| /* |
| * Copyright 2017 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkOffsetPolygon.h" |
| |
| #include "SkPointPriv.h" |
| #include "SkTemplates.h" |
| |
| struct InsetSegment { |
| SkPoint fP0; |
| SkPoint fP1; |
| }; |
| |
| // Computes perpDot for point compared to segment. |
| // A positive value means the point is to the left of the segment, |
| // negative is to the right, 0 is collinear. |
| static int compute_side(const SkPoint& s0, const SkPoint& s1, const SkPoint& p) { |
| SkVector v0 = s1 - s0; |
| SkVector v1 = p - s0; |
| SkScalar perpDot = v0.cross(v1); |
| if (!SkScalarNearlyZero(perpDot)) { |
| return ((perpDot > 0) ? 1 : -1); |
| } |
| |
| return 0; |
| } |
| |
| // returns 1 for ccw, -1 for cw and 0 if degenerate |
| static int get_winding(const SkPoint* polygonVerts, int polygonSize) { |
| SkPoint p0 = polygonVerts[0]; |
| SkPoint p1 = polygonVerts[1]; |
| |
| for (int i = 2; i < polygonSize; ++i) { |
| SkPoint p2 = polygonVerts[i]; |
| |
| // determine if cw or ccw |
| int side = compute_side(p0, p1, p2); |
| if (0 != side) { |
| return ((side > 0) ? 1 : -1); |
| } |
| |
| // if nearly collinear, treat as straight line and continue |
| p1 = p2; |
| } |
| |
| return 0; |
| } |
| |
| // Offset line segment p0-p1 'd0' and 'd1' units in the direction specified by 'side' |
| bool SkOffsetSegment(const SkPoint& p0, const SkPoint& p1, SkScalar d0, SkScalar d1, |
| int side, SkPoint* offset0, SkPoint* offset1) { |
| SkASSERT(side == -1 || side == 1); |
| SkVector perp = SkVector::Make(p0.fY - p1.fY, p1.fX - p0.fX); |
| if (SkScalarNearlyEqual(d0, d1)) { |
| // if distances are equal, can just outset by the perpendicular |
| perp.setLength(d0*side); |
| *offset0 = p0 + perp; |
| *offset1 = p1 + perp; |
| } else { |
| // Otherwise we need to compute the outer tangent. |
| // See: http://www.ambrsoft.com/TrigoCalc/Circles2/Circles2Tangent_.htm |
| if (d0 < d1) { |
| side = -side; |
| } |
| SkScalar dD = d0 - d1; |
| // if one circle is inside another, we can't compute an offset |
| if (dD*dD >= SkPointPriv::DistanceToSqd(p0, p1)) { |
| return false; |
| } |
| SkPoint outerTangentIntersect = SkPoint::Make((p1.fX*d0 - p0.fX*d1) / dD, |
| (p1.fY*d0 - p0.fY*d1) / dD); |
| |
| SkScalar d0sq = d0*d0; |
| SkVector dP = outerTangentIntersect - p0; |
| SkScalar dPlenSq = SkPointPriv::LengthSqd(dP); |
| SkScalar discrim = SkScalarSqrt(dPlenSq - d0sq); |
| offset0->fX = p0.fX + (d0sq*dP.fX - side*d0*dP.fY*discrim) / dPlenSq; |
| offset0->fY = p0.fY + (d0sq*dP.fY + side*d0*dP.fX*discrim) / dPlenSq; |
| |
| SkScalar d1sq = d1*d1; |
| dP = outerTangentIntersect - p1; |
| dPlenSq = SkPointPriv::LengthSqd(dP); |
| discrim = SkScalarSqrt(dPlenSq - d1sq); |
| offset1->fX = p1.fX + (d1sq*dP.fX - side*d1*dP.fY*discrim) / dPlenSq; |
| offset1->fY = p1.fY + (d1sq*dP.fY + side*d1*dP.fX*discrim) / dPlenSq; |
| } |
| |
| return true; |
| } |
| |
| // Compute the intersection 'p' between segments s0 and s1, if any. |
| // 's' is the parametric value for the intersection along 's0' & 't' is the same for 's1'. |
| // Returns false if there is no intersection. |
| static bool compute_intersection(const InsetSegment& s0, const InsetSegment& s1, |
