b is within a. |
| GrQuad deviceQuad = GrQuad::MakeFromRect(b, bToDevice); |
| if (any(deviceQuad.w4f() < SkPathPriv::kW0PlaneDistance)) { |
| // Something in B actually projects behind the W = 0 plane and would be clipped to infinity, |
| // so it's extremely unlikely that A can contain B. |
| return false; |
| } |
| if (mixedAAMode) { |
| // Outset it so its edges are 1/2px out, giving us a buffer to avoid cases where a non-AA |
| // clip or draw would snap outside an aa element. |
| GrQuadUtils::Outset({0.5f, 0.5f, 0.5f, 0.5f}, &deviceQuad); |
| } |
| |
| for (int i = 0; i < 4; ++i) { |
| SkPoint cornerInA = deviceQuad.point(i); |
| deviceToA.mapPoints(&cornerInA, 1); |
| if (!a.conservativeContains(cornerInA)) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static SkIRect subtract(const SkIRect& a, const SkIRect& b, bool exact) { |
| SkIRect diff; |
| if (SkRectPriv::Subtract(a, b, &diff) || !exact) { |
| // Either A-B is exactly the rectangle stored in diff, or we don't need an exact answer |
| // and can settle for the subrect of A excluded from B (which is also 'diff') |
| return diff; |
| } else { |
| // For our purposes, we want the original A when A-B cannot be exactly represented |
| return a; |
| } |
| } |
| |
| static GrClipEdgeType get_clip_edge_type(SkClipOp op, GrAA aa) { |
| if (op == SkClipOp::kIntersect) { |
| return aa == GrAA::kYes ? GrClipEdgeType::kFillAA : GrClipEdgeType::kFillBW; |
| } else { |
| return aa == GrAA::kYes ? GrClipEdgeType::kInverseFillAA : GrClipEdgeType::kInverseFillBW; |
| } |
| } |
| |
| static uint32_t kInvalidGenID = 0; |
| static uint32_t kEmptyGenID = 1; |
| static uint32_t kWideOpenGenID = 2; |
| |
| static uint32_t next_gen_id() { |
| // 0-2 are reserved for invalid, empty & wide-open |
| static const uint32_t kFirstUnreservedGenID = 3; |
| static std::atomic<uint32_t> nextID{kFirstUnreservedGenID}; |
| |
| uint32_t id; |
| do { |
| id = nextID.fetch_add(1, std::memory_order_relaxed); |
| } while (id < kFirstUnreservedGenID); |
| return id; |
| } |
| |
| // Functions for rendering / applying clip shapes in various ways |
| // The general strategy is: |
| // - Represent the clip element as an analytic FP that tests sk_FragCoord vs. its device shape |
| // - Render the clip element to the stencil, if stencil is allowed and supports the AA, and the |
| // size of the element indicates stenciling will be worth it, vs. making a mask. |
| // - Try to put the individual element into a clip atlas, which is then sampled during the draw |
| // - Render the element into a SW mask and upload it. If possible, the SW rasterization happens |
| // in parallel. |
| static constexpr GrSurfaceOrigin kMaskOrigin = kTopLeft_GrSurfaceOrigin; |
| |
| static GrFPResult analytic_clip_fp(const GrClipStack::Element& e, |
| const GrShaderCaps& caps, |
| std::unique_ptr<GrFragmentProcessor> fp) { |
| // All analytic clip shape FPs need to be in device space |
| GrClipEdgeType edgeType = get_clip_edge_type(e.fOp, e.fAA); |
| if (e.fLocalToDevice.isIdentity()) { |
| if (e.fShape.isRect()) { |
| return GrFPSuccess(GrAARectEffect::Make(std::move(fp), edgeType, e.fShape.rect())); |
| } else if (e.fShape.isRRect()) { |
| return GrRRectEffect::Make(std::move(fp), edgeType, e.fShape.rrect(), caps); |
| } |
| } |
| |
| // A convex hull can be transformed into device space (this will handle rect shapes with a |
| // non-identity transform). |
| if (e.fShape.segmentMask() == SkPath::kLine_SegmentMask && e.fShape.convex()) { |
| SkPath devicePath; |
| e.fShape.asPath(&devicePath); |
| devicePath.transform(e.fLocalToDevice); |
| return GrConvexPolyEffect::Make(std::move(fp), edgeType, devicePath); |
| } |
| |
| return GrFPFailure(std::move(fp)); |
| } |
| |
| // TODO: Currently this only works with CCPR because CCPR owns and manages the clip atlas. The |
| // high-level concept should be generalized to support any path renderer going into a shared atlas. |
| static std::unique_ptr<GrFragmentProcessor> clip_atlas_fp(GrCoverageCountingPathRenderer* ccpr, |
| uint32_t opsTaskID, |
| const SkIRect& bounds, |
| const GrClipStack::Element& e, |
| SkPath* devicePath, |
| const GrCaps& caps, |
| std::unique_ptr<GrFragmentProcessor> fp) { |
| // TODO: Currently the atlas manages device-space paths, so we have to transform by the ctm. |
| // In the future, the atlas manager should see the local path and the ctm so that it can |
| // cache across integer-only translations (internally, it already does this, just not exposed). |
| if (devicePath->isEmpty()) { |
| e.fShape.asPath(devicePath); |
| devicePath->transform(e.fLocalToDevice); |
| SkASSERT(!devicePath->isEmpty()); |
| } |
| |
| SkASSERT(!devicePath->isInverseFillType()); |
| if (e.fOp == SkClipOp::kIntersect) { |
| return ccpr->makeClipProcessor(std::move(fp), opsTaskID, *devicePath, bounds, caps); |
| } else { |
| // Use kDstOut to convert the non-inverted mask alpha into (1-alpha), so the atlas only |
| // ever renders non-inverse filled paths. |
| // - When the input FP is null, this turns into "(1-sample(ccpr, 1).a) * input" |
| // - When not null, it works out to |
| // (1-sample(ccpr, input.rgb1).a) * sample(fp, input.rgb1) * input.a |
| // - Since clips only care about the alpha channel, these are both equivalent to the |
| // desired product of (1-ccpr) * fp * input.a. |
| return GrBlendFragmentProcessor::Make( |
| ccpr->makeClipProcessor(nullptr, opsTaskID, *devicePath, bounds, caps), // src |
| std::move(fp), // dst |
| SkBlendMode::kDstOut); |
| } |
| } |
| |
| static void draw_to_sw_mask(GrSWMaskHelper* helper, const GrClipStack::Element& e, bool clearMask) { |
| // If the first element to draw is an intersect, we clear to 0 and will draw it directly with |
| // coverage 1 (subsequent intersect elements will be inverse-filled and draw 0 outside). |
| // If the first element to draw is a difference, we clear to 1, and in all cases we draw the |
| // difference element directly with coverage 0. |
| if (clearMask) { |
| helper->clear(e.fOp == SkClipOp::kIntersect ? 0x00 : 0xFF); |
| } |
| |
| uint8_t alpha; |
| bool invert; |
| if (e.fOp == SkClipOp::kIntersect) { |
| // Intersect modifies pixels outside of its geometry. If this isn't the first op, we |
| // draw the inverse-filled shape with 0 coverage to erase everything outside the element |
| // But if we are the first element, we can draw directly with coverage 1 since we |
| // cleared to 0. |
| if (clearMask) { |
| alpha = 0xFF; |
| invert = false; |
| } else { |
| alpha = 0x00; |
| invert = true; |
| } |
| } else { |
| // For difference ops, can always just subtract the shape directly by drawing 0 coverage |
| SkASSERT(e.fOp == SkClipOp::kDifference); |
| alpha = 0x00; |
| invert = false; |
| } |
| |
| // Draw the shape; based on how we've initialized the buffer and chosen alpha+invert, |
| // every element is drawn with the kReplace_Op |
| if (invert) { |
| // Must invert the path |
| SkASSERT(!e.fShape.inverted()); |
| // TODO: this is an extra copy effectively, just so we can toggle inversion; would be |
| // better perhaps to just call a drawPath() since we know it'll use path rendering w/ |
| // the inverse fill type. |
| GrShape inverted(e.fShape); |
| inverted.setInverted(true); |
| helper->drawShape(inverted, e.fLocalToDevice, SkRegion::kReplace_Op, e.fAA, alpha); |
| } else { |
| helper->drawShape(e.fShape, e.fLocalToDevice, SkRegion::kReplace_Op, e.fAA, alpha); |
| } |
| } |
| |
