| |
| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| // This is a GPU-backend specific test. It relies on static intializers to work |
| |
| #include "SkTypes.h" |
| |
| #if SK_SUPPORT_GPU && SK_ALLOW_STATIC_GLOBAL_INITIALIZERS |
| |
| #include "GrContextFactory.h" |
| #include "GrInvariantOutput.h" |
| #include "GrPipeline.h" |
| #include "GrTest.h" |
| #include "GrXferProcessor.h" |
| #include "SkChecksum.h" |
| #include "SkRandom.h" |
| #include "Test.h" |
| #include "effects/GrConfigConversionEffect.h" |
| #include "effects/GrPorterDuffXferProcessor.h" |
| #include "gl/GrGLGpu.h" |
| #include "gl/GrGLPathRendering.h" |
| #include "gl/builders/GrGLProgramBuilder.h" |
| |
| /* |
| * A dummy processor which just tries to insert a massive key and verify that it can retrieve the |
| * whole thing correctly |
| */ |
| static const uint32_t kMaxKeySize = 1024; |
| |
| class GLBigKeyProcessor : public GrGLFragmentProcessor { |
| public: |
| GLBigKeyProcessor(const GrProcessor&) {} |
| |
| virtual void emitCode(GrGLFPBuilder* builder, |
| const GrFragmentProcessor& fp, |
| const char* outputColor, |
| const char* inputColor, |
| const TransformedCoordsArray&, |
| const TextureSamplerArray&) {} |
| |
| static void GenKey(const GrProcessor& processor, const GrGLCaps&, GrProcessorKeyBuilder* b) { |
| for (uint32_t i = 0; i < kMaxKeySize; i++) { |
| b->add32(i); |
| } |
| } |
| |
| private: |
| typedef GrGLFragmentProcessor INHERITED; |
| }; |
| |
| class BigKeyProcessor : public GrFragmentProcessor { |
| public: |
| static GrFragmentProcessor* Create() { |
| GR_CREATE_STATIC_PROCESSOR(gBigKeyProcessor, BigKeyProcessor, ()) |
| return SkRef(gBigKeyProcessor); |
| } |
| |
| const char* name() const SK_OVERRIDE { return "Big Ole Key"; } |
| |
| virtual void getGLProcessorKey(const GrGLCaps& caps, |
| GrProcessorKeyBuilder* b) const SK_OVERRIDE { |
| GLBigKeyProcessor::GenKey(*this, caps, b); |
| } |
| |
| GrGLFragmentProcessor* createGLInstance() const SK_OVERRIDE { |
| return SkNEW_ARGS(GLBigKeyProcessor, (*this)); |
| } |
| |
| private: |
| BigKeyProcessor() { |
| this->initClassID<BigKeyProcessor>(); |
| } |
| bool onIsEqual(const GrFragmentProcessor&) const SK_OVERRIDE { return true; } |
| void onComputeInvariantOutput(GrInvariantOutput* inout) const SK_OVERRIDE { } |
| |
| GR_DECLARE_FRAGMENT_PROCESSOR_TEST; |
| |
| typedef GrFragmentProcessor INHERITED; |
| }; |
| |
| GR_DEFINE_FRAGMENT_PROCESSOR_TEST(BigKeyProcessor); |
| |
| GrFragmentProcessor* BigKeyProcessor::TestCreate(SkRandom*, |
| GrContext*, |
| const GrDrawTargetCaps&, |
| GrTexture*[]) { |
| return BigKeyProcessor::Create(); |
| } |
| |
| /* |
| * Begin test code |
| */ |
| static const int kRenderTargetHeight = 1; |
| static const int kRenderTargetWidth = 1; |
| |
| static GrRenderTarget* random_render_target(GrContext* context, SkRandom* random) { |
| // setup render target |
| GrTextureParams params; |
| GrSurfaceDesc texDesc; |
| texDesc.fWidth = kRenderTargetWidth; |
| texDesc.fHeight = kRenderTargetHeight; |
| texDesc.fFlags = kRenderTarget_GrSurfaceFlag; |
| texDesc.fConfig = kRGBA_8888_GrPixelConfig; |
| texDesc.fOrigin = random->nextBool() == true ? kTopLeft_GrSurfaceOrigin : |
| kBottomLeft_GrSurfaceOrigin; |
| GrContentKey key; |
| static const GrContentKey::Domain kDomain = GrContentKey::GenerateDomain(); |
| GrContentKey::Builder builder(&key, kDomain, 1); |
| builder[0] = texDesc.fOrigin; |
| builder.finish(); |
| |
| SkAutoTUnref<GrTexture> texture(context->findAndRefTexture(texDesc, key, ¶ms)); |
| if (!texture) { |
| texture.reset(context->createTexture(¶ms, texDesc, key, 0, 0)); |
| if (!texture) { |
| return NULL; |
| } |
| } |
| return SkRef(texture->asRenderTarget()); |
| } |
| |
| static void set_random_xpf(GrContext* context, const GrDrawTargetCaps& caps, |
| GrPipelineBuilder* pipelineBuilder, SkRandom* random, |
| GrTexture* dummyTextures[]) { |
