blob: 8ba5a8b940bb24c40484d3301101c2431e81a40b [file] [log] [blame]
/*
* Copyright 2020 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/GrClipStack.h"
#include "include/core/SkMatrix.h"
#include "src/core/SkRRectPriv.h"
#include "src/core/SkRectPriv.h"
#include "src/core/SkTaskGroup.h"
#include "src/gpu/GrClip.h"
#include "src/gpu/GrDirectContextPriv.h"
#include "src/gpu/GrProxyProvider.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/GrSWMaskHelper.h"
#include "src/gpu/GrStencilMaskHelper.h"
#include "src/gpu/ccpr/GrCoverageCountingPathRenderer.h"
#include "src/gpu/effects/GrBlendFragmentProcessor.h"
#include "src/gpu/effects/GrConvexPolyEffect.h"
#include "src/gpu/effects/GrRRectEffect.h"
#include "src/gpu/effects/GrTextureEffect.h"
#include "src/gpu/effects/generated/GrAARectEffect.h"
#include "src/gpu/effects/generated/GrDeviceSpaceEffect.h"
#include "src/gpu/geometry/GrQuadUtils.h"
namespace {
// This captures which of the two elements in (A op B) would be required when they are combined,
// where op is intersect or difference.
enum class ClipGeometry {
kEmpty,
kAOnly,
kBOnly,
kBoth
};
// A and B can be Element, SaveRecord, or Draw. Supported combinations are, order not mattering,
// (Element, Element), (Element, SaveRecord), (Element, Draw), and (SaveRecord, Draw).
template<typename A, typename B>
static ClipGeometry get_clip_geometry(const A& a, const B& b) {
// NOTE: SkIRect::Intersects() returns false when two rectangles touch at an edge (so the result
// is empty). This behavior is desired for the following clip effect policies.
if (a.op() == SkClipOp::kIntersect) {
if (b.op() == SkClipOp::kIntersect) {
// Intersect (A) + Intersect (B)
if (!SkIRect::Intersects(a.outerBounds(), b.outerBounds())) {
// Regions with non-zero coverage are disjoint, so intersection = empty
return ClipGeometry::kEmpty;
} else if (b.contains(a)) {
// B's full coverage region contains entirety of A, so intersection = A
return ClipGeometry::kAOnly;
} else if (a.contains(b)) {
// A's full coverage region contains entirety of B, so intersection = B
return ClipGeometry::kBOnly;
} else {
// The shapes intersect in some non-trivial manner
return ClipGeometry::kBoth;
}
} else {
SkASSERT(b.op() == SkClipOp::kDifference);
// Intersect (A) + Difference (B)
if (!SkIRect::Intersects(a.outerBounds(), b.outerBounds())) {
// A only intersects B's full coverage region, so intersection = A
return ClipGeometry::kAOnly;
} else if (b.contains(a)) {
// B's zero coverage region completely contains A, so intersection = empty
return ClipGeometry::kEmpty;
} else {
// Intersection cannot be simplified. Note that the combination of a intersect
// and difference op in this order cannot produce kBOnly
return ClipGeometry::kBoth;
}
}
} else {
SkASSERT(a.op() == SkClipOp::kDifference);
if (b.op() == SkClipOp::kIntersect) {
// Difference (A) + Intersect (B) - the mirror of Intersect(A) + Difference(B),
// but combining is commutative so this is equivalent barring naming.
if (!SkIRect::Intersects(b.outerBounds(), a.outerBounds())) {
// B only intersects A's full coverage region, so intersection = B
return ClipGeometry::kBOnly;
} else if (a.contains(b)) {
// A's zero coverage region completely contains B, so intersection = empty
return ClipGeometry::kEmpty;
} else {
// Cannot be simplified
return ClipGeometry::kBoth;
}
} else {
SkASSERT(b.op() == SkClipOp::kDifference);
// Difference (A) + Difference (B)
if (a.contains(b)) {
// A's zero coverage region contains B, so B doesn't remove any extra
// coverage from their intersection.
return ClipGeometry::kAOnly;
} else if (b.contains(a)) {
// Mirror of the above case, intersection = B instead
return ClipGeometry::kBOnly;
} else {
// Intersection of the two differences cannot be simplified. Note that for
// this op combination it is not possible to produce kEmpty.
return ClipGeometry::kBoth;
}
}
}
}
// a.contains(b) where a's local space is defined by 'aToDevice', and b's possibly separate local
// space is defined by 'bToDevice'. 'a' and 'b' geometry are provided in their local spaces.
// Automatically takes into account if the anti-aliasing policies differ. When the policies match,
// we assume that coverage AA or GPU's non-AA rasterization will apply to A and B equivalently, so
// we can compare the original shapes. When the modes are mixed, we outset B in device space first.
static bool shape_contains_rect(
const GrShape& a, const SkMatrix& aToDevice, const SkMatrix& deviceToA,
const SkRect& b, const SkMatrix& bToDevice, bool mixedAAMode) {
if (!a.convex()) {
return false;
}
if (!mixedAAMode && aToDevice == bToDevice) {
// A and B are in the same coordinate space, so don't bother mapping
return a.conservativeContains(b);
} else if (bToDevice.isIdentity() && aToDevice.preservesAxisAlignment()) {
// Optimize the common case of draws (B, with identity matrix) and axis-aligned shapes,
// instead of checking the four corners separately.
SkRect bInA = b;
if (mixedAAMode) {
bInA.outset(0.5f, 0.5f);
}
SkAssertResult(deviceToA.mapRect(&bInA));
return a.conservativeContains(bInA);
}
// Test each corner for contains; since a is convex, if all 4 corners of b's bounds are
// contained, then the entirety of b is within a.
GrQuad deviceQuad = GrQuad::MakeFromRect(b, bToDevice);
if (any(deviceQuad.w4f() < SkPathPriv::kW0PlaneDistance)) {
// Something in B actually projects behind the W = 0 plane and would be clipped to infinity,
// so it's extremely unlikely that A can contain B.
return false;
}
if (mixedAAMode) {
// Outset it so its edges are 1/2px out, giving us a buffer to avoid cases where a non-AA
// clip or draw would snap outside an aa element.
GrQuadUtils::Outset({0.5f, 0.5f, 0.5f, 0.5f}, &deviceQuad);
}
for (int i = 0; i < 4; ++i) {
SkPoint cornerInA = deviceQuad.point(i);
deviceToA.mapPoints(&cornerInA, 1);
if (!a.conservativeContains(cornerInA)) {
return false;
}
}
return true;
}
static SkIRect subtract(const SkIRect& a, const SkIRect& b, bool exact) {
SkIRect diff;
if (SkRectPriv::Subtract(a, b, &diff) || !exact) {
// Either A-B is exactly the rectangle stored in diff, or we don't need an exact answer
// and can settle for the subrect of A excluded from B (which is also 'diff')
return diff;
} else {
// For our purposes, we want the original A when A-B cannot be exactly represented
return a;
}
}
static GrClipEdgeType get_clip_edge_type(SkClipOp op, GrAA aa) {
if (op == SkClipOp::kIntersect) {
return aa == GrAA::kYes ? GrClipEdgeType::kFillAA : GrClipEdgeType::kFillBW;
} else {
return aa == GrAA::kYes ? GrClipEdgeType::kInverseFillAA : GrClipEdgeType::kInverseFillBW;
}
}
static uint32_t kInvalidGenID = 0;
static uint32_t kEmptyGenID = 1;
static uint32_t kWideOpenGenID = 2;
static uint32_t next_gen_id() {
// 0-2 are reserved for invalid, empty & wide-open
static const uint32_t kFirstUnreservedGenID = 3;
static std::atomic<uint32_t> nextID{kFirstUnreservedGenID};
uint32_t id;
do {
id = nextID.fetch_add(1, std::memory_order_relaxed);
} while (id < kFirstUnreservedGenID);
return id;
}
// Functions for rendering / applying clip shapes in various ways
// The general strategy is:
// - Represent the clip element as an analytic FP that tests sk_FragCoord vs. its device shape
// - Render the clip element to the stencil, if stencil is allowed and supports the AA, and the
// size of the element indicates stenciling will be worth it, vs. making a mask.