| static GrSurfaceProxyView render_sw_mask(GrRecordingContext* context, const SkIRect& bounds, |
| const GrClipStack::Element** elements, int count) { |
| SkASSERT(count > 0); |
| |
| SkTArray<GrClipStack::Element> data(count); |
| for (int i = 0; i < count; ++i) { |
| data.push_back(*(elements[i])); |
| } |
| return GrSWMaskHelper::MakeTexture(bounds, |
| context, |
| SkBackingFit::kApprox, |
| [data{std::move(data)}](GrSWMaskHelper* helper) { |
| TRACE_EVENT0("skia.gpu", "SW Clip Mask Render"); |
| for (int i = 0; i < data.count(); ++i) { |
| draw_to_sw_mask(helper, data[i], i == 0); |
| } |
| }); |
| } |
| |
| static void render_stencil_mask(GrRecordingContext* context, GrSurfaceDrawContext* rtc, |
| uint32_t genID, const SkIRect& bounds, |
| const GrClipStack::Element** elements, int count, |
| GrAppliedClip* out) { |
| GrStencilMaskHelper helper(context, rtc); |
| if (helper.init(bounds, genID, out->windowRectsState().windows(), 0)) { |
| // This follows the same logic as in draw_sw_mask |
| bool startInside = elements[0]->fOp == SkClipOp::kDifference; |
| helper.clear(startInside); |
| for (int i = 0; i < count; ++i) { |
| const GrClipStack::Element& e = *(elements[i]); |
| SkRegion::Op op; |
| if (e.fOp == SkClipOp::kIntersect) { |
| op = (i == 0) ? SkRegion::kReplace_Op : SkRegion::kIntersect_Op; |
| } else { |
| op = SkRegion::kDifference_Op; |
| } |
| helper.drawShape(e.fShape, e.fLocalToDevice, op, e.fAA); |
| } |
| helper.finish(); |
| } |
| out->hardClip().addStencilClip(genID); |
| } |
| |
| } // anonymous namespace |
| |
| class GrClipStack::Draw { |
| public: |
| Draw(const SkRect& drawBounds, GrAA aa) |
| : fBounds(GrClip::GetPixelIBounds(drawBounds, aa, BoundsType::kExterior)) |
| , fAA(aa) { |
| // Be slightly more forgiving on whether or not a draw is inside a clip element. |
| fOriginalBounds = drawBounds.makeInset(GrClip::kBoundsTolerance, GrClip::kBoundsTolerance); |
| if (fOriginalBounds.isEmpty()) { |
| fOriginalBounds = drawBounds; |
| } |
| } |
| |
| // Common clip type interface |
| SkClipOp op() const { return SkClipOp::kIntersect; } |
| const SkIRect& outerBounds() const { return fBounds; } |
| |
| // Draw does not have inner bounds so cannot contain anything. |
| bool contains(const RawElement& e) const { return false; } |
| bool contains(const SaveRecord& s) const { return false; } |
| |
| bool applyDeviceBounds(const SkIRect& deviceBounds) { |
| return fBounds.intersect(deviceBounds); |
| } |
| |
| const SkRect& bounds() const { return fOriginalBounds; } |
| GrAA aa() const { return fAA; } |
| |
| private: |
| SkRect fOriginalBounds; |
| SkIRect fBounds; |
| GrAA fAA; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // GrClipStack::Element |
| |
| GrClipStack::RawElement::RawElement(const SkMatrix& localToDevice, const GrShape& shape, |
| GrAA aa, SkClipOp op) |
| : Element{shape, localToDevice, op, aa} |
| , fInnerBounds(SkIRect::MakeEmpty()) |
| , fOuterBounds(SkIRect::MakeEmpty()) |
| , fInvalidatedByIndex(-1) { |
| if (!localToDevice.invert(&fDeviceToLocal)) { |
| // If the transform can't be inverted, it means that two dimensions are collapsed to 0 or |
| // 1 dimension, making the device-space geometry effectively empty. |
| fShape.reset(); |
| } |
| } |
| |
| void GrClipStack::RawElement::markInvalid(const SaveRecord& current) { |
| SkASSERT(!this->isInvalid()); |
| fInvalidatedByIndex = current.firstActiveElementIndex(); |
| } |
| |
| void GrClipStack::RawElement::restoreValid(const SaveRecord& current) { |
| if (current.firstActiveElementIndex() < fInvalidatedByIndex) { |
| fInvalidatedByIndex = -1; |
| } |
| } |
| |
| bool GrClipStack::RawElement::contains(const Draw& d) const { |
| if (fInnerBounds.contains(d.outerBounds())) { |
| return true; |
| } else { |
| // If the draw is non-AA, use the already computed outer bounds so we don't need to use |
| // device-space outsetting inside shape_contains_rect. |
| SkRect queryBounds = d.aa() == GrAA::kYes ? d.bounds() : SkRect::Make(d.outerBounds()); |
| return shape_contains_rect(fShape, fLocalToDevice, fDeviceToLocal, |
| queryBounds, SkMatrix::I(), /* mixed-aa */ false); |
| } |
| } |
| |
| bool GrClipStack::RawElement::contains(const SaveRecord& s) const { |
| if (fInnerBounds.contains(s.outerBounds())) { |
| return true; |
| } else { |
| // This is very similar to contains(Draw) but we just have outerBounds to work with. |
| SkRect queryBounds = SkRect::Make(s.outerBounds()); |
| return shape_contains_rect(fShape, fLocalToDevice, fDeviceToLocal, |
| queryBounds, SkMatrix::I(), /* mixed-aa */ false); |
| } |
| } |
| |
| bool GrClipStack::RawElement::contains(const RawElement& e) const { |
| // This is similar to how RawElement checks containment for a Draw, except that both the tester |
| // and testee have a transform that needs to be considered. |
| if (fInnerBounds.contains(e.fOuterBounds)) { |
| return true; |
| } |
| |
| bool mixedAA = fAA != e.fAA; |
| if (!mixedAA && fLocalToDevice == e.fLocalToDevice) { |
| // Test the shapes directly against each other, with a special check for a rrect+rrect |
| // containment (a intersect b == a implies b contains a) and paths (same gen ID, or same |
| // path for small paths means they contain each other). |
| static constexpr int kMaxPathComparePoints = 16; |
| if (fShape.isRRect() && e.fShape.isRRect()) { |
| return SkRRectPriv::ConservativeIntersect(fShape.rrect(), e.fShape.rrect()) |
| == e.fShape.rrect(); |
| } else if (fShape.isPath() && e.fShape.isPath()) { |
| return fShape.path().getGenerationID() == e.fShape.path().getGenerationID() || |
| (fShape.path().getPoints(nullptr, 0) <= kMaxPathComparePoints && |
| fShape.path() == e.fShape.path()); |
| } // else fall through to shape_contains_rect |
| } |
| |
| return shape_contains_rect(fShape, fLocalToDevice, fDeviceToLocal, |
| e.fShape.bounds(), e.fLocalToDevice, mixedAA); |
| |
| } |
| |
| void GrClipStack::RawElement::simplify(const SkIRect& deviceBounds, bool forceAA) { |
| // Make sure the shape is not inverted. An inverted shape is equivalent to a non-inverted shape |
| // with the clip op toggled. |
| if (fShape.inverted()) { |
| fOp = fOp == SkClipOp::kIntersect ? SkClipOp::kDifference : SkClipOp::kIntersect; |
| fShape.setInverted(false); |
| } |
| |
| // Then simplify the base shape, if it becomes empty, no need to update the bounds |
| fShape.simplify(); |
| SkASSERT(!fShape.inverted()); |
| if (fShape.isEmpty()) { |
| return; |
| } |
| |
| // Lines and points should have been turned into empty since we assume everything is filled |
| SkASSERT(!fShape.isPoint() && !fShape.isLine()); |
| // Validity check, we have no public API to create an arc at the moment |
| SkASSERT(!fShape.isArc()); |
| |
| SkRect outer = fLocalToDevice.mapRect(fShape.bounds()); |
| if (!outer.intersect(SkRect::Make(deviceBounds))) { |
| // A non-empty shape is offscreen, so treat it as empty |
| fShape.reset(); |
| return; |
| } |
| |
| // Except for axis-aligned clip rects, upgrade to AA when forced. We skip axis-aligned clip |
| // rects because a non-AA axis aligned rect can always be set as just a scissor test or window |
| // rect, avoiding an expensive stencil mask generation. |
| if (forceAA && !(fShape.isRect() && fLocalToDevice.preservesAxisAlignment())) { |
| fAA = GrAA::kYes; |
| } |
| |
| // Except for non-AA axis-aligned rects, the outer bounds is the rounded-out device-space |
| // mapped bounds of the shape. |