| SkAutoTUnref<const GrXPFactory> xpf( |
| GrProcessorTestFactory<GrXPFactory>::CreateStage(random, context, caps, dummyTextures)); |
| SkASSERT(xpf); |
| pipelineBuilder->setXPFactory(xpf.get()); |
| } |
| |
| static const GrGeometryProcessor* get_random_gp(GrContext* context, |
| const GrDrawTargetCaps& caps, |
| SkRandom* random, |
| GrTexture* dummyTextures[]) { |
| return GrProcessorTestFactory<GrGeometryProcessor>::CreateStage(random, |
| context, |
| caps, |
| dummyTextures); |
| } |
| |
| static void set_random_color_coverage_stages(GrGLGpu* gpu, |
| GrPipelineBuilder* pipelineBuilder, |
| int maxStages, |
| bool usePathRendering, |
| SkRandom* random, |
| GrTexture* dummyTextures[]) { |
| int numProcs = random->nextULessThan(maxStages + 1); |
| int numColorProcs = random->nextULessThan(numProcs + 1); |
| |
| int currTextureCoordSet = 0; |
| for (int s = 0; s < numProcs;) { |
| SkAutoTUnref<const GrFragmentProcessor> fp( |
| GrProcessorTestFactory<GrFragmentProcessor>::CreateStage(random, |
| gpu->getContext(), |
| *gpu->caps(), |
| dummyTextures)); |
| SkASSERT(fp); |
| |
| // If adding this effect would exceed the max texture coord set count then generate a |
| // new random effect. |
| if (usePathRendering && gpu->glPathRendering()->texturingMode() == |
| GrGLPathRendering::FixedFunction_TexturingMode) {; |
| int numTransforms = fp->numTransforms(); |
| if (currTextureCoordSet + numTransforms > |
| gpu->glCaps().maxFixedFunctionTextureCoords()) { |
| continue; |
| } |
| currTextureCoordSet += numTransforms; |
| } |
| |
| // finally add the stage to the correct pipeline in the drawstate |
| if (s < numColorProcs) { |
| pipelineBuilder->addColorProcessor(fp); |
| } else { |
| pipelineBuilder->addCoverageProcessor(fp); |
| } |
| ++s; |
| } |
| } |
| |
| static void set_random_state(GrPipelineBuilder* pipelineBuilder, SkRandom* random) { |
| int state = 0; |
| for (int i = 1; i <= GrPipelineBuilder::kLast_StateBit; i <<= 1) { |
| state |= random->nextBool() * i; |
| } |
| pipelineBuilder->enableState(state); |
| } |
| |
| // right now, the only thing we seem to care about in drawState's stencil is 'doesWrite()' |
| static void set_random_stencil(GrPipelineBuilder* pipelineBuilder, SkRandom* random) { |
| GR_STATIC_CONST_SAME_STENCIL(kDoesWriteStencil, |
| kReplace_StencilOp, |
| kReplace_StencilOp, |
| kAlways_StencilFunc, |
| 0xffff, |
| 0xffff, |
| 0xffff); |
| GR_STATIC_CONST_SAME_STENCIL(kDoesNotWriteStencil, |
| kKeep_StencilOp, |
| kKeep_StencilOp, |
| kNever_StencilFunc, |
| 0xffff, |
| 0xffff, |
| 0xffff); |
| |
| if (random->nextBool()) { |
| pipelineBuilder->setStencil(kDoesWriteStencil); |
| } else { |
| pipelineBuilder->setStencil(kDoesNotWriteStencil); |
| } |
| } |
| |
| bool GrDrawTarget::programUnitTest(int maxStages) { |
| GrGLGpu* gpu = static_cast<GrGLGpu*>(fContext->getGpu()); |
| // setup dummy textures |
| GrSurfaceDesc dummyDesc; |
| dummyDesc.fFlags = kRenderTarget_GrSurfaceFlag; |
| dummyDesc.fConfig = kSkia8888_GrPixelConfig; |
| dummyDesc.fWidth = 34; |
| dummyDesc.fHeight = 18; |
| SkAutoTUnref<GrTexture> dummyTexture1(gpu->createTexture(dummyDesc, false, NULL, 0)); |
| dummyDesc.fFlags = kNone_GrSurfaceFlags; |
| dummyDesc.fConfig = kAlpha_8_GrPixelConfig; |
| dummyDesc.fWidth = 16; |
| dummyDesc.fHeight = 22; |
| SkAutoTUnref<GrTexture> dummyTexture2(gpu->createTexture(dummyDesc, false, NULL, 0)); |
| |
| if (!dummyTexture1 || ! dummyTexture2) { |
| SkDebugf("Could not allocate dummy textures"); |
| return false; |
| } |
| |
| GrTexture* dummyTextures[] = {dummyTexture1.get(), dummyTexture2.get()}; |
| |
| // dummy scissor state |
| GrScissorState scissor; |
| |
| // setup clip |
| SkRect screen = SkRect::MakeWH(SkIntToScalar(kRenderTargetWidth), |
| SkIntToScalar(kRenderTargetHeight)); |
| |
| SkClipStack stack; |
| stack.clipDevRect(screen, SkRegion::kReplace_Op, false); |
| |
| // wrap the SkClipStack in a GrClipData |