// - Try to put the individual element into a clip atlas, which is then sampled during the draw
// - Render the element into a SW mask and upload it. If possible, the SW rasterization happens
// in parallel.
static constexpr GrSurfaceOrigin kMaskOrigin = kTopLeft_GrSurfaceOrigin;
static GrFPResult analytic_clip_fp(const GrClipStack::Element& e,
const GrShaderCaps& caps,
std::unique_ptr<GrFragmentProcessor> fp) {
// All analytic clip shape FPs need to be in device space
GrClipEdgeType edgeType = get_clip_edge_type(e.fOp, e.fAA);
if (e.fLocalToDevice.isIdentity()) {
if (e.fShape.isRect()) {
return GrFPSuccess(GrAARectEffect::Make(std::move(fp), edgeType, e.fShape.rect()));
} else if (e.fShape.isRRect()) {
return GrRRectEffect::Make(std::move(fp), edgeType, e.fShape.rrect(), caps);
}
}
// A convex hull can be transformed into device space (this will handle rect shapes with a
// non-identity transform).
if (e.fShape.segmentMask() == SkPath::kLine_SegmentMask && e.fShape.convex()) {
SkPath devicePath;
e.fShape.asPath(&devicePath);
devicePath.transform(e.fLocalToDevice);
return GrConvexPolyEffect::Make(std::move(fp), edgeType, devicePath);
}
return GrFPFailure(std::move(fp));
}
// TODO: Currently this only works with CCPR because CCPR owns and manages the clip atlas. The
// high-level concept should be generalized to support any path renderer going into a shared atlas.
static std::unique_ptr<GrFragmentProcessor> clip_atlas_fp(GrCoverageCountingPathRenderer* ccpr,
uint32_t opsTaskID,
const SkIRect& bounds,
const GrClipStack::Element& e,
SkPath* devicePath,
const GrCaps& caps,
std::unique_ptr<GrFragmentProcessor> fp) {
// TODO: Currently the atlas manages device-space paths, so we have to transform by the ctm.
// In the future, the atlas manager should see the local path and the ctm so that it can
// cache across integer-only translations (internally, it already does this, just not exposed).
if (devicePath->isEmpty()) {
e.fShape.asPath(devicePath);
devicePath->transform(e.fLocalToDevice);
SkASSERT(!devicePath->isEmpty());
}
SkASSERT(!devicePath->isInverseFillType());
if (e.fOp == SkClipOp::kIntersect) {
return ccpr->makeClipProcessor(std::move(fp), opsTaskID, *devicePath, bounds, caps);
} else {
// Use kDstOut to convert the non-inverted mask alpha into (1-alpha), so the atlas only
// ever renders non-inverse filled paths.
// - When the input FP is null, this turns into "(1-sample(ccpr, 1).a) * input"
// - When not null, it works out to
// (1-sample(ccpr, input.rgb1).a) * sample(fp, input.rgb1) * input.a
// - Since clips only care about the alpha channel, these are both equivalent to the
// desired product of (1-ccpr) * fp * input.a.
return GrBlendFragmentProcessor::Make(
ccpr->makeClipProcessor(nullptr, opsTaskID, *devicePath, bounds, caps), // src
std::move(fp), // dst
SkBlendMode::kDstOut);
}
}
static void draw_to_sw_mask(GrSWMaskHelper* helper, const GrClipStack::Element& e, bool clearMask) {
// If the first element to draw is an intersect, we clear to 0 and will draw it directly with
// coverage 1 (subsequent intersect elements will be inverse-filled and draw 0 outside).
// If the first element to draw is a difference, we clear to 1, and in all cases we draw the
// difference element directly with coverage 0.
if (clearMask) {
helper->clear(e.fOp == SkClipOp::kIntersect ? 0x00 : 0xFF);
}
uint8_t alpha;
bool invert;
if (e.fOp == SkClipOp::kIntersect) {
// Intersect modifies pixels outside of its geometry. If this isn't the first op, we
// draw the inverse-filled shape with 0 coverage to erase everything outside the element
// But if we are the first element, we can draw directly with coverage 1 since we
// cleared to 0.
if (clearMask) {
alpha = 0xFF;
invert = false;
} else {
alpha = 0x00;
invert = true;
}
} else {
// For difference ops, can always just subtract the shape directly by drawing 0 coverage
SkASSERT(e.fOp == SkClipOp::kDifference);
alpha = 0x00;
invert = false;
}
// Draw the shape; based on how we've initialized the buffer and chosen alpha+invert,
// every element is drawn with the kReplace_Op
if (invert) {
// Must invert the path
SkASSERT(!e.fShape.inverted());
// TODO: this is an extra copy effectively, just so we can toggle inversion; would be
// better perhaps to just call a drawPath() since we know it'll use path rendering w/
// the inverse fill type.
GrShape inverted(e.fShape);
inverted.setInverted(true);
helper->drawShape(inverted, e.fLocalToDevice, SkRegion::kReplace_Op, e.fAA, alpha);
} else {
helper->drawShape(e.fShape, e.fLocalToDevice, SkRegion::kReplace_Op, e.fAA, alpha);
}
}
static GrSurfaceProxyView render_sw_mask(GrRecordingContext* context, const SkIRect& bounds,
const GrClipStack::Element** elements, int count) {
SkASSERT(count > 0);
SkTArray<GrClipStack::Element> data(count);
for (int i = 0; i < count; ++i) {
data.push_back(*(elements[i]));
}
return GrSWMaskHelper::MakeTexture(bounds,
context,
SkBackingFit::kApprox,
[data{std::move(data)}](GrSWMaskHelper* helper) {
TRACE_EVENT0("skia.gpu", "SW Clip Mask Render");
for (int i = 0; i < data.count(); ++i) {
draw_to_sw_mask(helper, data[i], i == 0);
}
});
}
static void render_stencil_mask(GrRecordingContext* context, GrSurfaceDrawContext* rtc,
uint32_t genID, const SkIRect& bounds,
const GrClipStack::Element** elements, int count,
GrAppliedClip* out) {
GrStencilMaskHelper helper(context, rtc);
if (helper.init(bounds, genID, out->windowRectsState().windows(), 0)) {
// This follows the same logic as in draw_sw_mask
bool startInside = elements[0]->fOp == SkClipOp::kDifference;
helper.clear(startInside);
for (int i = 0; i < count; ++i) {
const GrClipStack::Element& e = *(elements[i]);
SkRegion::Op op;
if (e.fOp == SkClipOp::kIntersect) {
op = (i == 0) ? SkRegion::kReplace_Op : SkRegion::kIntersect_Op;
} else {
op = SkRegion::kDifference_Op;
}
helper.drawShape(e.fShape, e.fLocalToDevice, op, e.fAA);
}
helper.finish();
}
out->hardClip().addStencilClip(genID);
}
} // anonymous namespace
class GrClipStack::Draw {
public:
Draw(const SkRect& drawBounds, GrAA aa)
: fBounds(GrClip::GetPixelIBounds(drawBounds, aa, BoundsType::kExterior))
, fAA(aa) {
// Be slightly more forgiving on whether or not a draw is inside a clip element.
fOriginalBounds = drawBounds.makeInset(GrClip::kBoundsTolerance, GrClip::kBoundsTolerance);
if (fOriginalBounds.isEmpty()) {
fOriginalBounds = drawBounds;
}
}
// Common clip type interface
SkClipOp op() const { return SkClipOp::kIntersect; }
const SkIRect& outerBounds() const { return fBounds; }
// Draw does not have inner bounds so cannot contain anything.
