blob: e27628ad043aeedc9676dfd1a00187c843ad2fa8 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "DMSrcSink.h"
#include "SamplePipeControllers.h"
#include "SkAndroidCodec.h"
#include "SkCodec.h"
#include "SkCommonFlags.h"
#include "SkData.h"
#include "SkDocument.h"
#include "SkError.h"
#include "SkImageGenerator.h"
#include "SkMultiPictureDraw.h"
#include "SkNullCanvas.h"
#include "SkOSFile.h"
#include "SkPictureData.h"
#include "SkPictureRecorder.h"
#include "SkRandom.h"
#include "SkRecordDraw.h"
#include "SkRecorder.h"
#include "SkRemote.h"
#include "SkSVGCanvas.h"
#include "SkStream.h"
#include "SkTLogic.h"
#include "SkXMLWriter.h"
#include "SkSwizzler.h"
#include <functional>
DEFINE_bool(multiPage, false, "For document-type backends, render the source"
" into multiple pages");
static bool lazy_decode_bitmap(const void* src, size_t size, SkBitmap* dst) {
SkAutoTUnref<SkData> encoded(SkData::NewWithCopy(src, size));
return encoded && SkDEPRECATED_InstallDiscardablePixelRef(encoded, dst);
}
namespace DM {
GMSrc::GMSrc(skiagm::GMRegistry::Factory factory) : fFactory(factory) {}
Error GMSrc::draw(SkCanvas* canvas) const {
SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr));
canvas->concat(gm->getInitialTransform());
gm->draw(canvas);
return "";
}
SkISize GMSrc::size() const {
SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr));
return gm->getISize();
}
Name GMSrc::name() const {
SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr));
return gm->getName();
}
void GMSrc::modifyGrContextOptions(GrContextOptions* options) const {
SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr));
gm->modifyGrContextOptions(options);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
BRDSrc::BRDSrc(Path path, SkBitmapRegionDecoder::Strategy strategy, Mode mode,
CodecSrc::DstColorType dstColorType, uint32_t sampleSize)
: fPath(path)
, fStrategy(strategy)
, fMode(mode)
, fDstColorType(dstColorType)
, fSampleSize(sampleSize)
{}
bool BRDSrc::veto(SinkFlags flags) const {
// No need to test to non-raster or indirect backends.
return flags.type != SinkFlags::kRaster
|| flags.approach != SinkFlags::kDirect;
}
static SkBitmapRegionDecoder* create_brd(Path path,
SkBitmapRegionDecoder::Strategy strategy) {
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(path.c_str()));
if (!encoded) {
return NULL;
}
return SkBitmapRegionDecoder::Create(encoded, strategy);
}
Error BRDSrc::draw(SkCanvas* canvas) const {
SkColorType colorType = canvas->imageInfo().colorType();
if (kRGB_565_SkColorType == colorType &&
CodecSrc::kGetFromCanvas_DstColorType != fDstColorType) {
return Error::Nonfatal("Testing non-565 to 565 is uninteresting.");
}
switch (fDstColorType) {
case CodecSrc::kGetFromCanvas_DstColorType:
break;
case CodecSrc::kIndex8_Always_DstColorType:
colorType = kIndex_8_SkColorType;
break;
case CodecSrc::kGrayscale_Always_DstColorType:
colorType = kGray_8_SkColorType;
break;
}
SkAutoTDelete<SkBitmapRegionDecoder> brd(create_brd(fPath, fStrategy));
if (nullptr == brd.get()) {
return Error::Nonfatal(SkStringPrintf("Could not create brd for %s.", fPath.c_str()));
}
if (!brd->conversionSupported(colorType)) {
return Error::Nonfatal("Cannot convert to color type.");
}
const uint32_t width = brd->width();
const uint32_t height = brd->height();
// Visually inspecting very small output images is not necessary.
if ((width / fSampleSize <= 10 || height / fSampleSize <= 10) && 1 != fSampleSize) {
return Error::Nonfatal("Scaling very small images is uninteresting.");
}
switch (fMode) {
case kFullImage_Mode: {
SkBitmap bitmap;
if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(0, 0, width, height),
fSampleSize, colorType, false)) {
return "Cannot decode (full) region.";
}
if (colorType != bitmap.colorType()) {
return Error::Nonfatal("Cannot convert to color type.");
}
canvas->drawBitmap(bitmap, 0, 0);
return "";
}
case kDivisor_Mode: {
const uint32_t divisor = 2;
if (width < divisor || height < divisor) {
return Error::Nonfatal("Divisor is larger than image dimension.");
}
// Use a border to test subsets that extend outside the image.
// We will not allow the border to be larger than the image dimensions. Allowing
// these large borders causes off by one errors that indicate a problem with the
// test suite, not a problem with the implementation.
const uint32_t maxBorder = SkTMin(width, height) / (fSampleSize * divisor);
const uint32_t scaledBorder = SkTMin(5u, maxBorder);
const uint32_t unscaledBorder = scaledBorder * fSampleSize;
// We may need to clear the canvas to avoid uninitialized memory.
// Assume we are scaling a 780x780 image with sampleSize = 8.
// The output image should be 97x97.
// Each subset will be 390x390.
// Each scaled subset be 48x48.
// Four scaled subsets will only fill a 96x96 image.
// The bottom row and last column will not be touched.
// This is an unfortunate result of our rounding rules when scaling.