| fOuterBounds = GrClip::GetPixelIBounds(outer, fAA, BoundsType::kExterior); |
| |
| if (fLocalToDevice.preservesAxisAlignment()) { |
| if (fShape.isRect()) { |
| // The actual geometry can be updated to the device-intersected bounds and we can |
| // know the inner bounds |
| fShape.rect() = outer; |
| fLocalToDevice.setIdentity(); |
| fDeviceToLocal.setIdentity(); |
| |
| if (fAA == GrAA::kNo && outer.width() >= 1.f && outer.height() >= 1.f) { |
| // NOTE: Legacy behavior to avoid performance regressions. For non-aa axis-aligned |
| // clip rects we always just round so that they can be scissor-only (avoiding the |
| // uncertainty in how a GPU might actually round an edge on fractional coords). |
| fOuterBounds = outer.round(); |
| fInnerBounds = fOuterBounds; |
| } else { |
| fInnerBounds = GrClip::GetPixelIBounds(outer, fAA, BoundsType::kInterior); |
| SkASSERT(fOuterBounds.contains(fInnerBounds) || fInnerBounds.isEmpty()); |
| } |
| } else if (fShape.isRRect()) { |
| // Can't transform in place and must still check transform result since some very |
| // ill-formed scale+translate matrices can cause invalid rrect radii. |
| SkRRect src; |
| if (fShape.rrect().transform(fLocalToDevice, &src)) { |
| fShape.rrect() = src; |
| fLocalToDevice.setIdentity(); |
| fDeviceToLocal.setIdentity(); |
| |
| SkRect inner = SkRRectPriv::InnerBounds(fShape.rrect()); |
| fInnerBounds = GrClip::GetPixelIBounds(inner, fAA, BoundsType::kInterior); |
| if (!fInnerBounds.intersect(deviceBounds)) { |
| fInnerBounds = SkIRect::MakeEmpty(); |
| } |
| } |
| } |
| } |
| |
| if (fOuterBounds.isEmpty()) { |
| // This can happen if we have non-AA shapes smaller than a pixel that do not cover a pixel |
| // center. We could round out, but rasterization would still result in an empty clip. |
| fShape.reset(); |
| } |
| |
| // Post-conditions on inner and outer bounds |
| SkASSERT(fShape.isEmpty() || (!fOuterBounds.isEmpty() && deviceBounds.contains(fOuterBounds))); |
| SkASSERT(fShape.isEmpty() || fInnerBounds.isEmpty() || fOuterBounds.contains(fInnerBounds)); |
| } |
| |
| bool GrClipStack::RawElement::combine(const RawElement& other, const SaveRecord& current) { |
| // To reduce the number of possibilities, only consider intersect+intersect. Difference and |
| // mixed op cases could be analyzed to simplify one of the shapes, but that is a rare |
| // occurrence and the math is much more complicated. |
| if (other.fOp != SkClipOp::kIntersect || fOp != SkClipOp::kIntersect) { |
| return false; |
| } |
| |
| // At the moment, only rect+rect or rrect+rrect are supported (although rect+rrect is |
| // treated as a degenerate case of rrect+rrect). |
| bool shapeUpdated = false; |
| if (fShape.isRect() && other.fShape.isRect()) { |
| bool aaMatch = fAA == other.fAA; |
| if (fLocalToDevice.isIdentity() && other.fLocalToDevice.isIdentity() && !aaMatch) { |
| if (GrClip::IsPixelAligned(fShape.rect())) { |
| // Our AA type doesn't really matter, take other's since its edges may not be |
| // pixel aligned, so after intersection clip behavior should respect its aa type. |
| fAA = other.fAA; |
| } else if (!GrClip::IsPixelAligned(other.fShape.rect())) { |
| // Neither shape is pixel aligned and AA types don't match so can't combine |
| return false; |
| } |
| // Either we've updated this->fAA to actually match, or other->fAA doesn't matter so |
| // this can be set to true. We just can't modify other to set it's aa to this->fAA. |
| // But since 'this' becomes the combo of the two, other will be deleted so that's fine. |
| aaMatch = true; |
| } |
| |
| if (aaMatch && fLocalToDevice == other.fLocalToDevice) { |
| if (!fShape.rect().intersect(other.fShape.rect())) { |
| // By floating point, it turns out the combination should be empty |
| this->fShape.reset(); |
| this->markInvalid(current); |
| return true; |
| } |
| shapeUpdated = true; |
| } |
| } else if ((fShape.isRect() || fShape.isRRect()) && |
| (other.fShape.isRect() || other.fShape.isRRect())) { |
| // No such pixel-aligned disregard for AA for round rects |
| if (fAA == other.fAA && fLocalToDevice == other.fLocalToDevice) { |
| // Treat rrect+rect intersections as rrect+rrect |
| SkRRect a = fShape.isRect() ? SkRRect::MakeRect(fShape.rect()) : fShape.rrect(); |
| SkRRect b = other.fShape.isRect() ? SkRRect::MakeRect(other.fShape.rect()) |
| : other.fShape.rrect(); |
| |
| SkRRect joined = SkRRectPriv::ConservativeIntersect(a, b); |
| if (!joined.isEmpty()) { |
| // Can reduce to a single element |
| if (joined.isRect()) { |
| // And with a simplified type |
| fShape.setRect(joined.rect()); |
| } else { |
| fShape.setRRect(joined); |
| } |
| shapeUpdated = true; |
| } else if (!a.getBounds().intersects(b.getBounds())) { |
| // Like the rect+rect combination, the intersection is actually empty |
| fShape.reset(); |
| this->markInvalid(current); |
| return true; |
| } |
| } |
| } |
| |
| if (shapeUpdated) { |
| // This logic works under the assumption that both combined elements were intersect, so we |
| // don't do the full bounds computations like in simplify(). |
| SkASSERT(fOp == SkClipOp::kIntersect && other.fOp == SkClipOp::kIntersect); |
| SkAssertResult(fOuterBounds.intersect(other.fOuterBounds)); |
| if (!fInnerBounds.intersect(other.fInnerBounds)) { |
| fInnerBounds = SkIRect::MakeEmpty(); |
| } |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| void GrClipStack::RawElement::updateForElement(RawElement* added, const SaveRecord& current) { |
| if (this->isInvalid()) { |
| // Already doesn't do anything, so skip this element |
| return; |
| } |
| |
| // 'A' refers to this element, 'B' refers to 'added'. |
| switch (get_clip_geometry(*this, *added)) { |
| case ClipGeometry::kEmpty: |
| // Mark both elements as invalid to signal that the clip is fully empty |
| this->markInvalid(current); |
| added->markInvalid(current); |
| break; |
| |
| case ClipGeometry::kAOnly: |
| // This element already clips more than 'added', so mark 'added' is invalid to skip it |
| added->markInvalid(current); |
| break; |
| |
| case ClipGeometry::kBOnly: |
| // 'added' clips more than this element, so mark this as invalid |
| this->markInvalid(current); |
| break; |
| |
| case ClipGeometry::kBoth: |
| // Else the bounds checks think we need to keep both, but depending on the combination |
| // of the ops and shape kinds, we may be able to do better. |
| if (added->combine(*this, current)) { |
| // 'added' now fully represents the combination of the two elements |
| this->markInvalid(current); |
| } |
| break; |
| } |
| } |
| |
| GrClipStack::ClipState GrClipStack::RawElement::clipType() const { |
| // Map from the internal shape kind to the clip state enum |
| switch (fShape.type()) { |
| case GrShape::Type::kEmpty: |
| return ClipState::kEmpty; |
| |
| case GrShape::Type::kRect: |
| return fOp == SkClipOp::kIntersect && fLocalToDevice.isIdentity() |
| ? ClipState::kDeviceRect : ClipState::kComplex; |
| |
| case GrShape::Type::kRRect: |
| return fOp == SkClipOp::kIntersect && fLocalToDevice.isIdentity() |
| ? ClipState::kDeviceRRect : ClipState::kComplex; |
| |
| case GrShape::Type::kArc: |
| case GrShape::Type::kLine: |
| case GrShape::Type::kPoint: |
| // These types should never become RawElements |
| SkASSERT(false); |
| [[fallthrough]]; |
| |
| case GrShape::Type::kPath: |
| return ClipState::kComplex; |
| } |
| SkUNREACHABLE; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // GrClipStack::Mask |
| |