| SkPoint* p, SkScalar* s, SkScalar* t) { |
| SkVector v0 = s0.fP1 - s0.fP0; |
| SkVector v1 = s1.fP1 - s1.fP0; |
| |
| SkScalar perpDot = v0.cross(v1); |
| if (SkScalarNearlyZero(perpDot)) { |
| // segments are parallel |
| // check if endpoints are touching |
| if (SkPointPriv::EqualsWithinTolerance(s0.fP1, s1.fP0)) { |
| *p = s0.fP1; |
| *s = SK_Scalar1; |
| *t = 0; |
| return true; |
| } |
| if (SkPointPriv::EqualsWithinTolerance(s1.fP1, s0.fP0)) { |
| *p = s1.fP1; |
| *s = 0; |
| *t = SK_Scalar1; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| SkVector d = s1.fP0 - s0.fP0; |
| SkScalar localS = d.cross(v1) / perpDot; |
| if (localS < 0 || localS > SK_Scalar1) { |
| return false; |
| } |
| SkScalar localT = d.cross(v0) / perpDot; |
| if (localT < 0 || localT > SK_Scalar1) { |
| return false; |
| } |
| |
| v0 *= localS; |
| *p = s0.fP0 + v0; |
| *s = localS; |
| *t = localT; |
| |
| return true; |
| } |
| |
| static bool is_convex(const SkTDArray<SkPoint>& poly) { |
| if (poly.count() <= 3) { |
| return true; |
| } |
| |
| SkVector v0 = poly[0] - poly[poly.count() - 1]; |
| SkVector v1 = poly[1] - poly[poly.count() - 1]; |
| SkScalar winding = v0.cross(v1); |
| |
| for (int i = 0; i < poly.count() - 1; ++i) { |
| int j = i + 1; |
| int k = (i + 2) % poly.count(); |
| |
| SkVector v0 = poly[j] - poly[i]; |
| SkVector v1 = poly[k] - poly[i]; |
| SkScalar perpDot = v0.cross(v1); |
| if (winding*perpDot < 0) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| // The objective here is to inset all of the edges by the given distance, and then |
| // remove any invalid inset edges by detecting right-hand turns. In a ccw polygon, |
| // we should only be making left-hand turns (for cw polygons, we use the winding |
| // parameter to reverse this). We detect this by checking whether the second intersection |
| // on an edge is closer to its tail than the first one. |
| // |
| // We might also have the case that there is no intersection between two neighboring inset edges. |
| // In this case, one edge will lie to the right of the other and should be discarded along with |
| // its previous intersection (if any). |
| // |
| // Note: the assumption is that inputPolygon is convex and has no coincident points. |
| // |
| bool SkInsetConvexPolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize, |
| std::function<SkScalar(int index)> insetDistanceFunc, |
| SkTDArray<SkPoint>* insetPolygon) { |
| if (inputPolygonSize < 3) { |
| return false; |
| } |
| |
| int winding = get_winding(inputPolygonVerts, inputPolygonSize); |
| if (0 == winding) { |
| return false; |
| } |
| |
| // set up |
| struct EdgeData { |
| InsetSegment fInset; |
| SkPoint fIntersection; |
| SkScalar fTValue; |
| bool fValid; |
| }; |
| |
| SkAutoSTMalloc<64, EdgeData> edgeData(inputPolygonSize); |
| for (int i = 0; i < inputPolygonSize; ++i) { |
| int j = (i + 1) % inputPolygonSize; |
| int k = (i + 2) % inputPolygonSize; |
| // check for convexity just to be sure |
| if (compute_side(inputPolygonVerts[i], inputPolygonVerts[j], |
| inputPolygonVerts[k])*winding < 0) { |
| return false; |
| } |
| SkOffsetSegment(inputPolygonVerts[i], inputPolygonVerts[j], |