// Maybe we need to consider testing scaled subsets without trying to
// combine them to match the full scaled image? Or maybe this is the
// best we can do?
canvas->clear(0);
for (uint32_t x = 0; x < divisor; x++) {
for (uint32_t y = 0; y < divisor; y++) {
// Calculate the subset dimensions
uint32_t subsetWidth = width / divisor;
uint32_t subsetHeight = height / divisor;
const int left = x * subsetWidth;
const int top = y * subsetHeight;
// Increase the size of the last subset in each row or column, when the
// divisor does not divide evenly into the image dimensions
subsetWidth += (x + 1 == divisor) ? (width % divisor) : 0;
subsetHeight += (y + 1 == divisor) ? (height % divisor) : 0;
// Increase the size of the subset in order to have a border on each side
const int decodeLeft = left - unscaledBorder;
const int decodeTop = top - unscaledBorder;
const uint32_t decodeWidth = subsetWidth + unscaledBorder * 2;
const uint32_t decodeHeight = subsetHeight + unscaledBorder * 2;
SkBitmap bitmap;
if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(decodeLeft,
decodeTop, decodeWidth, decodeHeight), fSampleSize, colorType, false)) {
return "Cannot decode region.";
}
if (colorType != bitmap.colorType()) {
return Error::Nonfatal("Cannot convert to color type.");
}
canvas->drawBitmapRect(bitmap,
SkRect::MakeXYWH((SkScalar) scaledBorder, (SkScalar) scaledBorder,
(SkScalar) (subsetWidth / fSampleSize),
(SkScalar) (subsetHeight / fSampleSize)),
SkRect::MakeXYWH((SkScalar) (left / fSampleSize),
(SkScalar) (top / fSampleSize),
(SkScalar) (subsetWidth / fSampleSize),
(SkScalar) (subsetHeight / fSampleSize)),
nullptr);
}
}
return "";
}
default:
SkASSERT(false);
return "Error: Should not be reached.";
}
}
SkISize BRDSrc::size() const {
SkAutoTDelete<SkBitmapRegionDecoder> brd(create_brd(fPath, fStrategy));
if (brd) {
return SkISize::Make(SkTMax(1, brd->width() / (int) fSampleSize),
SkTMax(1, brd->height() / (int) fSampleSize));
}
return SkISize::Make(0, 0);
}
static SkString get_scaled_name(const Path& path, float scale) {
return SkStringPrintf("%s_%.3f", SkOSPath::Basename(path.c_str()).c_str(), scale);
}
Name BRDSrc::name() const {
// We will replicate the names used by CodecSrc so that images can
// be compared in Gold.
if (1 == fSampleSize) {
return SkOSPath::Basename(fPath.c_str());
}
return get_scaled_name(fPath, 1.0f / (float) fSampleSize);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
CodecSrc::CodecSrc(Path path, Mode mode, DstColorType dstColorType, float scale)
: fPath(path)
, fMode(mode)
, fDstColorType(dstColorType)
, fScale(scale)
{}
bool CodecSrc::veto(SinkFlags flags) const {
// No need to test decoding to non-raster or indirect backend.
// TODO: Once we implement GPU paths (e.g. JPEG YUV), we should use a deferred decode to
// let the GPU handle it.
return flags.type != SinkFlags::kRaster
|| flags.approach != SinkFlags::kDirect;
}
bool get_decode_info(SkImageInfo* decodeInfo, const SkImageInfo& defaultInfo,
SkColorType canvasColorType, CodecSrc::DstColorType dstColorType) {
switch (dstColorType) {
case CodecSrc::kIndex8_Always_DstColorType:
if (kRGB_565_SkColorType == canvasColorType) {
return false;
}
*decodeInfo = defaultInfo.makeColorType(kIndex_8_SkColorType);
break;
case CodecSrc::kGrayscale_Always_DstColorType:
if (kRGB_565_SkColorType == canvasColorType) {
return false;
}
*decodeInfo = defaultInfo.makeColorType(kGray_8_SkColorType);
break;
default:
*decodeInfo = defaultInfo.makeColorType(canvasColorType);
break;
}
// FIXME: Currently we cannot draw unpremultiplied sources.
if (decodeInfo->alphaType() == kUnpremul_SkAlphaType) {
*decodeInfo = decodeInfo->makeAlphaType(kPremul_SkAlphaType);
}
return true;
}
Error CodecSrc::draw(SkCanvas* canvas) const {
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
if (!encoded) {
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
}
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded));
if (nullptr == codec.get()) {
return SkStringPrintf("Couldn't create codec for %s.", fPath.c_str());
}
SkImageInfo decodeInfo;
if (!get_decode_info(&decodeInfo, codec->getInfo(), canvas->imageInfo().colorType(),
fDstColorType)) {
return Error::Nonfatal("Testing non-565 to 565 is uninteresting.");
}
// Try to scale the image if it is desired
SkISize size = codec->getScaledDimensions(fScale);
if (size == decodeInfo.dimensions() && 1.0f != fScale) {
return Error::Nonfatal("Test without scaling is uninteresting.");
}
// Visually inspecting very small output images is not necessary. We will
// cover these cases in unit testing.