| GrClipStack::Mask::Mask(const SaveRecord& current, const SkIRect& drawBounds) |
| : fBounds(drawBounds) |
| , fGenID(current.genID()) { |
| static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain(); |
| |
| // The gen ID should not be invalid, empty, or wide open, since those do not require masks |
| SkASSERT(fGenID != kInvalidGenID && fGenID != kEmptyGenID && fGenID != kWideOpenGenID); |
| |
| GrUniqueKey::Builder builder(&fKey, kDomain, 3, "clip_mask"); |
| builder[0] = fGenID; |
| // SkToS16 because image filters outset layers to a size indicated by the filter, which can |
| // sometimes result in negative coordinates from device space. |
| builder[1] = SkToS16(drawBounds.fLeft) | (SkToS16(drawBounds.fRight) << 16); |
| builder[2] = SkToS16(drawBounds.fTop) | (SkToS16(drawBounds.fBottom) << 16); |
| SkASSERT(fKey.isValid()); |
| |
| SkDEBUGCODE(fOwner = ¤t;) |
| } |
| |
| bool GrClipStack::Mask::appliesToDraw(const SaveRecord& current, const SkIRect& drawBounds) const { |
| // For the same save record, a larger mask will have the same or more elements |
| // baked into it, so it can be reused to clip the smaller draw. |
| SkASSERT(fGenID != current.genID() || ¤t == fOwner); |
| return fGenID == current.genID() && fBounds.contains(drawBounds); |
| } |
| |
| void GrClipStack::Mask::invalidate(GrProxyProvider* proxyProvider) { |
| SkASSERT(proxyProvider); |
| SkASSERT(fKey.isValid()); // Should only be invalidated once |
| proxyProvider->processInvalidUniqueKey( |
| fKey, nullptr, GrProxyProvider::InvalidateGPUResource::kYes); |
| fKey.reset(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // GrClipStack::SaveRecord |
| |
| GrClipStack::SaveRecord::SaveRecord(const SkIRect& deviceBounds) |
| : fInnerBounds(deviceBounds) |
| , fOuterBounds(deviceBounds) |
| , fShader(nullptr) |
| , fStartingMaskIndex(0) |
| , fStartingElementIndex(0) |
| , fOldestValidIndex(0) |
| , fDeferredSaveCount(0) |
| , fStackOp(SkClipOp::kIntersect) |
| , fState(ClipState::kWideOpen) |
| , fGenID(kInvalidGenID) {} |
| |
| GrClipStack::SaveRecord::SaveRecord(const SaveRecord& prior, |
| int startingMaskIndex, |
| int startingElementIndex) |
| : fInnerBounds(prior.fInnerBounds) |
| , fOuterBounds(prior.fOuterBounds) |
| , fShader(prior.fShader) |
| , fStartingMaskIndex(startingMaskIndex) |
| , fStartingElementIndex(startingElementIndex) |
| , fOldestValidIndex(prior.fOldestValidIndex) |
| , fDeferredSaveCount(0) |
| , fStackOp(prior.fStackOp) |
| , fState(prior.fState) |
| , fGenID(kInvalidGenID) { |
| // If the prior record never needed a mask, this one will insert into the same index |
| // (that's okay since we'll remove it when this record is popped off the stack). |
| SkASSERT(startingMaskIndex >= prior.fStartingMaskIndex); |
| // The same goes for elements (the prior could have been wide open). |
| SkASSERT(startingElementIndex >= prior.fStartingElementIndex); |
| } |
| |
| uint32_t GrClipStack::SaveRecord::genID() const { |
| if (fState == ClipState::kEmpty) { |
| return kEmptyGenID; |
| } else if (fState == ClipState::kWideOpen) { |
| return kWideOpenGenID; |
| } else { |
| // The gen ID shouldn't be empty or wide open, since they are reserved for the above |
| // if-cases. It may be kInvalid if the record hasn't had any elements added to it yet. |
| SkASSERT(fGenID != kEmptyGenID && fGenID != kWideOpenGenID); |
| return fGenID; |
| } |
| } |
| |
| GrClipStack::ClipState GrClipStack::SaveRecord::state() const { |
| if (fShader && fState != ClipState::kEmpty) { |
| return ClipState::kComplex; |
| } else { |
| return fState; |
| } |
| } |
| |
| bool GrClipStack::SaveRecord::contains(const GrClipStack::Draw& draw) const { |
| return fInnerBounds.contains(draw.outerBounds()); |
| } |
| |
| bool GrClipStack::SaveRecord::contains(const GrClipStack::RawElement& element) const { |
| return fInnerBounds.contains(element.outerBounds()); |
| } |
| |
| void GrClipStack::SaveRecord::removeElements(RawElement::Stack* elements) { |
| while (elements->count() > fStartingElementIndex) { |
| elements->pop_back(); |
| } |
| } |
| |
| void GrClipStack::SaveRecord::restoreElements(RawElement::Stack* elements) { |
| // Presumably this SaveRecord is the new top of the stack, and so it owns the elements |
| // from its starting index to restoreCount - 1. Elements from the old save record have |
| // been destroyed already, so their indices would have been >= restoreCount, and any |
| // still-present element can be un-invalidated based on that. |
| int i = elements->count() - 1; |
| for (RawElement& e : elements->ritems()) { |
| if (i < fOldestValidIndex) { |
| break; |
| } |
| e.restoreValid(*this); |
| --i; |
| } |
| } |
| |
| void GrClipStack::SaveRecord::invalidateMasks(GrProxyProvider* proxyProvider, |
| Mask::Stack* masks) { |
| // Must explicitly invalidate the key before removing the mask object from the stack |
| while (masks->count() > fStartingMaskIndex) { |
| SkASSERT(masks->back().owner() == this && proxyProvider); |
| masks->back().invalidate(proxyProvider); |
| masks->pop_back(); |
| } |
| SkASSERT(masks->empty() || masks->back().genID() != fGenID); |
| } |
| |
| void GrClipStack::SaveRecord::reset(const SkIRect& bounds) { |
| SkASSERT(this->canBeUpdated()); |
| fOldestValidIndex = fStartingElementIndex; |
| fOuterBounds = bounds; |
| fInnerBounds = bounds; |
| fStackOp = SkClipOp::kIntersect; |
| fState = ClipState::kWideOpen; |
| fShader = nullptr; |
| } |
| |
| void GrClipStack::SaveRecord::addShader(sk_sp<SkShader> shader) { |
| SkASSERT(shader); |
| SkASSERT(this->canBeUpdated()); |
| if (!fShader) { |
| fShader = std::move(shader); |
| } else { |
| // The total coverage is computed by multiplying the coverage from each element (shape or |
| // shader), but since multiplication is associative, we can use kSrcIn blending to make |
| // a new shader that represents 'shader' * 'fShader' |
| fShader = SkShaders::Blend(SkBlendMode::kSrcIn, std::move(shader), fShader); |
| } |
| } |
| |
| bool GrClipStack::SaveRecord::addElement(RawElement&& toAdd, RawElement::Stack* elements) { |
| // Validity check the element's state first; if the shape class isn't empty, the outer bounds |
| // shouldn't be empty; if the inner bounds are not empty, they must be contained in outer. |
| SkASSERT((toAdd.shape().isEmpty() || !toAdd.outerBounds().isEmpty()) && |
| (toAdd.innerBounds().isEmpty() || toAdd.outerBounds().contains(toAdd.innerBounds()))); |
| // And we shouldn't be adding an element if we have a deferred save |
| SkASSERT(this->canBeUpdated()); |
| |
| if (fState == ClipState::kEmpty) { |
| // The clip is already empty, and we only shrink, so there's no need to record this element. |
| return false; |
| } else if (toAdd.shape().isEmpty()) { |
| // An empty difference op should have been detected earlier, since it's a no-op |
| SkASSERT(toAdd.op() == SkClipOp::kIntersect); |
| fState = ClipState::kEmpty; |
| return true; |
| } |
| |
| // In this invocation, 'A' refers to the existing stack's bounds and 'B' refers to the new |
| // element. |
| switch (get_clip_geometry(*this, toAdd)) { |
| case ClipGeometry::kEmpty: |
| // The combination results in an empty clip |
| fState = ClipState::kEmpty; |
| return true; |
| |
| case ClipGeometry::kAOnly: |
| // The combination would not be any different than the existing clip |
| return false; |
| |
| case ClipGeometry::kBOnly: |
| // The combination would invalidate the entire existing stack and can be replaced with |