| insetDistanceFunc(i), insetDistanceFunc(j), |
| winding, |
| &edgeData[i].fInset.fP0, &edgeData[i].fInset.fP1); |
| edgeData[i].fIntersection = edgeData[i].fInset.fP0; |
| edgeData[i].fTValue = SK_ScalarMin; |
| edgeData[i].fValid = true; |
| } |
| |
| int prevIndex = inputPolygonSize - 1; |
| int currIndex = 0; |
| int insetVertexCount = inputPolygonSize; |
| while (prevIndex != currIndex) { |
| if (!edgeData[prevIndex].fValid) { |
| prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize; |
| continue; |
| } |
| |
| SkScalar s, t; |
| SkPoint intersection; |
| if (compute_intersection(edgeData[prevIndex].fInset, edgeData[currIndex].fInset, |
| &intersection, &s, &t)) { |
| // if new intersection is further back on previous inset from the prior intersection |
| if (s < edgeData[prevIndex].fTValue) { |
| // no point in considering this one again |
| edgeData[prevIndex].fValid = false; |
| --insetVertexCount; |
| // go back one segment |
| prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize; |
| // we've already considered this intersection, we're done |
| } else if (edgeData[currIndex].fTValue > SK_ScalarMin && |
| SkPointPriv::EqualsWithinTolerance(intersection, |
| edgeData[currIndex].fIntersection, |
| 1.0e-6f)) { |
| break; |
| } else { |
| // add intersection |
| edgeData[currIndex].fIntersection = intersection; |
| edgeData[currIndex].fTValue = t; |
| |
| // go to next segment |
| prevIndex = currIndex; |
| currIndex = (currIndex + 1) % inputPolygonSize; |
| } |
| } else { |
| // if prev to right side of curr |
| int side = winding*compute_side(edgeData[currIndex].fInset.fP0, |
| edgeData[currIndex].fInset.fP1, |
| edgeData[prevIndex].fInset.fP1); |
| if (side < 0 && side == winding*compute_side(edgeData[currIndex].fInset.fP0, |
| edgeData[currIndex].fInset.fP1, |
| edgeData[prevIndex].fInset.fP0)) { |
| // no point in considering this one again |
| edgeData[prevIndex].fValid = false; |
| --insetVertexCount; |
| // go back one segment |
| prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize; |
| } else { |
| // move to next segment |
| edgeData[currIndex].fValid = false; |
| --insetVertexCount; |
| currIndex = (currIndex + 1) % inputPolygonSize; |
| } |
| } |
| } |
| |
| // store all the valid intersections that aren't nearly coincident |
| // TODO: look at the main algorithm and see if we can detect these better |
| static constexpr SkScalar kCleanupTolerance = 0.01f; |
| |
| insetPolygon->reset(); |
| if (insetVertexCount >= 0) { |
| insetPolygon->setReserve(insetVertexCount); |
| } |
| currIndex = -1; |
| for (int i = 0; i < inputPolygonSize; ++i) { |
| if (edgeData[i].fValid && (currIndex == -1 || |
| !SkPointPriv::EqualsWithinTolerance(edgeData[i].fIntersection, |
| (*insetPolygon)[currIndex], |
| kCleanupTolerance))) { |
| *insetPolygon->push() = edgeData[i].fIntersection; |
| currIndex++; |
| } |
| } |
| // make sure the first and last points aren't coincident |
| if (currIndex >= 1 && |
| SkPointPriv::EqualsWithinTolerance((*insetPolygon)[0], (*insetPolygon)[currIndex], |
| kCleanupTolerance)) { |
| insetPolygon->pop(); |
| } |
| |
| return (insetPolygon->count() >= 3 && is_convex(*insetPolygon)); |
| } |