if ((size.width() <= 10 || size.height() <= 10) && 1.0f != fScale) {
return Error::Nonfatal("Scaling very small images is uninteresting.");
}
decodeInfo = decodeInfo.makeWH(size.width(), size.height());
// Construct a color table for the decode if necessary
SkAutoTUnref<SkColorTable> colorTable(nullptr);
SkPMColor* colorPtr = nullptr;
int* colorCountPtr = nullptr;
int maxColors = 256;
if (kIndex_8_SkColorType == decodeInfo.colorType()) {
SkPMColor colors[256];
colorTable.reset(new SkColorTable(colors, maxColors));
colorPtr = const_cast<SkPMColor*>(colorTable->readColors());
colorCountPtr = &maxColors;
}
SkBitmap bitmap;
if (!bitmap.tryAllocPixels(decodeInfo, nullptr, colorTable.get())) {
return SkStringPrintf("Image(%s) is too large (%d x %d)", fPath.c_str(),
decodeInfo.width(), decodeInfo.height());
}
switch (fMode) {
case kCodec_Mode: {
switch (codec->getPixels(decodeInfo, bitmap.getPixels(), bitmap.rowBytes(), nullptr,
colorPtr, colorCountPtr)) {
case SkCodec::kSuccess:
// We consider incomplete to be valid, since we should still decode what is
// available.
case SkCodec::kIncompleteInput:
break;
case SkCodec::kInvalidConversion:
return Error::Nonfatal("Incompatible colortype conversion");
default:
// Everything else is considered a failure.
return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str());
}
canvas->drawBitmap(bitmap, 0, 0);
break;
}
case kScanline_Mode: {
if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, NULL, colorPtr,
colorCountPtr)) {
return Error::Nonfatal("Could not start scanline decoder");
}
void* dst = bitmap.getAddr(0, 0);
size_t rowBytes = bitmap.rowBytes();
uint32_t height = decodeInfo.height();
switch (codec->getScanlineOrder()) {
case SkCodec::kTopDown_SkScanlineOrder:
case SkCodec::kBottomUp_SkScanlineOrder:
case SkCodec::kNone_SkScanlineOrder:
// We do not need to check the return value. On an incomplete
// image, memory will be filled with a default value.
codec->getScanlines(dst, height, rowBytes);
break;
case SkCodec::kOutOfOrder_SkScanlineOrder: {
for (int y = 0; y < decodeInfo.height(); y++) {
int dstY = codec->outputScanline(y);
void* dstPtr = bitmap.getAddr(0, dstY);
// We complete the loop, even if this call begins to fail
// due to an incomplete image. This ensures any uninitialized
// memory will be filled with the proper value.
codec->getScanlines(dstPtr, 1, bitmap.rowBytes());
}
break;
}
}
canvas->drawBitmap(bitmap, 0, 0);
break;
}
case kStripe_Mode: {
const int height = decodeInfo.height();
// This value is chosen arbitrarily. We exercise more cases by choosing a value that
// does not align with image blocks.
const int stripeHeight = 37;
const int numStripes = (height + stripeHeight - 1) / stripeHeight;
// Decode odd stripes
if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, NULL, colorPtr,
colorCountPtr)
|| SkCodec::kTopDown_SkScanlineOrder != codec->getScanlineOrder()) {
// This mode was designed to test the new skip scanlines API in libjpeg-turbo.
// Jpegs have kTopDown_SkScanlineOrder, and at this time, it is not interesting
// to run this test for image types that do not have this scanline ordering.
return Error::Nonfatal("Could not start top-down scanline decoder");
}
for (int i = 0; i < numStripes; i += 2) {
// Skip a stripe
const int linesToSkip = SkTMin(stripeHeight, height - i * stripeHeight);
codec->skipScanlines(linesToSkip);
// Read a stripe
const int startY = (i + 1) * stripeHeight;
const int linesToRead = SkTMin(stripeHeight, height - startY);
if (linesToRead > 0) {
codec->getScanlines(bitmap.getAddr(0, startY), linesToRead, bitmap.rowBytes());
}
}
// Decode even stripes
const SkCodec::Result startResult = codec->startScanlineDecode(decodeInfo, nullptr,
colorPtr, colorCountPtr);
if (SkCodec::kSuccess != startResult) {
return "Failed to restart scanline decoder with same parameters.";
}
for (int i = 0; i < numStripes; i += 2) {
// Read a stripe
const int startY = i * stripeHeight;
const int linesToRead = SkTMin(stripeHeight, height - startY);
codec->getScanlines(bitmap.getAddr(0, startY), linesToRead, bitmap.rowBytes());
// Skip a stripe
const int linesToSkip = SkTMin(stripeHeight, height - (i + 1) * stripeHeight);
if (linesToSkip > 0) {
codec->skipScanlines(linesToSkip);
}
}
canvas->drawBitmap(bitmap, 0, 0);
break;
}
case kSubset_Mode: {
// Arbitrarily choose a divisor.
int divisor = 2;
// Total width/height of the image.
const int W = codec->getInfo().width();
const int H = codec->getInfo().height();
if (divisor > W || divisor > H) {
return Error::Nonfatal(SkStringPrintf("Cannot codec subset: divisor %d is too big "
"for %s with dimensions (%d x %d)", divisor,
fPath.c_str(), W, H));
}
// subset dimensions
// SkWebpCodec, the only one that supports subsets, requires even top/left boundaries.
const int w = SkAlign2(W / divisor);
const int h = SkAlign2(H / divisor);
SkIRect subset;
SkCodec::Options opts;
opts.fSubset = &subset;
SkBitmap subsetBm;
// We will reuse pixel memory from bitmap.
void* pixels = bitmap.getPixels();
// Keep track of left and top (for drawing subsetBm into canvas). We could use
// fScale * x and fScale * y, but we want integers such that the next subset will start
// where the last one ended. So we'll add decodeInfo.width() and height().
int left = 0;
for (int x = 0; x < W; x += w) {
int top = 0;
for (int y = 0; y < H; y+= h) {
// Do not make the subset go off the edge of the image.