bool contains(const RawElement& e) const { return false; }
bool contains(const SaveRecord& s) const { return false; }
bool applyDeviceBounds(const SkIRect& deviceBounds) {
return fBounds.intersect(deviceBounds);
}
const SkRect& bounds() const { return fOriginalBounds; }
GrAA aa() const { return fAA; }
private:
SkRect fOriginalBounds;
SkIRect fBounds;
GrAA fAA;
};
///////////////////////////////////////////////////////////////////////////////
// GrClipStack::Element
GrClipStack::RawElement::RawElement(const SkMatrix& localToDevice, const GrShape& shape,
GrAA aa, SkClipOp op)
: Element{shape, localToDevice, op, aa}
, fInnerBounds(SkIRect::MakeEmpty())
, fOuterBounds(SkIRect::MakeEmpty())
, fInvalidatedByIndex(-1) {
if (!localToDevice.invert(&fDeviceToLocal)) {
// If the transform can't be inverted, it means that two dimensions are collapsed to 0 or
// 1 dimension, making the device-space geometry effectively empty.
fShape.reset();
}
}
void GrClipStack::RawElement::markInvalid(const SaveRecord& current) {
SkASSERT(!this->isInvalid());
fInvalidatedByIndex = current.firstActiveElementIndex();
}
void GrClipStack::RawElement::restoreValid(const SaveRecord& current) {
if (current.firstActiveElementIndex() < fInvalidatedByIndex) {
fInvalidatedByIndex = -1;
}
}
bool GrClipStack::RawElement::contains(const Draw& d) const {
if (fInnerBounds.contains(d.outerBounds())) {
return true;
} else {
// If the draw is non-AA, use the already computed outer bounds so we don't need to use
// device-space outsetting inside shape_contains_rect.
SkRect queryBounds = d.aa() == GrAA::kYes ? d.bounds() : SkRect::Make(d.outerBounds());
return shape_contains_rect(fShape, fLocalToDevice, fDeviceToLocal,
queryBounds, SkMatrix::I(), /* mixed-aa */ false);
}
}
bool GrClipStack::RawElement::contains(const SaveRecord& s) const {
if (fInnerBounds.contains(s.outerBounds())) {
return true;
} else {
// This is very similar to contains(Draw) but we just have outerBounds to work with.
SkRect queryBounds = SkRect::Make(s.outerBounds());
return shape_contains_rect(fShape, fLocalToDevice, fDeviceToLocal,
queryBounds, SkMatrix::I(), /* mixed-aa */ false);
}
}
bool GrClipStack::RawElement::contains(const RawElement& e) const {
// This is similar to how RawElement checks containment for a Draw, except that both the tester
// and testee have a transform that needs to be considered.
if (fInnerBounds.contains(e.fOuterBounds)) {
return true;
}
bool mixedAA = fAA != e.fAA;
if (!mixedAA && fLocalToDevice == e.fLocalToDevice) {
// Test the shapes directly against each other, with a special check for a rrect+rrect
// containment (a intersect b == a implies b contains a) and paths (same gen ID, or same
// path for small paths means they contain each other).
static constexpr int kMaxPathComparePoints = 16;
if (fShape.isRRect() && e.fShape.isRRect()) {
return SkRRectPriv::ConservativeIntersect(fShape.rrect(), e.fShape.rrect())
== e.fShape.rrect();
} else if (fShape.isPath() && e.fShape.isPath()) {
return fShape.path().getGenerationID() == e.fShape.path().getGenerationID() ||
(fShape.path().getPoints(nullptr, 0) <= kMaxPathComparePoints &&
fShape.path() == e.fShape.path());
} // else fall through to shape_contains_rect
}
return shape_contains_rect(fShape, fLocalToDevice, fDeviceToLocal,
e.fShape.bounds(), e.fLocalToDevice, mixedAA);
}
void GrClipStack::RawElement::simplify(const SkIRect& deviceBounds, bool forceAA) {
// Make sure the shape is not inverted. An inverted shape is equivalent to a non-inverted shape
// with the clip op toggled.
if (fShape.inverted()) {
fOp = fOp == SkClipOp::kIntersect ? SkClipOp::kDifference : SkClipOp::kIntersect;
fShape.setInverted(false);
}
// Then simplify the base shape, if it becomes empty, no need to update the bounds
fShape.simplify();
SkASSERT(!fShape.inverted());
if (fShape.isEmpty()) {
return;
}
// Lines and points should have been turned into empty since we assume everything is filled
SkASSERT(!fShape.isPoint() && !fShape.isLine());
// Validity check, we have no public API to create an arc at the moment
SkASSERT(!fShape.isArc());
SkRect outer = fLocalToDevice.mapRect(fShape.bounds());
if (!outer.intersect(SkRect::Make(deviceBounds))) {
// A non-empty shape is offscreen, so treat it as empty
fShape.reset();
return;
}
// Except for axis-aligned clip rects, upgrade to AA when forced. We skip axis-aligned clip
// rects because a non-AA axis aligned rect can always be set as just a scissor test or window
// rect, avoiding an expensive stencil mask generation.
if (forceAA && !(fShape.isRect() && fLocalToDevice.preservesAxisAlignment())) {
fAA = GrAA::kYes;
}
// Except for non-AA axis-aligned rects, the outer bounds is the rounded-out device-space
// mapped bounds of the shape.
fOuterBounds = GrClip::GetPixelIBounds(outer, fAA, BoundsType::kExterior);
if (fLocalToDevice.preservesAxisAlignment()) {
if (fShape.isRect()) {
// The actual geometry can be updated to the device-intersected bounds and we can
// know the inner bounds
fShape.rect() = outer;
fLocalToDevice.setIdentity();
fDeviceToLocal.setIdentity();
if (fAA == GrAA::kNo && outer.width() >= 1.f && outer.height() >= 1.f) {
// NOTE: Legacy behavior to avoid performance regressions. For non-aa axis-aligned
// clip rects we always just round so that they can be scissor-only (avoiding the
// uncertainty in how a GPU might actually round an edge on fractional coords).
fOuterBounds = outer.round();
fInnerBounds = fOuterBounds;
} else {
fInnerBounds = GrClip::GetPixelIBounds(outer, fAA, BoundsType::kInterior);
SkASSERT(fOuterBounds.contains(fInnerBounds) || fInnerBounds.isEmpty());
}
} else if (fShape.isRRect()) {
// Can't transform in place and must still check transform result since some very
// ill-formed scale+translate matrices can cause invalid rrect radii.
SkRRect src;
if (fShape.rrect().transform(fLocalToDevice, &src)) {
fShape.rrect() = src;
fLocalToDevice.setIdentity();
fDeviceToLocal.setIdentity();
SkRect inner = SkRRectPriv::InnerBounds(fShape.rrect());
fInnerBounds = GrClip::GetPixelIBounds(inner, fAA, BoundsType::kInterior);
if (!fInnerBounds.intersect(deviceBounds)) {
fInnerBounds = SkIRect::MakeEmpty();
}
}
}
}
if (fOuterBounds.isEmpty()) {
// This can happen if we have non-AA shapes smaller than a pixel that do not cover a pixel
// center. We could round out, but rasterization would still result in an empty clip.
fShape.reset();
}
// Post-conditions on inner and outer bounds
SkASSERT(fShape.isEmpty() || (!fOuterBounds.isEmpty() && deviceBounds.contains(fOuterBounds)));
SkASSERT(fShape.isEmpty() || fInnerBounds.isEmpty() || fOuterBounds.contains(fInnerBounds));
}
bool GrClipStack::RawElement::combine(const RawElement& other, const SaveRecord& current) {
// To reduce the number of possibilities, only consider intersect+intersect. Difference and
// mixed op cases could be analyzed to simplify one of the shapes, but that is a rare
// occurrence and the math is much more complicated.
if (other.fOp != SkClipOp::kIntersect || fOp != SkClipOp::kIntersect) {
return false;
}
// At the moment, only rect+rect or rrect+rrect are supported (although rect+rrect is
// treated as a degenerate case of rrect+rrect).
bool shapeUpdated = false;
if (fShape.isRect() && other.fShape.isRect()) {
bool aaMatch = fAA == other.fAA;
if (fLocalToDevice.isIdentity() && other.fLocalToDevice.isIdentity() && !aaMatch) {
if (GrClip::IsPixelAligned(fShape.rect())) {
// Our AA type doesn't really matter, take other's since its edges may not be
// pixel aligned, so after intersection clip behavior should respect its aa type.
fAA = other.fAA;
} else if (!GrClip::IsPixelAligned(other.fShape.rect())) {
// Neither shape is pixel aligned and AA types don't match so can't combine
return false;
}
// Either we've updated this->fAA to actually match, or other->fAA doesn't matter so
// this can be set to true. We just can't modify other to set it's aa to this->fAA.