| // just the new element. |
| this->replaceWithElement(std::move(toAdd), elements); |
| return true; |
| |
| case ClipGeometry::kBoth: |
| // The new element combines in a complex manner, so update the stack's bounds based on |
| // the combination of its and the new element's ops (handled below) |
| break; |
| } |
| |
| if (fState == ClipState::kWideOpen) { |
| // When the stack was wide open and the clip effect was kBoth, the "complex" manner is |
| // simply to keep the element and update the stack bounds to be the element's intersected |
| // with the device. |
| this->replaceWithElement(std::move(toAdd), elements); |
| return true; |
| } |
| |
| // Some form of actual clip element(s) to combine with. |
| if (fStackOp == SkClipOp::kIntersect) { |
| if (toAdd.op() == SkClipOp::kIntersect) { |
| // Intersect (stack) + Intersect (toAdd) |
| // - Bounds updates is simply the paired intersections of outer and inner. |
| SkAssertResult(fOuterBounds.intersect(toAdd.outerBounds())); |
| if (!fInnerBounds.intersect(toAdd.innerBounds())) { |
| // NOTE: this does the right thing if either rect is empty, since we set the |
| // inner bounds to empty here |
| fInnerBounds = SkIRect::MakeEmpty(); |
| } |
| } else { |
| // Intersect (stack) + Difference (toAdd) |
| // - Shrink the stack's outer bounds if the difference op's inner bounds completely |
| // cuts off an edge. |
| // - Shrink the stack's inner bounds to completely exclude the op's outer bounds. |
| fOuterBounds = subtract(fOuterBounds, toAdd.innerBounds(), /* exact */ true); |
| fInnerBounds = subtract(fInnerBounds, toAdd.outerBounds(), /* exact */ false); |
| } |
| } else { |
| if (toAdd.op() == SkClipOp::kIntersect) { |
| // Difference (stack) + Intersect (toAdd) |
| // - Bounds updates are just the mirror of Intersect(stack) + Difference(toAdd) |
| SkIRect oldOuter = fOuterBounds; |
| fOuterBounds = subtract(toAdd.outerBounds(), fInnerBounds, /* exact */ true); |
| fInnerBounds = subtract(toAdd.innerBounds(), oldOuter, /* exact */ false); |
| } else { |
| // Difference (stack) + Difference (toAdd) |
| // - The updated outer bounds is the union of outer bounds and the inner becomes the |
| // largest of the two possible inner bounds |
| fOuterBounds.join(toAdd.outerBounds()); |
| if (toAdd.innerBounds().width() * toAdd.innerBounds().height() > |
| fInnerBounds.width() * fInnerBounds.height()) { |
| fInnerBounds = toAdd.innerBounds(); |
| } |
| } |
| } |
| |
| // If we get here, we're keeping the new element and the stack's bounds have been updated. |
| // We ought to have caught the cases where the stack bounds resemble an empty or wide open |
| // clip, so assert that's the case. |
| SkASSERT(!fOuterBounds.isEmpty() && |
| (fInnerBounds.isEmpty() || fOuterBounds.contains(fInnerBounds))); |
| |
| return this->appendElement(std::move(toAdd), elements); |
| } |
| |
| bool GrClipStack::SaveRecord::appendElement(RawElement&& toAdd, RawElement::Stack* elements) { |
| // Update past elements to account for the new element |
| int i = elements->count() - 1; |
| |
| // After the loop, elements between [max(youngestValid, startingIndex)+1, count-1] can be |
| // removed from the stack (these are the active elements that have been invalidated by the |
| // newest element; since it's the active part of the stack, no restore() can bring them back). |
| int youngestValid = fStartingElementIndex - 1; |
| // After the loop, elements between [0, oldestValid-1] are all invalid. The value of oldestValid |
| // becomes the save record's new fLastValidIndex value. |
| int oldestValid = elements->count(); |
| // After the loop, this is the earliest active element that was invalidated. It may be |
| // older in the stack than earliestValid, so cannot be popped off, but can be used to store |
| // the new element instead of allocating more. |
| RawElement* oldestActiveInvalid = nullptr; |
| int oldestActiveInvalidIndex = elements->count(); |
| |
| for (RawElement& existing : elements->ritems()) { |
| if (i < fOldestValidIndex) { |
| break; |
| } |
| // We don't need to pass the actual index that toAdd will be saved to; just the minimum |
| // index of this save record, since that will result in the same restoration behavior later. |
| existing.updateForElement(&toAdd, *this); |
| |
| if (toAdd.isInvalid()) { |
| if (existing.isInvalid()) { |
| // Both new and old invalid implies the entire clip becomes empty |
| fState = ClipState::kEmpty; |
| return true; |
| } else { |
| // The new element doesn't change the clip beyond what the old element already does |
| return false; |
| } |
| } else if (existing.isInvalid()) { |
| // The new element cancels out the old element. The new element may have been modified |
| // to account for the old element's geometry. |
| if (i >= fStartingElementIndex) { |
| // Still active, so the invalidated index could be used to store the new element |
| oldestActiveInvalid = &existing; |
| oldestActiveInvalidIndex = i; |
| } |
| } else { |
| // Keep both new and old elements |
| oldestValid = i; |
| if (i > youngestValid) { |
| youngestValid = i; |
| } |
| } |
| |
| --i; |
| } |
| |
| // Post-iteration validity check |
| SkASSERT(oldestValid == elements->count() || |
| (oldestValid >= fOldestValidIndex && oldestValid < elements->count())); |
| SkASSERT(youngestValid == fStartingElementIndex - 1 || |
| (youngestValid >= fStartingElementIndex && youngestValid < elements->count())); |
| SkASSERT((oldestActiveInvalid && oldestActiveInvalidIndex >= fStartingElementIndex && |
| oldestActiveInvalidIndex < elements->count()) || !oldestActiveInvalid); |
| |
| // Update final state |
| SkASSERT(oldestValid >= fOldestValidIndex); |
| fOldestValidIndex = std::min(oldestValid, oldestActiveInvalidIndex); |
| fState = oldestValid == elements->count() ? toAdd.clipType() : ClipState::kComplex; |
| if (fStackOp == SkClipOp::kDifference && toAdd.op() == SkClipOp::kIntersect) { |
| // The stack remains in difference mode only as long as all elements are difference |
| fStackOp = SkClipOp::kIntersect; |
| } |
| |
| int targetCount = youngestValid + 1; |
| if (!oldestActiveInvalid || oldestActiveInvalidIndex >= targetCount) { |
| // toAdd will be stored right after youngestValid |
| targetCount++; |
| oldestActiveInvalid = nullptr; |
| } |
| while (elements->count() > targetCount) { |
| SkASSERT(oldestActiveInvalid != &elements->back()); // shouldn't delete what we'll reuse |
| elements->pop_back(); |
| } |
| if (oldestActiveInvalid) { |
| *oldestActiveInvalid = std::move(toAdd); |
| } else if (elements->count() < targetCount) { |
| elements->push_back(std::move(toAdd)); |
| } else { |
| elements->back() = std::move(toAdd); |
| } |
| |
| // Changing this will prompt GrClipStack to invalidate any masks associated with this record. |
| fGenID = next_gen_id(); |
| return true; |
| } |
| |
| void GrClipStack::SaveRecord::replaceWithElement(RawElement&& toAdd, RawElement::Stack* elements) { |
| // The aggregate state of the save record mirrors the element |
| fInnerBounds = toAdd.innerBounds(); |
| fOuterBounds = toAdd.outerBounds(); |
| fStackOp = toAdd.op(); |
| fState = toAdd.clipType(); |
| |
| // All prior active element can be removed from the stack: [startingIndex, count - 1] |
| int targetCount = fStartingElementIndex + 1; |
| while (elements->count() > targetCount) { |
| elements->pop_back(); |
| } |
| if (elements->count() < targetCount) { |