| GrClipData clipData; |
| clipData.fClipStack = &stack; |
| this->setClip(&clipData); |
| |
| SkRandom random; |
| static const int NUM_TESTS = 512; |
| for (int t = 0; t < NUM_TESTS;) { |
| // setup random render target(can fail) |
| SkAutoTUnref<GrRenderTarget> rt(random_render_target(fContext, &random)); |
| if (!rt.get()) { |
| SkDebugf("Could not allocate render target"); |
| return false; |
| } |
| |
| GrPipelineBuilder pipelineBuilder; |
| pipelineBuilder.setRenderTarget(rt.get()); |
| |
| // if path rendering we have to setup a couple of things like the draw type |
| bool usePathRendering = gpu->glCaps().pathRenderingSupport() && random.nextBool(); |
| |
| // twiddle drawstate knobs randomly |
| bool hasGeometryProcessor = !usePathRendering; |
| SkAutoTUnref<const GrGeometryProcessor> gp; |
| SkAutoTUnref<const GrPathProcessor> pathProc; |
| if (hasGeometryProcessor) { |
| gp.reset(get_random_gp(fContext, gpu->glCaps(), &random, dummyTextures)); |
| } else { |
| pathProc.reset(GrPathProcessor::Create(GrColor_WHITE)); |
| } |
| set_random_color_coverage_stages(gpu, |
| &pipelineBuilder, |
| maxStages - hasGeometryProcessor, |
| usePathRendering, |
| &random, |
| dummyTextures); |
| |
| // creates a random xfer processor factory on the draw state |
| set_random_xpf(fContext, gpu->glCaps(), &pipelineBuilder, &random, dummyTextures); |
| |
| set_random_state(&pipelineBuilder, &random); |
| set_random_stencil(&pipelineBuilder, &random); |
| |
| GrDeviceCoordTexture dstCopy; |
| |
| const GrPrimitiveProcessor* primProc; |
| if (hasGeometryProcessor) { |
| primProc = gp.get(); |
| } else { |
| primProc = pathProc.get(); |
| } |
| if (!this->setupDstReadIfNecessary(&pipelineBuilder, &dstCopy, NULL)) { |
| SkDebugf("Couldn't setup dst read texture"); |
| return false; |
| } |
| |
| // create optimized draw state, setup readDst texture if required, and build a descriptor |
| // and program. ODS creation can fail, so we have to check |
| GrPipeline pipeline(pipelineBuilder, primProc, *gpu->caps(), scissor, &dstCopy); |
| if (pipeline.mustSkip()) { |
| continue; |
| } |
| GrBatchTracker bt; |
| primProc->initBatchTracker(&bt, pipeline.getInitBatchTracker()); |
| |
| GrProgramDesc desc; |
| gpu->buildProgramDesc(&desc, *primProc, pipeline, pipeline.descInfo(), bt); |
| |
| GrGpu::DrawArgs args(primProc, &pipeline, &desc, &bt); |
| SkAutoTUnref<GrGLProgram> program(GrGLProgramBuilder::CreateProgram(args, gpu)); |
| |
| if (NULL == program.get()) { |
| SkDebugf("Failed to create program!"); |
| return false; |
| } |
| |
| // because occasionally optimized drawstate creation will fail for valid reasons, we only |
| // want to increment on success |
| ++t; |
| } |
| return true; |
| } |
| |
| DEF_GPUTEST(GLPrograms, reporter, factory) { |
| for (int type = 0; type < GrContextFactory::kLastGLContextType; ++type) { |
| GrContext* context = factory->get(static_cast<GrContextFactory::GLContextType>(type)); |
| if (context) { |
| GrGLGpu* gpu = static_cast<GrGLGpu*>(context->getGpu()); |
| |
| /* |
| * For the time being, we only support the test with desktop GL or for android on |
| * ARM platforms |
| * TODO When we run ES 3.00 GLSL in more places, test again |
| */ |
| int maxStages; |
| if (kGL_GrGLStandard == gpu->glStandard() || |
| kARM_GrGLVendor == gpu->ctxInfo().vendor()) { |
| maxStages = 6; |
| } else if (kTegra3_GrGLRenderer == gpu->ctxInfo().renderer() || |
| kOther_GrGLRenderer == gpu->ctxInfo().renderer()) { |
| maxStages = 1; |
| } else { |
| return; |
| } |
| #if SK_ANGLE |
| // Some long shaders run out of temporary registers in the D3D compiler on ANGLE. |
| if (type == GrContextFactory::kANGLE_GLContextType) { |
| maxStages = 3; |
| } |
| #endif |
| GrTestTarget target; |
| context->getTestTarget(&target); |
| REPORTER_ASSERT(reporter, target.target()->programUnitTest(maxStages)); |
| } |
| } |
| } |
| |
| #endif |