// But since 'this' becomes the combo of the two, other will be deleted so that's fine.
aaMatch = true;
}
if (aaMatch && fLocalToDevice == other.fLocalToDevice) {
if (!fShape.rect().intersect(other.fShape.rect())) {
// By floating point, it turns out the combination should be empty
this->fShape.reset();
this->markInvalid(current);
return true;
}
shapeUpdated = true;
}
} else if ((fShape.isRect() || fShape.isRRect()) &&
(other.fShape.isRect() || other.fShape.isRRect())) {
// No such pixel-aligned disregard for AA for round rects
if (fAA == other.fAA && fLocalToDevice == other.fLocalToDevice) {
// Treat rrect+rect intersections as rrect+rrect
SkRRect a = fShape.isRect() ? SkRRect::MakeRect(fShape.rect()) : fShape.rrect();
SkRRect b = other.fShape.isRect() ? SkRRect::MakeRect(other.fShape.rect())
: other.fShape.rrect();
SkRRect joined = SkRRectPriv::ConservativeIntersect(a, b);
if (!joined.isEmpty()) {
// Can reduce to a single element
if (joined.isRect()) {
// And with a simplified type
fShape.setRect(joined.rect());
} else {
fShape.setRRect(joined);
}
shapeUpdated = true;
} else if (!a.getBounds().intersects(b.getBounds())) {
// Like the rect+rect combination, the intersection is actually empty
fShape.reset();
this->markInvalid(current);
return true;
}
}
}
if (shapeUpdated) {
// This logic works under the assumption that both combined elements were intersect, so we
// don't do the full bounds computations like in simplify().
SkASSERT(fOp == SkClipOp::kIntersect && other.fOp == SkClipOp::kIntersect);
SkAssertResult(fOuterBounds.intersect(other.fOuterBounds));
if (!fInnerBounds.intersect(other.fInnerBounds)) {
fInnerBounds = SkIRect::MakeEmpty();
}
return true;
} else {
return false;
}
}
void GrClipStack::RawElement::updateForElement(RawElement* added, const SaveRecord& current) {
if (this->isInvalid()) {
// Already doesn't do anything, so skip this element
return;
}
// 'A' refers to this element, 'B' refers to 'added'.
switch (get_clip_geometry(*this, *added)) {
case ClipGeometry::kEmpty:
// Mark both elements as invalid to signal that the clip is fully empty
this->markInvalid(current);
added->markInvalid(current);
break;
case ClipGeometry::kAOnly:
// This element already clips more than 'added', so mark 'added' is invalid to skip it
added->markInvalid(current);
break;
case ClipGeometry::kBOnly:
// 'added' clips more than this element, so mark this as invalid
this->markInvalid(current);
break;
case ClipGeometry::kBoth:
// Else the bounds checks think we need to keep both, but depending on the combination
// of the ops and shape kinds, we may be able to do better.
if (added->combine(*this, current)) {
// 'added' now fully represents the combination of the two elements
this->markInvalid(current);
}
break;
}
}
GrClipStack::ClipState GrClipStack::RawElement::clipType() const {
// Map from the internal shape kind to the clip state enum
switch (fShape.type()) {
case GrShape::Type::kEmpty:
return ClipState::kEmpty;
case GrShape::Type::kRect:
return fOp == SkClipOp::kIntersect && fLocalToDevice.isIdentity()
? ClipState::kDeviceRect : ClipState::kComplex;
case GrShape::Type::kRRect:
return fOp == SkClipOp::kIntersect && fLocalToDevice.isIdentity()
? ClipState::kDeviceRRect : ClipState::kComplex;
case GrShape::Type::kArc:
case GrShape::Type::kLine:
case GrShape::Type::kPoint:
// These types should never become RawElements
SkASSERT(false);
[[fallthrough]];
case GrShape::Type::kPath:
return ClipState::kComplex;
}
SkUNREACHABLE;
}
///////////////////////////////////////////////////////////////////////////////
// GrClipStack::Mask
GrClipStack::Mask::Mask(const SaveRecord& current, const SkIRect& drawBounds)
: fBounds(drawBounds)
, fGenID(current.genID()) {
static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
// The gen ID should not be invalid, empty, or wide open, since those do not require masks
SkASSERT(fGenID != kInvalidGenID && fGenID != kEmptyGenID && fGenID != kWideOpenGenID);
GrUniqueKey::Builder builder(&fKey, kDomain, 3, "clip_mask");
builder[0] = fGenID;
// SkToS16 because image filters outset layers to a size indicated by the filter, which can
// sometimes result in negative coordinates from device space.
builder[1] = SkToS16(drawBounds.fLeft) | (SkToS16(drawBounds.fRight) << 16);
builder[2] = SkToS16(drawBounds.fTop) | (SkToS16(drawBounds.fBottom) << 16);
SkASSERT(fKey.isValid());
SkDEBUGCODE(fOwner = &current;)
}
bool GrClipStack::Mask::appliesToDraw(const SaveRecord& current, const SkIRect& drawBounds) const {
// For the same save record, a larger mask will have the same or more elements
// baked into it, so it can be reused to clip the smaller draw.
SkASSERT(fGenID != current.genID() || &current == fOwner);
return fGenID == current.genID() && fBounds.contains(drawBounds);
}
void GrClipStack::Mask::invalidate(GrProxyProvider* proxyProvider) {
SkASSERT(proxyProvider);
SkASSERT(fKey.isValid()); // Should only be invalidated once
proxyProvider->processInvalidUniqueKey(
fKey, nullptr, GrProxyProvider::InvalidateGPUResource::kYes);
fKey.reset();
}
///////////////////////////////////////////////////////////////////////////////
// GrClipStack::SaveRecord
GrClipStack::SaveRecord::SaveRecord(const SkIRect& deviceBounds)
: fInnerBounds(deviceBounds)
, fOuterBounds(deviceBounds)
, fShader(nullptr)
, fStartingMaskIndex(0)
, fStartingElementIndex(0)
, fOldestValidIndex(0)
, fDeferredSaveCount(0)
, fStackOp(SkClipOp::kIntersect)
, fState(ClipState::kWideOpen)
, fGenID(kInvalidGenID) {}
GrClipStack::SaveRecord::SaveRecord(const SaveRecord& prior,
int startingMaskIndex,
int startingElementIndex)
: fInnerBounds(prior.fInnerBounds)
, fOuterBounds(prior.fOuterBounds)
, fShader(prior.fShader)
, fStartingMaskIndex(startingMaskIndex)
, fStartingElementIndex(startingElementIndex)
, fOldestValidIndex(prior.fOldestValidIndex)
, fDeferredSaveCount(0)
, fStackOp(prior.fStackOp)
, fState(prior.fState)
, fGenID(kInvalidGenID) {
// If the prior record never needed a mask, this one will insert into the same index
// (that's okay since we'll remove it when this record is popped off the stack).
SkASSERT(startingMaskIndex >= prior.fStartingMaskIndex);
// The same goes for elements (the prior could have been wide open).
SkASSERT(startingElementIndex >= prior.fStartingElementIndex);
}
uint32_t GrClipStack::SaveRecord::genID() const {
if (fState == ClipState::kEmpty) {
return kEmptyGenID;
} else if (fState == ClipState::kWideOpen) {
return kWideOpenGenID;
} else {
// The gen ID shouldn't be empty or wide open, since they are reserved for the above
// if-cases. It may be kInvalid if the record hasn't had any elements added to it yet.