| elements->push_back(std::move(toAdd)); |
| } else { |
| elements->back() = std::move(toAdd); |
| } |
| |
| SkASSERT(elements->count() == fStartingElementIndex + 1); |
| |
| // This invalidates all older elements that are owned by save records lower in the clip stack. |
| fOldestValidIndex = fStartingElementIndex; |
| fGenID = next_gen_id(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // GrClipStack |
| |
| // NOTE: Based on draw calls in all GMs, SKPs, and SVGs as of 08/20, 98% use a clip stack with |
| // one Element and up to two SaveRecords, thus the inline size for RawElement::Stack and |
| // SaveRecord::Stack (this conveniently keeps the size of GrClipStack manageable). The max |
| // encountered element stack depth was 5 and the max save depth was 6. Using an increment of 8 for |
| // these stacks means that clip management will incur a single allocation for the remaining 2% |
| // of the draws, with extra head room for more complex clips encountered in the wild. |
| // |
| // The mask stack increment size was chosen to be smaller since only 0.2% of the evaluated draw call |
| // set ever used a mask (which includes stencil masks), or up to 0.3% when CCPR is disabled. |
| static constexpr int kElementStackIncrement = 8; |
| static constexpr int kSaveStackIncrement = 8; |
| static constexpr int kMaskStackIncrement = 4; |
| |
| // And from this same draw call set, the most complex clip could only use 5 analytic coverage FPs. |
| // Historically we limited it to 4 based on Blink's call pattern, so we keep the limit as-is since |
| // it's so close to the empirically encountered max. |
| static constexpr int kMaxAnalyticFPs = 4; |
| // The number of stack-allocated mask pointers to store before extending the arrays. |
| // Stack size determined empirically, the maximum number of elements put in a SW mask was 4 |
| // across our set of GMs, SKPs, and SVGs used for testing. |
| static constexpr int kNumStackMasks = 4; |
| |
| GrClipStack::GrClipStack(const SkIRect& deviceBounds, const SkMatrixProvider* matrixProvider, |
| bool forceAA) |
| : fElements(kElementStackIncrement) |
| , fSaves(kSaveStackIncrement) |
| , fMasks(kMaskStackIncrement) |
| , fProxyProvider(nullptr) |
| , fDeviceBounds(deviceBounds) |
| , fMatrixProvider(matrixProvider) |
| , fForceAA(forceAA) { |
| // Start with a save record that is wide open |
| fSaves.emplace_back(deviceBounds); |
| } |
| |
| GrClipStack::~GrClipStack() { |
| // Invalidate all mask keys that remain. Since we're tearing the clip stack down, we don't need |
| // to go through SaveRecord. |
| SkASSERT(fProxyProvider || fMasks.empty()); |
| if (fProxyProvider) { |
| for (Mask& m : fMasks.ritems()) { |
| m.invalidate(fProxyProvider); |
| } |
| } |
| } |
| |
| void GrClipStack::save() { |
| SkASSERT(!fSaves.empty()); |
| fSaves.back().pushSave(); |
| } |
| |
| void GrClipStack::restore() { |
| SkASSERT(!fSaves.empty()); |
| SaveRecord& current = fSaves.back(); |
| if (current.popSave()) { |
| // This was just a deferred save being undone, so the record doesn't need to be removed yet |
| return; |
| } |
| |
| // When we remove a save record, we delete all elements >= its starting index and any masks |
| // that were rasterized for it. |
| current.removeElements(&fElements); |
| SkASSERT(fProxyProvider || fMasks.empty()); |
| if (fProxyProvider) { |
| current.invalidateMasks(fProxyProvider, &fMasks); |
| } |
| fSaves.pop_back(); |
| // Restore any remaining elements that were only invalidated by the now-removed save record. |
| fSaves.back().restoreElements(&fElements); |
| } |
| |
| SkIRect GrClipStack::getConservativeBounds() const { |
| const SaveRecord& current = this->currentSaveRecord(); |
| if (current.state() == ClipState::kEmpty) { |
| return SkIRect::MakeEmpty(); |
| } else if (current.state() == ClipState::kWideOpen) { |
| return fDeviceBounds; |
| } else { |
| if (current.op() == SkClipOp::kDifference) { |
| // The outer/inner bounds represent what's cut out, so full bounds remains the device |
| // bounds, minus any fully clipped content that spans the device edge. |
| return subtract(fDeviceBounds, current.innerBounds(), /* exact */ true); |
| } else { |
| SkASSERT(fDeviceBounds.contains(current.outerBounds())); |
| return current.outerBounds(); |
| } |
| } |
| } |
| |
| GrClip::PreClipResult GrClipStack::preApply(const SkRect& bounds, GrAA aa) const { |
| Draw draw(bounds, fForceAA ? GrAA::kYes : aa); |
| if (!draw.applyDeviceBounds(fDeviceBounds)) { |
| return GrClip::Effect::kClippedOut; |
| } |
| |
| const SaveRecord& cs = this->currentSaveRecord(); |
| // Early out if we know a priori that the clip is full 0s or full 1s. |
| if (cs.state() == ClipState::kEmpty) { |
| return GrClip::Effect::kClippedOut; |
| } else if (cs.state() == ClipState::kWideOpen) { |
| SkASSERT(!cs.shader()); |
| return GrClip::Effect::kUnclipped; |
| } |
| |
| // Given argument order, 'A' == current clip, 'B' == draw |
| switch (get_clip_geometry(cs, draw)) { |
| case ClipGeometry::kEmpty: |
| // Can ignore the shader since the geometry removed everything already |
| return GrClip::Effect::kClippedOut; |
| |
| case ClipGeometry::kBOnly: |
| // Geometrically, the draw is unclipped, but can't ignore a shader |
| return cs.shader() ? GrClip::Effect::kClipped : GrClip::Effect::kUnclipped; |
| |
| case ClipGeometry::kAOnly: |
| // Shouldn't happen since the inner bounds of a draw are unknown |
| SkASSERT(false); |
| // But if it did, it technically means the draw covered the clip and should be |
| // considered kClipped or similar, which is what the next case handles. |
| [[fallthrough]]; |
| |
| case ClipGeometry::kBoth: { |
| SkASSERT(fElements.count() > 0); |
| const RawElement& back = fElements.back(); |
| if (cs.state() == ClipState::kDeviceRect) { |
| SkASSERT(back.clipType() == ClipState::kDeviceRect); |
| return {back.shape().rect(), back.aa()}; |
| } else if (cs.state() == ClipState::kDeviceRRect) { |
| SkASSERT(back.clipType() == ClipState::kDeviceRRect); |
| return {back.shape().rrect(), back.aa()}; |
| } else { |
| // The clip stack has complex shapes, multiple elements, or a shader; we could |
| // iterate per element like we would in apply(), but preApply() is meant to be |
| // conservative and efficient. |
| SkASSERT(cs.state() == ClipState::kComplex); |
| return GrClip::Effect::kClipped; |
| } |
| } |
| } |
| |
| SkUNREACHABLE; |
| } |
| |
| GrClip::Effect GrClipStack::apply(GrRecordingContext* context, GrSurfaceDrawContext* rtc, |
| GrAAType aa, bool hasUserStencilSettings, |
| GrAppliedClip* out, SkRect* bounds) const { |
| // TODO: Once we no longer store SW masks, we don't need to sneak the provider in like this |
| if (!fProxyProvider) { |
| fProxyProvider = context->priv().proxyProvider(); |
| } |
| SkASSERT(fProxyProvider == context->priv().proxyProvider()); |
| const GrCaps* caps = context->priv().caps(); |
| |
| // Convert the bounds to a Draw and apply device bounds clipping, making our query as tight |
| // as possible. |
| Draw draw(*bounds, GrAA(fForceAA || aa != GrAAType::kNone)); |
| if (!draw.applyDeviceBounds(fDeviceBounds)) { |
| return Effect::kClippedOut; |
| } |
| SkAssertResult(bounds->intersect(SkRect::Make(fDeviceBounds))); |
| |
| const SaveRecord& cs = this->currentSaveRecord(); |
| // Early out if we know a priori that the clip is full 0s or full 1s. |
| if (cs.state() == ClipState::kEmpty) { |
| return Effect::kClippedOut; |