const int preScaleW = SkTMin(w, W - x);
const int preScaleH = SkTMin(h, H - y);
subset.setXYWH(x, y, preScaleW, preScaleH);
// And scale
// FIXME: Should we have a version of getScaledDimensions that takes a subset
// into account?
decodeInfo = decodeInfo.makeWH(
SkTMax(1, SkScalarRoundToInt(preScaleW * fScale)),
SkTMax(1, SkScalarRoundToInt(preScaleH * fScale)));
size_t rowBytes = decodeInfo.minRowBytes();
if (!subsetBm.installPixels(decodeInfo, pixels, rowBytes, colorTable.get(),
nullptr, nullptr)) {
return SkStringPrintf("could not install pixels for %s.", fPath.c_str());
}
const SkCodec::Result result = codec->getPixels(decodeInfo, pixels, rowBytes,
&opts, colorPtr, colorCountPtr);
switch (result) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput:
break;
case SkCodec::kInvalidConversion:
if (0 == (x|y)) {
// First subset is okay to return unimplemented.
return Error::Nonfatal("Incompatible colortype conversion");
}
// If the first subset succeeded, a later one should not fail.
// fall through to failure
case SkCodec::kUnimplemented:
if (0 == (x|y)) {
// First subset is okay to return unimplemented.
return Error::Nonfatal("subset codec not supported");
}
// If the first subset succeeded, why would a later one fail?
// fall through to failure
default:
return SkStringPrintf("subset codec failed to decode (%d, %d, %d, %d) "
"from %s with dimensions (%d x %d)\t error %d",
x, y, decodeInfo.width(), decodeInfo.height(),
fPath.c_str(), W, H, result);
}
canvas->drawBitmap(subsetBm, SkIntToScalar(left), SkIntToScalar(top));
// translate by the scaled height.
top += decodeInfo.height();
}
// translate by the scaled width.
left += decodeInfo.width();
}
return "";
}
}
return "";
}
SkISize CodecSrc::size() const {
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded));
if (nullptr == codec) {
return SkISize::Make(0, 0);
}
return codec->getScaledDimensions(fScale);
}
Name CodecSrc::name() const {
if (1.0f == fScale) {
return SkOSPath::Basename(fPath.c_str());
}
return get_scaled_name(fPath, fScale);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
AndroidCodecSrc::AndroidCodecSrc(Path path, Mode mode, CodecSrc::DstColorType dstColorType,
int sampleSize)
: fPath(path)
, fMode(mode)
, fDstColorType(dstColorType)
, fSampleSize(sampleSize)
{}
bool AndroidCodecSrc::veto(SinkFlags flags) const {
// No need to test decoding to non-raster or indirect backend.
// TODO: Once we implement GPU paths (e.g. JPEG YUV), we should use a deferred decode to
// let the GPU handle it.
return flags.type != SinkFlags::kRaster
|| flags.approach != SinkFlags::kDirect;
}
Error AndroidCodecSrc::draw(SkCanvas* canvas) const {
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
if (!encoded) {
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
}
SkAutoTDelete<SkAndroidCodec> codec(SkAndroidCodec::NewFromData(encoded));
if (nullptr == codec.get()) {
return SkStringPrintf("Couldn't create android codec for %s.", fPath.c_str());
}
SkImageInfo decodeInfo;
if (!get_decode_info(&decodeInfo, codec->getInfo(), canvas->imageInfo().colorType(),
fDstColorType)) {
return Error::Nonfatal("Testing non-565 to 565 is uninteresting.");
}
// Scale the image if it is desired.
SkISize size = codec->getSampledDimensions(fSampleSize);
// Visually inspecting very small output images is not necessary. We will
// cover these cases in unit testing.
if ((size.width() <= 10 || size.height() <= 10) && 1 != fSampleSize) {
return Error::Nonfatal("Scaling very small images is uninteresting.");
}
decodeInfo = decodeInfo.makeWH(size.width(), size.height());
// Construct a color table for the decode if necessary
SkAutoTUnref<SkColorTable> colorTable(nullptr);
SkPMColor* colorPtr = nullptr;
int* colorCountPtr = nullptr;
int maxColors = 256;
if (kIndex_8_SkColorType == decodeInfo.colorType()) {
SkPMColor colors[256];
colorTable.reset(new SkColorTable(colors, maxColors));
colorPtr = const_cast<SkPMColor*>(colorTable->readColors());
colorCountPtr = &maxColors;
}
SkBitmap bitmap;
if (!bitmap.tryAllocPixels(decodeInfo, nullptr, colorTable.get())) {
return SkStringPrintf("Image(%s) is too large (%d x %d)", fPath.c_str(),
decodeInfo.width(), decodeInfo.height());
}
// Create options for the codec.
SkAndroidCodec::AndroidOptions options;
options.fColorPtr = colorPtr;
options.fColorCount = colorCountPtr;
options.fSampleSize = fSampleSize;
switch (fMode) {
case kFullImage_Mode: {
switch (codec->getAndroidPixels(decodeInfo, bitmap.getPixels(), bitmap.rowBytes(),
&options)) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput:
break;
case SkCodec::kInvalidConversion:
return Error::Nonfatal("Cannot convert to requested color type.");
default:
return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str());
}
canvas->drawBitmap(bitmap, 0, 0);
return "";
}
case kDivisor_Mode: {
const int width = codec->getInfo().width();
const int height = codec->getInfo().height();
const int divisor = 2;
if (width < divisor || height < divisor) {
return Error::Nonfatal("Divisor is larger than image dimension.");
}
// Keep track of the final decoded dimensions.