SkASSERT(fGenID != kEmptyGenID && fGenID != kWideOpenGenID);
return fGenID;
}
}
GrClipStack::ClipState GrClipStack::SaveRecord::state() const {
if (fShader && fState != ClipState::kEmpty) {
return ClipState::kComplex;
} else {
return fState;
}
}
bool GrClipStack::SaveRecord::contains(const GrClipStack::Draw& draw) const {
return fInnerBounds.contains(draw.outerBounds());
}
bool GrClipStack::SaveRecord::contains(const GrClipStack::RawElement& element) const {
return fInnerBounds.contains(element.outerBounds());
}
void GrClipStack::SaveRecord::removeElements(RawElement::Stack* elements) {
while (elements->count() > fStartingElementIndex) {
elements->pop_back();
}
}
void GrClipStack::SaveRecord::restoreElements(RawElement::Stack* elements) {
// Presumably this SaveRecord is the new top of the stack, and so it owns the elements
// from its starting index to restoreCount - 1. Elements from the old save record have
// been destroyed already, so their indices would have been >= restoreCount, and any
// still-present element can be un-invalidated based on that.
int i = elements->count() - 1;
for (RawElement& e : elements->ritems()) {
if (i < fOldestValidIndex) {
break;
}
e.restoreValid(*this);
--i;
}
}
void GrClipStack::SaveRecord::invalidateMasks(GrProxyProvider* proxyProvider,
Mask::Stack* masks) {
// Must explicitly invalidate the key before removing the mask object from the stack
while (masks->count() > fStartingMaskIndex) {
SkASSERT(masks->back().owner() == this && proxyProvider);
masks->back().invalidate(proxyProvider);
masks->pop_back();
}
SkASSERT(masks->empty() || masks->back().genID() != fGenID);
}
void GrClipStack::SaveRecord::reset(const SkIRect& bounds) {
SkASSERT(this->canBeUpdated());
fOldestValidIndex = fStartingElementIndex;
fOuterBounds = bounds;
fInnerBounds = bounds;
fStackOp = SkClipOp::kIntersect;
fState = ClipState::kWideOpen;
fShader = nullptr;
}
void GrClipStack::SaveRecord::addShader(sk_sp<SkShader> shader) {
SkASSERT(shader);
SkASSERT(this->canBeUpdated());
if (!fShader) {
fShader = std::move(shader);
} else {
// The total coverage is computed by multiplying the coverage from each element (shape or
// shader), but since multiplication is associative, we can use kSrcIn blending to make
// a new shader that represents 'shader' * 'fShader'
fShader = SkShaders::Blend(SkBlendMode::kSrcIn, std::move(shader), fShader);
}
}
bool GrClipStack::SaveRecord::addElement(RawElement&& toAdd, RawElement::Stack* elements) {
// Validity check the element's state first; if the shape class isn't empty, the outer bounds
// shouldn't be empty; if the inner bounds are not empty, they must be contained in outer.
SkASSERT((toAdd.shape().isEmpty() || !toAdd.outerBounds().isEmpty()) &&
(toAdd.innerBounds().isEmpty() || toAdd.outerBounds().contains(toAdd.innerBounds())));
// And we shouldn't be adding an element if we have a deferred save
SkASSERT(this->canBeUpdated());
if (fState == ClipState::kEmpty) {
// The clip is already empty, and we only shrink, so there's no need to record this element.
return false;
} else if (toAdd.shape().isEmpty()) {
// An empty difference op should have been detected earlier, since it's a no-op
SkASSERT(toAdd.op() == SkClipOp::kIntersect);
fState = ClipState::kEmpty;
return true;
}
// In this invocation, 'A' refers to the existing stack's bounds and 'B' refers to the new
// element.
switch (get_clip_geometry(*this, toAdd)) {
case ClipGeometry::kEmpty:
// The combination results in an empty clip
fState = ClipState::kEmpty;
return true;
case ClipGeometry::kAOnly:
// The combination would not be any different than the existing clip
return false;
case ClipGeometry::kBOnly:
// The combination would invalidate the entire existing stack and can be replaced with
// just the new element.
this->replaceWithElement(std::move(toAdd), elements);
return true;
case ClipGeometry::kBoth:
// The new element combines in a complex manner, so update the stack's bounds based on
// the combination of its and the new element's ops (handled below)
break;
}
if (fState == ClipState::kWideOpen) {
// When the stack was wide open and the clip effect was kBoth, the "complex" manner is
// simply to keep the element and update the stack bounds to be the element's intersected
// with the device.
this->replaceWithElement(std::move(toAdd), elements);
return true;
}
// Some form of actual clip element(s) to combine with.
if (fStackOp == SkClipOp::kIntersect) {
if (toAdd.op() == SkClipOp::kIntersect) {
// Intersect (stack) + Intersect (toAdd)
// - Bounds updates is simply the paired intersections of outer and inner.
SkAssertResult(fOuterBounds.intersect(toAdd.outerBounds()));
if (!fInnerBounds.intersect(toAdd.innerBounds())) {
// NOTE: this does the right thing if either rect is empty, since we set the
// inner bounds to empty here
fInnerBounds = SkIRect::MakeEmpty();
}
} else {
// Intersect (stack) + Difference (toAdd)
// - Shrink the stack's outer bounds if the difference op's inner bounds completely
// cuts off an edge.
// - Shrink the stack's inner bounds to completely exclude the op's outer bounds.
fOuterBounds = subtract(fOuterBounds, toAdd.innerBounds(), /* exact */ true);
fInnerBounds = subtract(fInnerBounds, toAdd.outerBounds(), /* exact */ false);
}
} else {
if (toAdd.op() == SkClipOp::kIntersect) {
// Difference (stack) + Intersect (toAdd)
// - Bounds updates are just the mirror of Intersect(stack) + Difference(toAdd)
SkIRect oldOuter = fOuterBounds;
fOuterBounds = subtract(toAdd.outerBounds(), fInnerBounds, /* exact */ true);
fInnerBounds = subtract(toAdd.innerBounds(), oldOuter, /* exact */ false);
} else {
// Difference (stack) + Difference (toAdd)
// - The updated outer bounds is the union of outer bounds and the inner becomes the
// largest of the two possible inner bounds
fOuterBounds.join(toAdd.outerBounds());
if (toAdd.innerBounds().width() * toAdd.innerBounds().height() >
fInnerBounds.width() * fInnerBounds.height()) {
fInnerBounds = toAdd.innerBounds();
}
}
}
// If we get here, we're keeping the new element and the stack's bounds have been updated.
// We ought to have caught the cases where the stack bounds resemble an empty or wide open
// clip, so assert that's the case.
SkASSERT(!fOuterBounds.isEmpty() &&
(fInnerBounds.isEmpty() || fOuterBounds.contains(fInnerBounds)));
return this->appendElement(std::move(toAdd), elements);
}
bool GrClipStack::SaveRecord::appendElement(RawElement&& toAdd, RawElement::Stack* elements) {
// Update past elements to account for the new element
int i = elements->count() - 1;
// After the loop, elements between [max(youngestValid, startingIndex)+1, count-1] can be
// removed from the stack (these are the active elements that have been invalidated by the
// newest element; since it's the active part of the stack, no restore() can bring them back).
int youngestValid = fStartingElementIndex - 1;
// After the loop, elements between [0, oldestValid-1] are all invalid. The value of oldestValid
// becomes the save record's new fLastValidIndex value.
int oldestValid = elements->count();
// After the loop, this is the earliest active element that was invalidated. It may be
// older in the stack than earliestValid, so cannot be popped off, but can be used to store
// the new element instead of allocating more.