| } else if (cs.state() == ClipState::kWideOpen) { |
| SkASSERT(!cs.shader()); |
| return Effect::kUnclipped; |
| } |
| |
| // Convert any clip shader first, since it's not geometrically related to the draw bounds |
| std::unique_ptr<GrFragmentProcessor> clipFP = nullptr; |
| if (cs.shader()) { |
| static const GrColorInfo kCoverageColorInfo{GrColorType::kUnknown, kPremul_SkAlphaType, |
| nullptr}; |
| GrFPArgs args(context, *fMatrixProvider, SkSamplingOptions(), &kCoverageColorInfo); |
| clipFP = as_SB(cs.shader())->asFragmentProcessor(args); |
| if (clipFP) { |
| // The initial input is the coverage from the geometry processor, so this ensures it |
| // is multiplied properly with the alpha of the clip shader. |
| clipFP = GrFragmentProcessor::MulInputByChildAlpha(std::move(clipFP)); |
| } |
| } |
| |
| // A refers to the entire clip stack, B refers to the draw |
| switch (get_clip_geometry(cs, draw)) { |
| case ClipGeometry::kEmpty: |
| return Effect::kClippedOut; |
| |
| case ClipGeometry::kBOnly: |
| // Geometrically unclipped, but may need to add the shader as a coverage FP |
| if (clipFP) { |
| out->addCoverageFP(std::move(clipFP)); |
| return Effect::kClipped; |
| } else { |
| return Effect::kUnclipped; |
| } |
| |
| case ClipGeometry::kAOnly: |
| // Shouldn't happen since draws don't report inner bounds |
| SkASSERT(false); |
| [[fallthrough]]; |
| |
| case ClipGeometry::kBoth: |
| // The draw is combined with the saved clip elements; the below logic tries to skip |
| // as many elements as possible. |
| SkASSERT(cs.state() == ClipState::kDeviceRect || |
| cs.state() == ClipState::kDeviceRRect || |
| cs.state() == ClipState::kComplex); |
| break; |
| } |
| |
| // We can determine a scissor based on the draw and the overall stack bounds. |
| SkIRect scissorBounds; |
| if (cs.op() == SkClipOp::kIntersect) { |
| // Initially we keep this as large as possible; if the clip is applied solely with coverage |
| // FPs then using a loose scissor increases the chance we can batch the draws. |
| // We tighten it later if any form of mask or atlas element is needed. |
| scissorBounds = cs.outerBounds(); |
| } else { |
| scissorBounds = subtract(draw.outerBounds(), cs.innerBounds(), /* exact */ true); |
| } |
| |
| // We mark this true once we have a coverage FP (since complex clipping is occurring), or we |
| // have an element that wouldn't affect the scissored draw bounds, but does affect the regular |
| // draw bounds. In that case, the scissor is sufficient for clipping and we can skip the |
| // element but definitely cannot then drop the scissor. |
| bool scissorIsNeeded = SkToBool(cs.shader()); |
| |
| int remainingAnalyticFPs = kMaxAnalyticFPs; |
| if (hasUserStencilSettings) { |
| // Disable analytic clips when there are user stencil settings to ensure the clip is |
| // respected in the stencil buffer. |
| remainingAnalyticFPs = 0; |
| // If we have user stencil settings, we shouldn't be avoiding the stencil buffer anyways. |
| SkASSERT(!context->priv().caps()->avoidStencilBuffers()); |
| } |
| |
| // If window rectangles are supported, we can use them to exclude inner bounds of difference ops |
| int maxWindowRectangles = rtc->maxWindowRectangles(); |
| GrWindowRectangles windowRects; |
| |
| // Elements not represented as an analytic FP or skipped will be collected here and later |
| // applied by using the stencil buffer, CCPR clip atlas, or a cached SW mask. |
| SkSTArray<kNumStackMasks, const Element*> elementsForMask; |
| SkSTArray<kNumStackMasks, const RawElement*> elementsForAtlas; |
| |
| bool maskRequiresAA = false; |
| auto* ccpr = context->priv().drawingManager()->getCoverageCountingPathRenderer(); |
| |
| int i = fElements.count(); |
| for (const RawElement& e : fElements.ritems()) { |
| --i; |
| if (i < cs.oldestElementIndex()) { |
| // All earlier elements have been invalidated by elements already processed |
| break; |
| } else if (e.isInvalid()) { |
| continue; |
| } |
| |
| switch (get_clip_geometry(e, draw)) { |
| case ClipGeometry::kEmpty: |
| // This can happen for difference op elements that have a larger fInnerBounds than |
| // can be preserved at the next level. |
| return Effect::kClippedOut; |
| |
| case ClipGeometry::kBOnly: |
| // We don't need to produce a coverage FP or mask for the element |
| break; |
| |
| case ClipGeometry::kAOnly: |
| // Shouldn't happen for draws, fall through to regular element processing |
| SkASSERT(false); |
| [[fallthrough]]; |
| |
| case ClipGeometry::kBoth: { |
| // The element must apply coverage to the draw, enable the scissor to limit overdraw |
| scissorIsNeeded = true; |
| |
| // First apply using HW methods (scissor and window rects). When the inner and outer |
| // bounds match, nothing else needs to be done. |
| bool fullyApplied = false; |
| if (e.op() == SkClipOp::kIntersect) { |
| // The second test allows clipped draws that are scissored by multiple elements |
| // to remain scissor-only. |
| fullyApplied = e.innerBounds() == e.outerBounds() || |
| e.innerBounds().contains(scissorBounds); |
| } else { |
| if (!e.innerBounds().isEmpty() && windowRects.count() < maxWindowRectangles) { |
| // TODO: If we have more difference ops than available window rects, we |
| // should prioritize those with the largest inner bounds. |
| windowRects.addWindow(e.innerBounds()); |
| fullyApplied = e.innerBounds() == e.outerBounds(); |
| } |
| } |
| |
| if (!fullyApplied && remainingAnalyticFPs > 0) { |
| std::tie(fullyApplied, clipFP) = analytic_clip_fp(e.asElement(), |
| *caps->shaderCaps(), |
| std::move(clipFP)); |
| if (fullyApplied) { |
| remainingAnalyticFPs--; |
| } else if (ccpr && e.aa() == GrAA::kYes) { |
| // While technically the element is turned into a mask, each atlas entry |
| // counts towards the FP complexity of the clip. |
| // TODO - CCPR needs a stable ops task ID so we can't create FPs until we |
| // know any other mask generation is finished. It also only works with AA |
| // shapes, future atlas systems can improve on this. |
| elementsForAtlas.push_back(&e); |
| remainingAnalyticFPs--; |
| fullyApplied = true; |
| } |
| } |
| |
| if (!fullyApplied) { |
| elementsForMask.push_back(&e.asElement()); |
| maskRequiresAA |= (e.aa() == GrAA::kYes); |
| } |
| |
| break; |
| } |
| } |
| } |
| |
| if (!scissorIsNeeded) { |
| // More detailed analysis of the element shapes determined no clip is needed |
| SkASSERT(elementsForMask.empty() && elementsForAtlas.empty() && !clipFP); |
| return Effect::kUnclipped; |
| } |
| |
| // Fill out the GrAppliedClip with what we know so far, possibly with a tightened scissor |
| if (cs.op() == SkClipOp::kIntersect && |
| (!elementsForMask.empty() || !elementsForAtlas.empty())) { |
| SkAssertResult(scissorBounds.intersect(draw.outerBounds())); |
| } |
| if (!GrClip::IsInsideClip(scissorBounds, *bounds)) { |
| out->hardClip().addScissor(scissorBounds, bounds); |
| } |
| if (!windowRects.empty()) { |
| out->hardClip().addWindowRectangles(windowRects, GrWindowRectsState::Mode::kExclusive); |
| } |
| |
| // Now rasterize any remaining elements, either to the stencil or a SW mask. All elements are |
| // flattened into a single mask. |
| if (!elementsForMask.empty()) { |
| bool stencilUnavailable = context->priv().caps()->avoidStencilBuffers() || |
| rtc->wrapsVkSecondaryCB(); |
| |
| bool hasSWMask = false; |
| if ((rtc->numSamples() <= 1 && maskRequiresAA) || stencilUnavailable) { |