int finalScaledWidth = 0;
int finalScaledHeight = 0;
for (int x = 0; x < divisor; x++) {
for (int y = 0; y < divisor; y++) {
// Calculate the subset dimensions
int subsetWidth = width / divisor;
int subsetHeight = height / divisor;
const int left = x * subsetWidth;
const int top = y * subsetHeight;
// Increase the size of the last subset in each row or column, when the
// divisor does not divide evenly into the image dimensions
subsetWidth += (x + 1 == divisor) ? (width % divisor) : 0;
subsetHeight += (y + 1 == divisor) ? (height % divisor) : 0;
SkIRect subset = SkIRect::MakeXYWH(left, top, subsetWidth, subsetHeight);
if (!codec->getSupportedSubset(&subset)) {
return "Could not get supported subset to decode.";
}
options.fSubset = &subset;
const int scaledWidthOffset = subset.left() / fSampleSize;
const int scaledHeightOffset = subset.top() / fSampleSize;
void* pixels = bitmap.getAddr(scaledWidthOffset, scaledHeightOffset);
SkISize scaledSubsetSize = codec->getSampledSubsetDimensions(fSampleSize,
subset);
SkImageInfo subsetDecodeInfo = decodeInfo.makeWH(scaledSubsetSize.width(),
scaledSubsetSize.height());
if (x + 1 == divisor && y + 1 == divisor) {
finalScaledWidth = scaledWidthOffset + scaledSubsetSize.width();
finalScaledHeight = scaledHeightOffset + scaledSubsetSize.height();
}
switch (codec->getAndroidPixels(subsetDecodeInfo, pixels, bitmap.rowBytes(),
&options)) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput:
break;
case SkCodec::kInvalidConversion:
return Error::Nonfatal("Cannot convert to requested color type.");
default:
return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str());
}
}
}
SkRect rect = SkRect::MakeXYWH(0, 0, (SkScalar) finalScaledWidth,
(SkScalar) finalScaledHeight);
canvas->drawBitmapRect(bitmap, rect, rect, nullptr);
return "";
}
default:
SkASSERT(false);
return "Error: Should not be reached.";
}
}
SkISize AndroidCodecSrc::size() const {
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
SkAutoTDelete<SkAndroidCodec> codec(SkAndroidCodec::NewFromData(encoded));
if (nullptr == codec) {
return SkISize::Make(0, 0);
}
return codec->getSampledDimensions(fSampleSize);
}
Name AndroidCodecSrc::name() const {
// We will replicate the names used by CodecSrc so that images can
// be compared in Gold.
if (1 == fSampleSize) {
return SkOSPath::Basename(fPath.c_str());
}
return get_scaled_name(fPath, 1.0f / (float) fSampleSize);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
ImageSrc::ImageSrc(Path path) : fPath(path) {}
bool ImageSrc::veto(SinkFlags flags) const {
// No need to test decoding to non-raster or indirect backend.
// TODO: Instead, use lazy decoding to allow the GPU to handle cases like YUV.
return flags.type != SinkFlags::kRaster
|| flags.approach != SinkFlags::kDirect;
}
Error ImageSrc::draw(SkCanvas* canvas) const {
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
if (!encoded) {
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
}
const SkColorType dstColorType = canvas->imageInfo().colorType();
// Decode the full image.
SkBitmap bitmap;
if (!SkImageDecoder::DecodeMemory(encoded->data(), encoded->size(), &bitmap,
dstColorType, SkImageDecoder::kDecodePixels_Mode)) {
return SkStringPrintf("Couldn't decode %s.", fPath.c_str());
}
if (kRGB_565_SkColorType == dstColorType && !bitmap.isOpaque()) {
// Do not draw a bitmap with alpha to a destination without alpha.
return Error::Nonfatal("Uninteresting to decode image with alpha into 565.");
}
encoded.reset((SkData*)nullptr); // Might as well drop this when we're done with it.
canvas->drawBitmap(bitmap, 0,0);
return "";
}
SkISize ImageSrc::size() const {
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
SkBitmap bitmap;
if (!encoded || !SkImageDecoder::DecodeMemory(encoded->data(),
encoded->size(),
&bitmap,
kUnknown_SkColorType,
SkImageDecoder::kDecodeBounds_Mode)) {
return SkISize::Make(0,0);
}
return bitmap.dimensions();
}
Name ImageSrc::name() const {
return SkOSPath::Basename(fPath.c_str());
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
static const SkRect kSKPViewport = {0,0, 1000,1000};
SKPSrc::SKPSrc(Path path) : fPath(path) {}
Error SKPSrc::draw(SkCanvas* canvas) const {
SkAutoTDelete<SkStream> stream(SkStream::NewFromFile(fPath.c_str()));
if (!stream) {
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
}
SkAutoTUnref<SkPicture> pic(SkPicture::CreateFromStream(stream, &lazy_decode_bitmap));
if (!pic) {
return SkStringPrintf("Couldn't decode %s as a picture.", fPath.c_str());
}
stream.reset((SkStream*)nullptr); // Might as well drop this when we're done with it.