RawElement* oldestActiveInvalid = nullptr;
int oldestActiveInvalidIndex = elements->count();
for (RawElement& existing : elements->ritems()) {
if (i < fOldestValidIndex) {
break;
}
// We don't need to pass the actual index that toAdd will be saved to; just the minimum
// index of this save record, since that will result in the same restoration behavior later.
existing.updateForElement(&toAdd, *this);
if (toAdd.isInvalid()) {
if (existing.isInvalid()) {
// Both new and old invalid implies the entire clip becomes empty
fState = ClipState::kEmpty;
return true;
} else {
// The new element doesn't change the clip beyond what the old element already does
return false;
}
} else if (existing.isInvalid()) {
// The new element cancels out the old element. The new element may have been modified
// to account for the old element's geometry.
if (i >= fStartingElementIndex) {
// Still active, so the invalidated index could be used to store the new element
oldestActiveInvalid = &existing;
oldestActiveInvalidIndex = i;
}
} else {
// Keep both new and old elements
oldestValid = i;
if (i > youngestValid) {
youngestValid = i;
}
}
--i;
}
// Post-iteration validity check
SkASSERT(oldestValid == elements->count() ||
(oldestValid >= fOldestValidIndex && oldestValid < elements->count()));
SkASSERT(youngestValid == fStartingElementIndex - 1 ||
(youngestValid >= fStartingElementIndex && youngestValid < elements->count()));
SkASSERT((oldestActiveInvalid && oldestActiveInvalidIndex >= fStartingElementIndex &&
oldestActiveInvalidIndex < elements->count()) || !oldestActiveInvalid);
// Update final state
SkASSERT(oldestValid >= fOldestValidIndex);
fOldestValidIndex = std::min(oldestValid, oldestActiveInvalidIndex);
fState = oldestValid == elements->count() ? toAdd.clipType() : ClipState::kComplex;
if (fStackOp == SkClipOp::kDifference && toAdd.op() == SkClipOp::kIntersect) {
// The stack remains in difference mode only as long as all elements are difference
fStackOp = SkClipOp::kIntersect;
}
int targetCount = youngestValid + 1;
if (!oldestActiveInvalid || oldestActiveInvalidIndex >= targetCount) {
// toAdd will be stored right after youngestValid
targetCount++;
oldestActiveInvalid = nullptr;
}
while (elements->count() > targetCount) {
SkASSERT(oldestActiveInvalid != &elements->back()); // shouldn't delete what we'll reuse
elements->pop_back();
}
if (oldestActiveInvalid) {
*oldestActiveInvalid = std::move(toAdd);
} else if (elements->count() < targetCount) {
elements->push_back(std::move(toAdd));
} else {
elements->back() = std::move(toAdd);
}
// Changing this will prompt GrClipStack to invalidate any masks associated with this record.
fGenID = next_gen_id();
return true;
}
void GrClipStack::SaveRecord::replaceWithElement(RawElement&& toAdd, RawElement::Stack* elements) {
// The aggregate state of the save record mirrors the element
fInnerBounds = toAdd.innerBounds();
fOuterBounds = toAdd.outerBounds();
fStackOp = toAdd.op();
fState = toAdd.clipType();
// All prior active element can be removed from the stack: [startingIndex, count - 1]
int targetCount = fStartingElementIndex + 1;
while (elements->count() > targetCount) {
elements->pop_back();
}
if (elements->count() < targetCount) {
elements->push_back(std::move(toAdd));
} else {
elements->back() = std::move(toAdd);
}
SkASSERT(elements->count() == fStartingElementIndex + 1);
// This invalidates all older elements that are owned by save records lower in the clip stack.
fOldestValidIndex = fStartingElementIndex;
fGenID = next_gen_id();
}
///////////////////////////////////////////////////////////////////////////////
// GrClipStack
// NOTE: Based on draw calls in all GMs, SKPs, and SVGs as of 08/20, 98% use a clip stack with
// one Element and up to two SaveRecords, thus the inline size for RawElement::Stack and
// SaveRecord::Stack (this conveniently keeps the size of GrClipStack manageable). The max
// encountered element stack depth was 5 and the max save depth was 6. Using an increment of 8 for
// these stacks means that clip management will incur a single allocation for the remaining 2%
// of the draws, with extra head room for more complex clips encountered in the wild.
//
// The mask stack increment size was chosen to be smaller since only 0.2% of the evaluated draw call
// set ever used a mask (which includes stencil masks), or up to 0.3% when CCPR is disabled.
static constexpr int kElementStackIncrement = 8;
static constexpr int kSaveStackIncrement = 8;
static constexpr int kMaskStackIncrement = 4;
// And from this same draw call set, the most complex clip could only use 5 analytic coverage FPs.
// Historically we limited it to 4 based on Blink's call pattern, so we keep the limit as-is since
// it's so close to the empirically encountered max.
static constexpr int kMaxAnalyticFPs = 4;
// The number of stack-allocated mask pointers to store before extending the arrays.
// Stack size determined empirically, the maximum number of elements put in a SW mask was 4
// across our set of GMs, SKPs, and SVGs used for testing.
static constexpr int kNumStackMasks = 4;
GrClipStack::GrClipStack(const SkIRect& deviceBounds, const SkMatrixProvider* matrixProvider,
bool forceAA)
: fElements(kElementStackIncrement)
, fSaves(kSaveStackIncrement)
, fMasks(kMaskStackIncrement)
, fProxyProvider(nullptr)
, fDeviceBounds(deviceBounds)
, fMatrixProvider(matrixProvider)
, fForceAA(forceAA) {
// Start with a save record that is wide open
fSaves.emplace_back(deviceBounds);
}
GrClipStack::~GrClipStack() {
// Invalidate all mask keys that remain. Since we're tearing the clip stack down, we don't need
// to go through SaveRecord.
SkASSERT(fProxyProvider || fMasks.empty());
if (fProxyProvider) {
for (Mask& m : fMasks.ritems()) {
m.invalidate(fProxyProvider);
}
}
}
void GrClipStack::save() {
SkASSERT(!fSaves.empty());
fSaves.back().pushSave();
}
void GrClipStack::restore() {
SkASSERT(!fSaves.empty());
SaveRecord& current = fSaves.back();
if (current.popSave()) {
// This was just a deferred save being undone, so the record doesn't need to be removed yet
return;
}
// When we remove a save record, we delete all elements >= its starting index and any masks
// that were rasterized for it.
current.removeElements(&fElements);
SkASSERT(fProxyProvider || fMasks.empty());
if (fProxyProvider) {
current.invalidateMasks(fProxyProvider, &fMasks);
}
fSaves.pop_back();
// Restore any remaining elements that were only invalidated by the now-removed save record.
fSaves.back().restoreElements(&fElements);
}
SkIRect GrClipStack::getConservativeBounds() const {
const SaveRecord& current = this->currentSaveRecord();
if (current.state() == ClipState::kEmpty) {
return SkIRect::MakeEmpty();
} else if (current.state() == ClipState::kWideOpen) {
return fDeviceBounds;
} else {
if (current.op() == SkClipOp::kDifference) {
// The outer/inner bounds represent what's cut out, so full bounds remains the device
// bounds, minus any fully clipped content that spans the device edge.
return subtract(fDeviceBounds, current.innerBounds(), /* exact */ true);
} else {
SkASSERT(fDeviceBounds.contains(current.outerBounds()));
return current.outerBounds();
}
}
}
GrClip::PreClipResult GrClipStack::preApply(const SkRect& bounds, GrAA aa) const {
Draw draw(bounds, fForceAA ? GrAA::kYes : aa);
if (!draw.applyDeviceBounds(fDeviceBounds)) {
return GrClip::Effect::kClippedOut;
}
const SaveRecord& cs = this->currentSaveRecord();
// Early out if we know a priori that the clip is full 0s or full 1s.
if (cs.state() == ClipState::kEmpty) {
return GrClip::Effect::kClippedOut;
} else if (cs.state() == ClipState::kWideOpen) {
SkASSERT(!cs.shader());
return GrClip::Effect::kUnclipped;
}
// Given argument order, 'A' == current clip, 'B' == draw
switch (get_clip_geometry(cs, draw)) {
case ClipGeometry::kEmpty:
// Can ignore the shader since the geometry removed everything already
return GrClip::Effect::kClippedOut;
case ClipGeometry::kBOnly:
// Geometrically, the draw is unclipped, but can't ignore a shader
return cs.shader() ? GrClip::Effect::kClipped : GrClip::Effect::kUnclipped;
case ClipGeometry::kAOnly:
// Shouldn't happen since the inner bounds of a draw are unknown
SkASSERT(false);
// But if it did, it technically means the draw covered the clip and should be
// considered kClipped or similar, which is what the next case handles.
[[fallthrough]];
case ClipGeometry::kBoth: {
SkASSERT(fElements.count() > 0);
const RawElement& back = fElements.back();
if (cs.state() == ClipState::kDeviceRect) {
SkASSERT(back.clipType() == ClipState::kDeviceRect);
return {back.shape().rect(), back.aa()};
} else if (cs.state() == ClipState::kDeviceRRect) {
SkASSERT(back.clipType() == ClipState::kDeviceRRect);
return {back.shape().rrect(), back.aa()};
} else {
// The clip stack has complex shapes, multiple elements, or a shader; we could
// iterate per element like we would in apply(), but preApply() is meant to be
// conservative and efficient.