| // Must use a texture mask to represent the combined clip elements since the stencil |
| // cannot be used, or cannot handle smooth clips. |
| std::tie(hasSWMask, clipFP) = GetSWMaskFP( |
| context, &fMasks, cs, scissorBounds, elementsForMask.begin(), |
| elementsForMask.count(), std::move(clipFP)); |
| } |
| |
| if (!hasSWMask) { |
| if (stencilUnavailable) { |
| SkDebugf("WARNING: Clip mask requires stencil, but stencil unavailable. " |
| "Draw will be ignored.\n"); |
| return Effect::kClippedOut; |
| } else { |
| // Rasterize the remaining elements to the stencil buffer |
| render_stencil_mask(context, rtc, cs.genID(), scissorBounds, |
| elementsForMask.begin(), elementsForMask.count(), out); |
| } |
| } |
| } |
| |
| // Finish CCPR paths now that the render target's ops task is stable. |
| if (!elementsForAtlas.empty()) { |
| uint32_t opsTaskID = rtc->getOpsTask()->uniqueID(); |
| for (int i = 0; i < elementsForAtlas.count(); ++i) { |
| SkASSERT(elementsForAtlas[i]->aa() == GrAA::kYes); |
| clipFP = clip_atlas_fp(ccpr, opsTaskID, scissorBounds, elementsForAtlas[i]->asElement(), |
| elementsForAtlas[i]->devicePath(), *caps, std::move(clipFP)); |
| } |
| } |
| |
| if (clipFP) { |
| // This will include all analytic FPs, all CCPR atlas FPs, and a SW mask FP. |
| out->addCoverageFP(std::move(clipFP)); |
| } |
| |
| SkASSERT(out->doesClip()); |
| return Effect::kClipped; |
| } |
| |
| GrClipStack::SaveRecord& GrClipStack::writableSaveRecord(bool* wasDeferred) { |
| SaveRecord& current = fSaves.back(); |
| if (current.canBeUpdated()) { |
| // Current record is still open, so it can be modified directly |
| *wasDeferred = false; |
| return current; |
| } else { |
| // Must undefer the save to get a new record. |
| SkAssertResult(current.popSave()); |
| *wasDeferred = true; |
| return fSaves.emplace_back(current, fMasks.count(), fElements.count()); |
| } |
| } |
| |
| void GrClipStack::clipShader(sk_sp<SkShader> shader) { |
| // Shaders can't bring additional coverage |
| if (this->currentSaveRecord().state() == ClipState::kEmpty) { |
| return; |
| } |
| |
| bool wasDeferred; |
| this->writableSaveRecord(&wasDeferred).addShader(std::move(shader)); |
| // Masks and geometry elements are not invalidated by updating the clip shader |
| } |
| |
| void GrClipStack::replaceClip(const SkIRect& rect) { |
| bool wasDeferred; |
| SaveRecord& save = this->writableSaveRecord(&wasDeferred); |
| |
| if (!wasDeferred) { |
| save.removeElements(&fElements); |
| save.invalidateMasks(fProxyProvider, &fMasks); |
| } |
| |
| save.reset(fDeviceBounds); |
| if (rect != fDeviceBounds) { |
| this->clipRect(SkMatrix::I(), SkRect::Make(rect), GrAA::kNo, SkClipOp::kIntersect); |
| } |
| } |
| |
| void GrClipStack::clip(RawElement&& element) { |
| if (this->currentSaveRecord().state() == ClipState::kEmpty) { |
| return; |
| } |
| |
| // Reduce the path to anything simpler, will apply the transform if it's a scale+translate |
| // and ensures the element's bounds are clipped to the device (NOT the conservative clip bounds, |
| // since those are based on the net effect of all elements while device bounds clipping happens |
| // implicitly. During addElement, we may still be able to invalidate some older elements). |
| element.simplify(fDeviceBounds, fForceAA); |
| SkASSERT(!element.shape().inverted()); |
| |
| // An empty op means do nothing (for difference), or close the save record, so we try and detect |
| // that early before doing additional unnecessary save record allocation. |
| if (element.shape().isEmpty()) { |
| if (element.op() == SkClipOp::kDifference) { |
| // If the shape is empty and we're subtracting, this has no effect on the clip |
| return; |
| } |
| // else we will make the clip empty, but we need a new save record to record that change |
| // in the clip state; fall through to below and updateForElement() will handle it. |
| } |
| |
| bool wasDeferred; |
| SaveRecord& save = this->writableSaveRecord(&wasDeferred); |
| SkDEBUGCODE(uint32_t oldGenID = save.genID();) |
| SkDEBUGCODE(int elementCount = fElements.count();) |
| if (!save.addElement(std::move(element), &fElements)) { |
| if (wasDeferred) { |
| // We made a new save record, but ended up not adding an element to the stack. |
| // So instead of keeping an empty save record around, pop it off and restore the counter |
| SkASSERT(elementCount == fElements.count()); |
| fSaves.pop_back(); |
| fSaves.back().pushSave(); |
| } else { |
| // Should not have changed gen ID if the element and save were not modified |
| SkASSERT(oldGenID == save.genID()); |
| } |
| } else { |
| // The gen ID should be new, and should not be invalid |
| SkASSERT(oldGenID != save.genID() && save.genID() != kInvalidGenID); |
| if (fProxyProvider && !wasDeferred) { |
| // We modified an active save record so any old masks it had can be invalidated |
| save.invalidateMasks(fProxyProvider, &fMasks); |
| } |
| } |
| } |
| |
| GrFPResult GrClipStack::GetSWMaskFP(GrRecordingContext* context, Mask::Stack* masks, |
| const SaveRecord& current, const SkIRect& bounds, |
| const Element** elements, int count, |
| std::unique_ptr<GrFragmentProcessor> clipFP) { |
| GrProxyProvider* proxyProvider = context->priv().proxyProvider(); |
| GrSurfaceProxyView maskProxy; |
| |
| SkIRect maskBounds; // may not be 'bounds' if we reuse a large clip mask |
| // Check the existing masks from this save record for compatibility |
| for (const Mask& m : masks->ritems()) { |
| if (m.genID() != current.genID()) { |
| break; |
| } |
| if (m.appliesToDraw(current, bounds)) { |
| maskProxy = proxyProvider->findCachedProxyWithColorTypeFallback( |
| m.key(), kMaskOrigin, GrColorType::kAlpha_8, 1); |
| if (maskProxy) { |
| maskBounds = m.bounds(); |
| break; |
| } |
| } |
| } |
| |
| if (!maskProxy) { |
| // No existing mask was found, so need to render a new one |
| maskProxy = render_sw_mask(context, bounds, elements, count); |
| if (!maskProxy) { |
| // If we still don't have one, there's nothing we can do |
| return GrFPFailure(std::move(clipFP)); |
| } |
| |
| // Register the mask for later invalidation |
| Mask& mask = masks->emplace_back(current, bounds); |
| proxyProvider->assignUniqueKeyToProxy(mask.key(), maskProxy.asTextureProxy()); |
| maskBounds = bounds; |
| } |
| |
| // Wrap the mask in an FP that samples it for coverage |
| SkASSERT(maskProxy && maskProxy.origin() == kMaskOrigin); |
| |
| GrSamplerState samplerState(GrSamplerState::WrapMode::kClampToBorder, |
| GrSamplerState::Filter::kNearest); |
| // Maps the device coords passed to the texture effect to the top-left corner of the mask, and |
| // make sure that the draw bounds are pre-mapped into the mask's space as well. |
| auto m = SkMatrix::Translate(-maskBounds.fLeft, -maskBounds.fTop); |
| auto subset = SkRect::Make(bounds); |
| subset.offset(-maskBounds.fLeft, -maskBounds.fTop); |
| // We scissor to bounds. The mask's texel centers are aligned to device space |
| // pixel centers. Hence this domain of texture coordinates. |
| auto domain = subset.makeInset(0.5, 0.5); |
| auto fp = GrTextureEffect::MakeSubset(std::move(maskProxy), kPremul_SkAlphaType, m, |
| samplerState, subset, domain, *context->priv().caps()); |
| fp = GrDeviceSpaceEffect::Make(std::move(fp)); |
| |
| // Must combine the coverage sampled from the texture effect with the previous coverage |
| fp = GrBlendFragmentProcessor::Make(std::move(fp), std::move(clipFP), SkBlendMode::kDstIn); |
| return GrFPSuccess(std::move(fp)); |
| } |