canvas->clipRect(kSKPViewport);
canvas->drawPicture(pic);
return "";
}
SkISize SKPSrc::size() const {
SkAutoTDelete<SkStream> stream(SkStream::NewFromFile(fPath.c_str()));
if (!stream) {
return SkISize::Make(0,0);
}
SkPictInfo info;
if (!SkPicture::InternalOnly_StreamIsSKP(stream, &info)) {
return SkISize::Make(0,0);
}
SkRect viewport = kSKPViewport;
if (!viewport.intersect(info.fCullRect)) {
return SkISize::Make(0,0);
}
return viewport.roundOut().size();
}
Name SKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); }
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
Error NullSink::draw(const Src& src, SkBitmap*, SkWStream*, SkString*) const {
SkAutoTDelete<SkCanvas> canvas(SkCreateNullCanvas());
return src.draw(canvas);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
DEFINE_bool(gpuStats, false, "Append GPU stats to the log for each GPU task?");
GPUSink::GPUSink(GrContextFactory::GLContextType ct,
GrContextFactory::GLContextOptions options,
GrGLStandard gpuAPI,
int samples,
bool diText,
bool threaded)
: fContextType(ct)
, fContextOptions(options)
, fGpuAPI(gpuAPI)
, fSampleCount(samples)
, fUseDIText(diText)
, fThreaded(threaded) {}
int GPUSink::enclave() const {
return fThreaded ? kAnyThread_Enclave : kGPU_Enclave;
}
void PreAbandonGpuContextErrorHandler(SkError, void*) {}
DEFINE_bool(imm, false, "Run gpu configs in immediate mode.");
DEFINE_bool(batchClip, false, "Clip each GrBatch to its device bounds for testing.");
DEFINE_bool(batchBounds, false, "Draw a wireframe bounds of each GrBatch.");
DEFINE_int32(batchLookback, -1, "Maximum GrBatch lookback for combining, negative means default.");
Error GPUSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log) const {
GrContextOptions grOptions;
grOptions.fImmediateMode = FLAGS_imm;
grOptions.fClipBatchToBounds = FLAGS_batchClip;
grOptions.fDrawBatchBounds = FLAGS_batchBounds;
grOptions.fMaxBatchLookback = FLAGS_batchLookback;
src.modifyGrContextOptions(&grOptions);
GrContextFactory factory(grOptions);
const SkISize size = src.size();
const SkImageInfo info =
SkImageInfo::Make(size.width(), size.height(), kN32_SkColorType, kPremul_SkAlphaType);
SkAutoTUnref<SkSurface> surface(
NewGpuSurface(&factory, fContextType, fContextOptions, fGpuAPI, info, fSampleCount,
fUseDIText));
if (!surface) {
return "Could not create a surface.";
}
if (FLAGS_preAbandonGpuContext) {
SkSetErrorCallback(&PreAbandonGpuContextErrorHandler, nullptr);
factory.abandonContexts();
}
SkCanvas* canvas = surface->getCanvas();
Error err = src.draw(canvas);
if (!err.isEmpty()) {
return err;
}
canvas->flush();
if (FLAGS_gpuStats) {
canvas->getGrContext()->dumpCacheStats(log);
canvas->getGrContext()->dumpGpuStats(log);
}
dst->allocPixels(info);
canvas->readPixels(dst, 0, 0);
if (FLAGS_abandonGpuContext) {
factory.abandonContexts();
}
return "";
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
static Error draw_skdocument(const Src& src, SkDocument* doc, SkWStream* dst) {
// Print the given DM:Src to a document, breaking on 8.5x11 pages.
SkASSERT(doc);
int width = src.size().width(),
height = src.size().height();
if (FLAGS_multiPage) {
const int kLetterWidth = 612, // 8.5 * 72
kLetterHeight = 792; // 11 * 72
const SkRect letter = SkRect::MakeWH(SkIntToScalar(kLetterWidth),
SkIntToScalar(kLetterHeight));
int xPages = ((width - 1) / kLetterWidth) + 1;
int yPages = ((height - 1) / kLetterHeight) + 1;
for (int y = 0; y < yPages; ++y) {
for (int x = 0; x < xPages; ++x) {
int w = SkTMin(kLetterWidth, width - (x * kLetterWidth));
int h = SkTMin(kLetterHeight, height - (y * kLetterHeight));
SkCanvas* canvas =
doc->beginPage(SkIntToScalar(w), SkIntToScalar(h));
if (!canvas) {
return "SkDocument::beginPage(w,h) returned nullptr";
}
canvas->clipRect(letter);
canvas->translate(-letter.width() * x, -letter.height() * y);
Error err = src.draw(canvas);
if (!err.isEmpty()) {
return err;
}
doc->endPage();
}
}
} else {
SkCanvas* canvas =
doc->beginPage(SkIntToScalar(width), SkIntToScalar(height));
if (!canvas) {
return "SkDocument::beginPage(w,h) returned nullptr";
}
Error err = src.draw(canvas);
if (!err.isEmpty()) {
return err;
}
doc->endPage();
}
if (!doc->close()) {
return "SkDocument::close() returned false";
}
dst->flush();
return "";
}
PDFSink::PDFSink(const char* rasterizer) : fRasterizer(rasterizer) {}
Error PDFSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
SkAutoTUnref<SkDocument> doc(SkDocument::CreatePDF(dst));
if (!doc) {
return "SkDocument::CreatePDF() returned nullptr";
}
SkTArray<SkDocument::Attribute> info;
info.emplace_back(SkString("Title"), src.name());
info.emplace_back(SkString("Subject"),
SkString("rendering correctness test"));
info.emplace_back(SkString("Creator"), SkString("Skia/DM"));
info.emplace_back(SkString("Keywords"),
SkStringPrintf("Rasterizer:%s;", fRasterizer));
doc->setMetadata(info, nullptr, nullptr);
return draw_skdocument(src, doc.get(), dst);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
XPSSink::XPSSink() {}
Error XPSSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
SkAutoTUnref<SkDocument> doc(SkDocument::CreateXPS(dst));
if (!doc) {
return "SkDocument::CreateXPS() returned nullptr";
}
return draw_skdocument(src, doc.get(), dst);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
SKPSink::SKPSink() {}
Error SKPSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
SkSize size;
size = src.size();
SkPictureRecorder recorder;
Error err = src.draw(recorder.beginRecording(size.width(), size.height()));
if (!err.isEmpty()) {
return err;
}
SkAutoTUnref<SkPicture> pic(recorder.endRecording());
pic->serialize(dst);
return "";
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
SVGSink::SVGSink() {}
Error SVGSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
SkAutoTDelete<SkXMLWriter> xmlWriter(new SkXMLStreamWriter(dst));
SkAutoTUnref<SkCanvas> canvas(SkSVGCanvas::Create(
SkRect::MakeWH(SkIntToScalar(src.size().width()), SkIntToScalar(src.size().height())),
xmlWriter));
return src.draw(canvas);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
RasterSink::RasterSink(SkColorType colorType) : fColorType(colorType) {}
Error RasterSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString*) const {
const SkISize size = src.size();
// If there's an appropriate alpha type for this color type, use it, otherwise use premul.