SkASSERT(cs.state() == ClipState::kComplex);
return GrClip::Effect::kClipped;
}
}
}
SkUNREACHABLE;
}
GrClip::Effect GrClipStack::apply(GrRecordingContext* context, GrSurfaceDrawContext* rtc,
GrAAType aa, bool hasUserStencilSettings,
GrAppliedClip* out, SkRect* bounds) const {
// TODO: Once we no longer store SW masks, we don't need to sneak the provider in like this
if (!fProxyProvider) {
fProxyProvider = context->priv().proxyProvider();
}
SkASSERT(fProxyProvider == context->priv().proxyProvider());
const GrCaps* caps = context->priv().caps();
// Convert the bounds to a Draw and apply device bounds clipping, making our query as tight
// as possible.
Draw draw(*bounds, GrAA(fForceAA || aa != GrAAType::kNone));
if (!draw.applyDeviceBounds(fDeviceBounds)) {
return Effect::kClippedOut;
}
SkAssertResult(bounds->intersect(SkRect::Make(fDeviceBounds)));
const SaveRecord& cs = this->currentSaveRecord();
// Early out if we know a priori that the clip is full 0s or full 1s.
if (cs.state() == ClipState::kEmpty) {
return Effect::kClippedOut;
} else if (cs.state() == ClipState::kWideOpen) {
SkASSERT(!cs.shader());
return Effect::kUnclipped;
}
// Convert any clip shader first, since it's not geometrically related to the draw bounds
std::unique_ptr<GrFragmentProcessor> clipFP = nullptr;
if (cs.shader()) {
static const GrColorInfo kCoverageColorInfo{GrColorType::kUnknown, kPremul_SkAlphaType,
nullptr};
GrFPArgs args(context, *fMatrixProvider, SkSamplingOptions(), &kCoverageColorInfo);
clipFP = as_SB(cs.shader())->asFragmentProcessor(args);
if (clipFP) {
// The initial input is the coverage from the geometry processor, so this ensures it
// is multiplied properly with the alpha of the clip shader.
clipFP = GrFragmentProcessor::MulInputByChildAlpha(std::move(clipFP));
}
}
// A refers to the entire clip stack, B refers to the draw
switch (get_clip_geometry(cs, draw)) {
case ClipGeometry::kEmpty:
return Effect::kClippedOut;
case ClipGeometry::kBOnly:
// Geometrically unclipped, but may need to add the shader as a coverage FP
if (clipFP) {
out->addCoverageFP(std::move(clipFP));
return Effect::kClipped;
} else {
return Effect::kUnclipped;
}
case ClipGeometry::kAOnly:
// Shouldn't happen since draws don't report inner bounds
SkASSERT(false);
[[fallthrough]];
case ClipGeometry::kBoth:
// The draw is combined with the saved clip elements; the below logic tries to skip
// as many elements as possible.
SkASSERT(cs.state() == ClipState::kDeviceRect ||
cs.state() == ClipState::kDeviceRRect ||
cs.state() == ClipState::kComplex);
break;
}
// We can determine a scissor based on the draw and the overall stack bounds.
SkIRect scissorBounds;
if (cs.op() == SkClipOp::kIntersect) {
// Initially we keep this as large as possible; if the clip is applied solely with coverage
// FPs then using a loose scissor increases the chance we can batch the draws.
// We tighten it later if any form of mask or atlas element is needed.
scissorBounds = cs.outerBounds();
} else {
scissorBounds = subtract(draw.outerBounds(), cs.innerBounds(), /* exact */ true);
}
// We mark this true once we have a coverage FP (since complex clipping is occurring), or we
// have an element that wouldn't affect the scissored draw bounds, but does affect the regular
// draw bounds. In that case, the scissor is sufficient for clipping and we can skip the
// element but definitely cannot then drop the scissor.
bool scissorIsNeeded = SkToBool(cs.shader());
int remainingAnalyticFPs = kMaxAnalyticFPs;
if (hasUserStencilSettings) {
// Disable analytic clips when there are user stencil settings to ensure the clip is
// respected in the stencil buffer.
remainingAnalyticFPs = 0;
// If we have user stencil settings, we shouldn't be avoiding the stencil buffer anyways.
SkASSERT(!context->priv().caps()->avoidStencilBuffers());
}
// If window rectangles are supported, we can use them to exclude inner bounds of difference ops
int maxWindowRectangles = rtc->maxWindowRectangles();
GrWindowRectangles windowRects;
// Elements not represented as an analytic FP or skipped will be collected here and later
// applied by using the stencil buffer, CCPR clip atlas, or a cached SW mask.
SkSTArray<kNumStackMasks, const Element*> elementsForMask;
SkSTArray<kNumStackMasks, const RawElement*> elementsForAtlas;
bool maskRequiresAA = false;
auto* ccpr = context->priv().drawingManager()->getCoverageCountingPathRenderer();
int i = fElements.count();
for (const RawElement& e : fElements.ritems()) {
--i;
if (i < cs.oldestElementIndex()) {
// All earlier elements have been invalidated by elements already processed
break;
} else if (e.isInvalid()) {
continue;
}
switch (get_clip_geometry(e, draw)) {
case ClipGeometry::kEmpty:
// This can happen for difference op elements that have a larger fInnerBounds than
// can be preserved at the next level.
return Effect::kClippedOut;
case ClipGeometry::kBOnly:
// We don't need to produce a coverage FP or mask for the element
break;
case ClipGeometry::kAOnly:
// Shouldn't happen for draws, fall through to regular element processing
SkASSERT(false);
[[fallthrough]];
case ClipGeometry::kBoth: {
// The element must apply coverage to the draw, enable the scissor to limit overdraw
scissorIsNeeded = true;
// First apply using HW methods (scissor and window rects). When the inner and outer
// bounds match, nothing else needs to be done.
bool fullyApplied = false;
if (e.op() == SkClipOp::kIntersect) {
// The second test allows clipped draws that are scissored by multiple elements
// to remain scissor-only.
fullyApplied = e.innerBounds() == e.outerBounds() ||
e.innerBounds().contains(scissorBounds);
} else {
if (!e.innerBounds().isEmpty() && windowRects.count() < maxWindowRectangles) {
// TODO: If we have more difference ops than available window rects, we
// should prioritize those with the largest inner bounds.
windowRects.addWindow(e.innerBounds());
fullyApplied = e.innerBounds() == e.outerBounds();
}
}
if (!fullyApplied && remainingAnalyticFPs > 0) {
std::tie(fullyApplied, clipFP) = analytic_clip_fp(e.asElement(),
*caps->shaderCaps(),
std::move(clipFP));
if (fullyApplied) {
remainingAnalyticFPs--;
} else if (ccpr && e.aa() == GrAA::kYes) {
// While technically the element is turned into a mask, each atlas entry
// counts towards the FP complexity of the clip.
