blob: ad56ab4e2d99ec385abbbad249a24bb4f36c8726 [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrProcessorAnalysis_DEFINED
#define GrProcessorAnalysis_DEFINED
#include "GrColor.h"
class GrDrawOp;
class GrFragmentProcessor;
class GrPrimitiveProcessor;
class GrProcessorAnalysisColor {
public:
enum class Opaque {
kNo,
kYes,
};
GrProcessorAnalysisColor(Opaque opaque = Opaque::kNo)
: fFlags(opaque == Opaque::kYes ? kIsOpaque_Flag : 0) {}
GrProcessorAnalysisColor(GrColor color) { this->setToConstant(color); }
void setToConstant(GrColor color) {
fColor = color;
if (GrColorIsOpaque(color)) {
fFlags = kColorIsKnown_Flag | kIsOpaque_Flag;
} else {
fFlags = kColorIsKnown_Flag;
}
}
void setToUnknown() { fFlags = 0; }
void setToUnknownOpaque() { fFlags = kIsOpaque_Flag; }
bool isOpaque() const { return SkToBool(kIsOpaque_Flag & fFlags); }
bool isConstant(GrColor* color = nullptr) const {
if (kColorIsKnown_Flag & fFlags) {
if (color) {
*color = fColor;
}
return true;
}
return false;
}
bool operator==(const GrProcessorAnalysisColor& that) const {
if (fFlags != that.fFlags) {
return false;
}
return (kColorIsKnown_Flag & fFlags) ? fColor == that.fColor : true;
}
/** The returned value reflects the common properties of the two inputs. */
static GrProcessorAnalysisColor Combine(const GrProcessorAnalysisColor& a,
const GrProcessorAnalysisColor& b) {
GrProcessorAnalysisColor result;
uint32_t commonFlags = a.fFlags & b.fFlags;
if ((kColorIsKnown_Flag & commonFlags) && a.fColor == b.fColor) {
result.fColor = a.fColor;
result.fFlags = a.fFlags;
} else if (kIsOpaque_Flag & commonFlags) {
result.fFlags = kIsOpaque_Flag;
}
return result;
}
private:
enum Flags {
kColorIsKnown_Flag = 0x1,
kIsOpaque_Flag = 0x2,
};
uint32_t fFlags;
GrColor fColor;
};
enum class GrProcessorAnalysisCoverage { kNone, kSingleChannel, kLCD };
/**
* GrColorFragmentProcessorAnalysis gathers invariant data from a set of color fragment processor.
* It is used to recognize optimizations that can simplify the generated shader or make blending
* more effecient.
*/
class GrColorFragmentProcessorAnalysis {
public:
GrColorFragmentProcessorAnalysis() = default;
GrColorFragmentProcessorAnalysis(const GrProcessorAnalysisColor& input)
: GrColorFragmentProcessorAnalysis() {
fAllProcessorsCompatibleWithCoverageAsAlpha = true;
fIsOpaque = input.isOpaque();
GrColor color;
if (input.isConstant(&color)) {
fLastKnownOutputColor = GrColor4f::FromGrColor(color);
fProcessorsVisitedWithKnownOutput = 0;
}
}
void reset(const GrProcessorAnalysisColor& input) {
*this = GrColorFragmentProcessorAnalysis(input);
}
/**
* Runs through a series of processors and updates calculated values. This can be called
* repeatedly for cases when the sequence of processors is not in a contiguous array.
*/
void analyzeProcessors(const GrFragmentProcessor* const* processors, int cnt);
bool isOpaque() const { return fIsOpaque; }
/**
* Are all the fragment processors compatible with conflating coverage with color prior to the
* the first fragment processor. This result does not consider processors that should be
* eliminated as indicated by initialProcessorsToEliminate().
*/
bool allProcessorsCompatibleWithCoverageAsAlpha() const {
return fAllProcessorsCompatibleWithCoverageAsAlpha;
}
/**
* Do any of the fragment processors require local coords. This result does not consider
* processors that should be eliminated as indicated by initialProcessorsToEliminate().
*/
bool usesLocalCoords() const { return fUsesLocalCoords; }
/**
* If we detected that the result after the first N processors is a known color then we
* eliminate those N processors and replace the GrDrawOp's color input to the GrPipeline with
* the known output of the Nth processor, so that the Nth+1 fragment processor (or the XP if
* there are only N processors) sees its expected input. If this returns 0 then there are no
* processors to eliminate.
*/
int initialProcessorsToEliminate(GrColor* newPipelineInputColor) const {
if (fProcessorsVisitedWithKnownOutput > 0) {
*newPipelineInputColor = fLastKnownOutputColor.toGrColor();
}
return SkTMax(0, fProcessorsVisitedWithKnownOutput);
}
int initialProcessorsToEliminate(GrColor4f* newPipelineInputColor) const {
if (fProcessorsVisitedWithKnownOutput > 0) {
*newPipelineInputColor = fLastKnownOutputColor;
}
return SkTMax(0, fProcessorsVisitedWithKnownOutput);
}
GrProcessorAnalysisColor outputColor() const {
if (fProcessorsVisitedWithKnownOutput != fTotalProcessorsVisited) {
return GrProcessorAnalysisColor(fIsOpaque ? GrProcessorAnalysisColor::Opaque::kYes
: GrProcessorAnalysisColor::Opaque::kNo);
}
return GrProcessorAnalysisColor(fLastKnownOutputColor.toGrColor());
}
private:
int fTotalProcessorsVisited = 0;
// negative one means even the color is unknown before adding the first processor.
int fProcessorsVisitedWithKnownOutput = -1;
bool fIsOpaque = false;
bool fAllProcessorsCompatibleWithCoverageAsAlpha = true;
bool fUsesLocalCoords = false;
GrColor4f fLastKnownOutputColor;
};
#endif