SkAlphaType alphaType = kPremul_SkAlphaType;
(void)SkColorTypeValidateAlphaType(fColorType, alphaType, &alphaType);
dst->allocPixels(SkImageInfo::Make(size.width(), size.height(), fColorType, alphaType));
dst->eraseColor(SK_ColorTRANSPARENT);
SkCanvas canvas(*dst);
return src.draw(&canvas);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
// Handy for front-patching a Src. Do whatever up-front work you need, then call draw_to_canvas(),
// passing the Sink draw() arguments, a size, and a function draws into an SkCanvas.
// Several examples below.
static Error draw_to_canvas(Sink* sink, SkBitmap* bitmap, SkWStream* stream, SkString* log,
SkISize size, std::function<Error(SkCanvas*)> draw) {
class ProxySrc : public Src {
public:
ProxySrc(SkISize size, std::function<Error(SkCanvas*)> draw) : fSize(size), fDraw(draw) {}
Error draw(SkCanvas* canvas) const override { return fDraw(canvas); }
Name name() const override { sk_throw(); return ""; } // Won't be called.
SkISize size() const override { return fSize; }
private:
SkISize fSize;
std::function<Error(SkCanvas*)> fDraw;
};
return sink->draw(ProxySrc(size, draw), bitmap, stream, log);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
static SkISize auto_compute_translate(SkMatrix* matrix, int srcW, int srcH) {
SkRect bounds = SkRect::MakeIWH(srcW, srcH);
matrix->mapRect(&bounds);
matrix->postTranslate(-bounds.x(), -bounds.y());
return SkISize::Make(SkScalarRoundToInt(bounds.width()), SkScalarRoundToInt(bounds.height()));
}
ViaMatrix::ViaMatrix(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {}
Error ViaMatrix::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
SkMatrix matrix = fMatrix;
SkISize size = auto_compute_translate(&matrix, src.size().width(), src.size().height());
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) {
canvas->concat(matrix);
return src.draw(canvas);
});
}
// Undoes any flip or 90 degree rotate without changing the scale of the bitmap.
// This should be pixel-preserving.
ViaUpright::ViaUpright(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {}
Error ViaUpright::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
Error err = fSink->draw(src, bitmap, stream, log);
if (!err.isEmpty()) {
return err;
}
SkMatrix inverse;
if (!fMatrix.rectStaysRect() || !fMatrix.invert(&inverse)) {
return "Cannot upright --matrix.";
}
SkMatrix upright = SkMatrix::I();
upright.setScaleX(SkScalarSignAsScalar(inverse.getScaleX()));
upright.setScaleY(SkScalarSignAsScalar(inverse.getScaleY()));
upright.setSkewX(SkScalarSignAsScalar(inverse.getSkewX()));
upright.setSkewY(SkScalarSignAsScalar(inverse.getSkewY()));
SkBitmap uprighted;
SkISize size = auto_compute_translate(&upright, bitmap->width(), bitmap->height());
uprighted.allocPixels(bitmap->info().makeWH(size.width(), size.height()));
SkCanvas canvas(uprighted);
canvas.concat(upright);
SkPaint paint;
paint.setXfermodeMode(SkXfermode::kSrc_Mode);
canvas.drawBitmap(*bitmap, 0, 0, &paint);
*bitmap = uprighted;
bitmap->lockPixels();
return "";
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
Error ViaPipe::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
auto size = src.size();
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) {
PipeController controller(canvas, &SkImageDecoder::DecodeMemory);
SkGPipeWriter pipe;
const uint32_t kFlags = 0;
return src.draw(pipe.startRecording(&controller, kFlags, size.width(), size.height()));
});
}
Error ViaRemote::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* target) {
SkAutoTDelete<SkRemote::Encoder> decoder(SkRemote::NewDecoder(target));
SkAutoTDelete<SkRemote::Encoder> cache(fCache ? SkRemote::NewCachingEncoder(decoder)
: nullptr);
SkAutoTDelete<SkCanvas> canvas(SkRemote::NewCanvas(cache ? cache : decoder));
return src.draw(canvas);
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
Error ViaSerialization::draw(
const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
// Record our Src into a picture.
auto size = src.size();
SkPictureRecorder recorder;
Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
SkIntToScalar(size.height())));
if (!err.isEmpty()) {
return err;
}
SkAutoTUnref<SkPicture> pic(recorder.endRecording());
// Serialize it and then deserialize it.