// TODO - CCPR needs a stable ops task ID so we can't create FPs until we
// know any other mask generation is finished. It also only works with AA
// shapes, future atlas systems can improve on this.
elementsForAtlas.push_back(&e);
remainingAnalyticFPs--;
fullyApplied = true;
}
}
if (!fullyApplied) {
elementsForMask.push_back(&e.asElement());
maskRequiresAA |= (e.aa() == GrAA::kYes);
}
break;
}
}
}
if (!scissorIsNeeded) {
// More detailed analysis of the element shapes determined no clip is needed
SkASSERT(elementsForMask.empty() && elementsForAtlas.empty() && !clipFP);
return Effect::kUnclipped;
}
// Fill out the GrAppliedClip with what we know so far, possibly with a tightened scissor
if (cs.op() == SkClipOp::kIntersect &&
(!elementsForMask.empty() || !elementsForAtlas.empty())) {
SkAssertResult(scissorBounds.intersect(draw.outerBounds()));
}
if (!GrClip::IsInsideClip(scissorBounds, *bounds)) {
out->hardClip().addScissor(scissorBounds, bounds);
}
if (!windowRects.empty()) {
out->hardClip().addWindowRectangles(windowRects, GrWindowRectsState::Mode::kExclusive);
}
// Now rasterize any remaining elements, either to the stencil or a SW mask. All elements are
// flattened into a single mask.
if (!elementsForMask.empty()) {
bool stencilUnavailable = context->priv().caps()->avoidStencilBuffers() ||
rtc->wrapsVkSecondaryCB();
bool hasSWMask = false;
if ((rtc->numSamples() <= 1 && maskRequiresAA) || stencilUnavailable) {
// Must use a texture mask to represent the combined clip elements since the stencil
// cannot be used, or cannot handle smooth clips.
std::tie(hasSWMask, clipFP) = GetSWMaskFP(
context, &fMasks, cs, scissorBounds, elementsForMask.begin(),
elementsForMask.count(), std::move(clipFP));
}
if (!hasSWMask) {
if (stencilUnavailable) {
SkDebugf("WARNING: Clip mask requires stencil, but stencil unavailable. "
"Draw will be ignored.\n");
return Effect::kClippedOut;
} else {
// Rasterize the remaining elements to the stencil buffer
render_stencil_mask(context, rtc, cs.genID(), scissorBounds,
elementsForMask.begin(), elementsForMask.count(), out);
}
}
}
// Finish CCPR paths now that the render target's ops task is stable.
if (!elementsForAtlas.empty()) {
uint32_t opsTaskID = rtc->getOpsTask()->uniqueID();
for (int i = 0; i < elementsForAtlas.count(); ++i) {
SkASSERT(elementsForAtlas[i]->aa() == GrAA::kYes);
clipFP = clip_atlas_fp(ccpr, opsTaskID, scissorBounds, elementsForAtlas[i]->asElement(),
elementsForAtlas[i]->devicePath(), *caps, std::move(clipFP));
}
}
if (clipFP) {
// This will include all analytic FPs, all CCPR atlas FPs, and a SW mask FP.
out->addCoverageFP(std::move(clipFP));
}
SkASSERT(out->doesClip());
return Effect::kClipped;
}
GrClipStack::SaveRecord& GrClipStack::writableSaveRecord(bool* wasDeferred) {
SaveRecord& current = fSaves.back();
if (current.canBeUpdated()) {
// Current record is still open, so it can be modified directly
*wasDeferred = false;
return current;
} else {
// Must undefer the save to get a new record.
SkAssertResult(current.popSave());
*wasDeferred = true;
return fSaves.emplace_back(current, fMasks.count(), fElements.count());
}
}
void GrClipStack::clipShader(sk_sp<SkShader> shader) {
// Shaders can't bring additional coverage
if (this->currentSaveRecord().state() == ClipState::kEmpty) {
return;
}
bool wasDeferred;
this->writableSaveRecord(&wasDeferred).addShader(std::move(shader));
// Masks and geometry elements are not invalidated by updating the clip shader
}
void GrClipStack::replaceClip(const SkIRect& rect) {
bool wasDeferred;
SaveRecord& save = this->writableSaveRecord(&wasDeferred);
if (!wasDeferred) {
save.removeElements(&fElements);
save.invalidateMasks(fProxyProvider, &fMasks);
}
save.reset(fDeviceBounds);
if (rect != fDeviceBounds) {
this->clipRect(SkMatrix::I(), SkRect::Make(rect), GrAA::kNo, SkClipOp::kIntersect);
}
}
void GrClipStack::clip(RawElement&& element) {
if (this->currentSaveRecord().state() == ClipState::kEmpty) {
return;
}
// Reduce the path to anything simpler, will apply the transform if it's a scale+translate
// and ensures the element's bounds are clipped to the device (NOT the conservative clip bounds,
// since those are based on the net effect of all elements while device bounds clipping happens
// implicitly. During addElement, we may still be able to invalidate some older elements).
element.simplify(fDeviceBounds, fForceAA);
SkASSERT(!element.shape().inverted());
// An empty op means do nothing (for difference), or close the save record, so we try and detect
// that early before doing additional unnecessary save record allocation.
if (element.shape().isEmpty()) {
if (element.op() == SkClipOp::kDifference) {
// If the shape is empty and we're subtracting, this has no effect on the clip
return;
}
// else we will make the clip empty, but we need a new save record to record that change
// in the clip state; fall through to below and updateForElement() will handle it.
}
bool wasDeferred;
SaveRecord& save = this->writableSaveRecord(&wasDeferred);
SkDEBUGCODE(uint32_t oldGenID = save.genID();)
SkDEBUGCODE(int elementCount = fElements.count();)
if (!save.addElement(std::move(element), &fElements)) {
if (wasDeferred) {
// We made a new save record, but ended up not adding an element to the stack.
// So instead of keeping an empty save record around, pop it off and restore the counter
SkASSERT(elementCount == fElements.count());
fSaves.pop_back();
fSaves.back().pushSave();
} else {
// Should not have changed gen ID if the element and save were not modified
SkASSERT(oldGenID == save.genID());
}
} else {
// The gen ID should be new, and should not be invalid
SkASSERT(oldGenID != save.genID() && save.genID() != kInvalidGenID);
if (fProxyProvider && !wasDeferred) {
// We modified an active save record so any old masks it had can be invalidated
save.invalidateMasks(fProxyProvider, &fMasks);
}
}
}
GrFPResult GrClipStack::GetSWMaskFP(GrRecordingContext* context, Mask::Stack* masks,
const SaveRecord& current, const SkIRect& bounds,
const Element** elements, int count,
std::unique_ptr<GrFragmentProcessor> clipFP) {
GrProxyProvider* proxyProvider = context->priv().proxyProvider();
GrSurfaceProxyView maskProxy;
SkIRect maskBounds; // may not be 'bounds' if we reuse a large clip mask
// Check the existing masks from this save record for compatibility
for (const Mask& m : masks->ritems()) {
if (m.genID() != current.genID()) {
break;
}
if (m.appliesToDraw(current, bounds)) {
maskProxy = proxyProvider->findCachedProxyWithColorTypeFallback(
m.key(), kMaskOrigin, GrColorType::kAlpha_8, 1);
if (maskProxy) {
maskBounds = m.bounds();
break;
}
}
}
if (!maskProxy) {
// No existing mask was found, so need to render a new one
maskProxy = render_sw_mask(context, bounds, elements, count);
if (!maskProxy) {
// If we still don't have one, there's nothing we can do
return GrFPFailure(std::move(clipFP));
}
// Register the mask for later invalidation
Mask& mask = masks->emplace_back(current, bounds);
proxyProvider->assignUniqueKeyToProxy(mask.key(), maskProxy.asTextureProxy());
maskBounds = bounds;
}
// Wrap the mask in an FP that samples it for coverage
SkASSERT(maskProxy && maskProxy.origin() == kMaskOrigin);
GrSamplerState samplerState(GrSamplerState::WrapMode::kClampToBorder,
GrSamplerState::Filter::kNearest);
// Maps the device coords passed to the texture effect to the top-left corner of the mask, and
// make sure that the draw bounds are pre-mapped into the mask's space as well.
auto m = SkMatrix::Translate(-maskBounds.fLeft, -maskBounds.fTop);
auto subset = SkRect::Make(bounds);
subset.offset(-maskBounds.fLeft, -maskBounds.fTop);
// We scissor to bounds. The mask's texel centers are aligned to device space
// pixel centers. Hence this domain of texture coordinates.
auto domain = subset.makeInset(0.5, 0.5);
auto fp = GrTextureEffect::MakeSubset(std::move(maskProxy), kPremul_SkAlphaType, m,
samplerState, subset, domain, *context->priv().caps());
fp = GrDeviceSpaceEffect::Make(std::move(fp));
// Must combine the coverage sampled from the texture effect with the previous coverage
fp = GrBlendFragmentProcessor::Make(std::move(fp), std::move(clipFP), SkBlendMode::kDstIn);
return GrFPSuccess(std::move(fp));
}