SkDynamicMemoryWStream wStream;
pic->serialize(&wStream);
SkAutoTDelete<SkStream> rStream(wStream.detachAsStream());
SkAutoTUnref<SkPicture> deserialized(SkPicture::CreateFromStream(rStream, &lazy_decode_bitmap));
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) {
canvas->drawPicture(deserialized);
return "";
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
ViaTiles::ViaTiles(int w, int h, SkBBHFactory* factory, Sink* sink)
: Via(sink)
, fW(w)
, fH(h)
, fFactory(factory) {}
Error ViaTiles::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
auto size = src.size();
SkPictureRecorder recorder;
Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
SkIntToScalar(size.height()),
fFactory.get()));
if (!err.isEmpty()) {
return err;
}
SkAutoTUnref<SkPicture> pic(recorder.endRecordingAsPicture());
return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) {
const int xTiles = (size.width() + fW - 1) / fW,
yTiles = (size.height() + fH - 1) / fH;
SkMultiPictureDraw mpd(xTiles*yTiles);
SkTDArray<SkSurface*> surfaces;
surfaces.setReserve(xTiles*yTiles);
SkImageInfo info = canvas->imageInfo().makeWH(fW, fH);
for (int j = 0; j < yTiles; j++) {
for (int i = 0; i < xTiles; i++) {
// This lets our ultimate Sink determine the best kind of surface.
// E.g., if it's a GpuSink, the surfaces and images are textures.
SkSurface* s = canvas->newSurface(info);
if (!s) {
s = SkSurface::NewRaster(info); // Some canvases can't create surfaces.
}
surfaces.push(s);
SkCanvas* c = s->getCanvas();
c->translate(SkIntToScalar(-i * fW),
SkIntToScalar(-j * fH)); // Line up the canvas with this tile.
mpd.add(c, pic);
}
}
mpd.draw();
for (int j = 0; j < yTiles; j++) {
for (int i = 0; i < xTiles; i++) {
SkAutoTUnref<SkImage> image(surfaces[i+xTiles*j]->newImageSnapshot());
canvas->drawImage(image, SkIntToScalar(i*fW), SkIntToScalar(j*fH));
}
}
surfaces.unrefAll();
return "";
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
// Draw the Src into two pictures, then draw the second picture into the wrapped Sink.
// This tests that any shortcuts we may take while recording that second picture are legal.
Error ViaSecondPicture::draw(
const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
auto size = src.size();
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
SkPictureRecorder recorder;
SkAutoTUnref<SkPicture> pic;
for (int i = 0; i < 2; i++) {
Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
SkIntToScalar(size.height())));
if (!err.isEmpty()) {
return err;
}
pic.reset(recorder.endRecordingAsPicture());
}
canvas->drawPicture(pic);
return "";
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
// Draw the Src twice. This can help exercise caching.
Error ViaTwice::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) -> Error {
for (int i = 0; i < 2; i++) {
SkAutoCanvasRestore acr(canvas, true/*save now*/);
canvas->clear(SK_ColorTRANSPARENT);
Error err = src.draw(canvas);
if (err.isEmpty()) {
return err;
}
}
return "";
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
// This is like SkRecords::Draw, in that it plays back SkRecords ops into a Canvas.
// Unlike SkRecords::Draw, it builds a single-op sub-picture out of each Draw-type op.
// This is an only-slightly-exaggerated simluation of Blink's Slimming Paint pictures.
struct DrawsAsSingletonPictures {
SkCanvas* fCanvas;
const SkDrawableList& fDrawables;
template <typename T>
void draw(const T& op, SkCanvas* canvas) {
// We must pass SkMatrix::I() as our initial matrix.
// By default SkRecords::Draw() uses the canvas' matrix as its initial matrix,
// which would have the funky effect of applying transforms over and over.
SkRecords::Draw d(canvas, nullptr, fDrawables.begin(), fDrawables.count(), &SkMatrix::I());
d(op);
}
// Draws get their own picture.
template <typename T>
SK_WHEN(T::kTags & SkRecords::kDraw_Tag, void) operator()(const T& op) {
SkPictureRecorder rec;
this->draw(op, rec.beginRecording(SkRect::MakeLargest()));
SkAutoTUnref<SkPicture> pic(rec.endRecordingAsPicture());
fCanvas->drawPicture(pic);
}
// We'll just issue non-draws directly.
template <typename T>
skstd::enable_if_t<!(T::kTags & SkRecords::kDraw_Tag), void> operator()(const T& op) {
this->draw(op, fCanvas);
}
};
// Record Src into a picture, then record it into a macro picture with a sub-picture for each draw.
// Then play back that macro picture into our wrapped sink.
Error ViaSingletonPictures::draw(
const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
auto size = src.size();
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
// Use low-level (Skia-private) recording APIs so we can read the SkRecord.
SkRecord skr;
SkRecorder recorder(&skr, size.width(), size.height());
Error err = src.draw(&recorder);
if (!err.isEmpty()) {
return err;
}
// Record our macro-picture, with each draw op as its own sub-picture.
SkPictureRecorder macroRec;
SkCanvas* macroCanvas = macroRec.beginRecording(SkIntToScalar(size.width()),
SkIntToScalar(size.height()));
SkAutoTDelete<SkDrawableList> drawables(recorder.detachDrawableList());
const SkDrawableList empty;
DrawsAsSingletonPictures drawsAsSingletonPictures = {
macroCanvas,
drawables ? *drawables : empty,
};
for (int i = 0; i < skr.count(); i++) {
skr.visit<void>(i, drawsAsSingletonPictures);
}
SkAutoTUnref<SkPicture> macroPic(macroRec.endRecordingAsPicture());
canvas->drawPicture(macroPic);
return "";
});
}
} // namespace DM