| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkPathMeasure.h" |
| #include "Test.h" |
| |
| static void test_small_segment3() { |
| SkPath path; |
| const SkPoint pts[] = { |
| { 0, 0 }, |
| { 100000000000.0f, 100000000000.0f }, { 0, 0 }, { 10, 10 }, |
| { 10, 10 }, { 0, 0 }, { 10, 10 } |
| }; |
| |
| path.moveTo(pts[0]); |
| for (size_t i = 1; i < SK_ARRAY_COUNT(pts); i += 3) { |
| path.cubicTo(pts[i], pts[i + 1], pts[i + 2]); |
| } |
| |
| SkPathMeasure meas(path, false); |
| meas.getLength(); |
| } |
| |
| static void test_small_segment2() { |
| SkPath path; |
| const SkPoint pts[] = { |
| { 0, 0 }, |
| { 100000000000.0f, 100000000000.0f }, { 0, 0 }, |
| { 10, 10 }, { 0, 0 }, |
| }; |
| |
| path.moveTo(pts[0]); |
| for (size_t i = 1; i < SK_ARRAY_COUNT(pts); i += 2) { |
| path.quadTo(pts[i], pts[i + 1]); |
| } |
| SkPathMeasure meas(path, false); |
| meas.getLength(); |
| } |
| |
| static void test_small_segment() { |
| SkPath path; |
| const SkPoint pts[] = { |
| { 100000, 100000}, |
| // big jump between these points, makes a big segment |
| { 1.0005f, 0.9999f }, |
| // tiny (non-zero) jump between these points |
| { SK_Scalar1, SK_Scalar1 }, |
| }; |
| |
| path.moveTo(pts[0]); |
| for (size_t i = 1; i < SK_ARRAY_COUNT(pts); ++i) { |
| path.lineTo(pts[i]); |
| } |
| SkPathMeasure meas(path, false); |
| |
| /* this would assert (before a fix) because we added a segment with |
| the same length as the prev segment, due to the follow (bad) pattern |
| |
| d = distance(pts[0], pts[1]); |
| distance += d; |
| seg->fDistance = distance; |
| |
| SkASSERT(d > 0); // TRUE |
| SkASSERT(seg->fDistance > prevSeg->fDistance); // FALSE |
| |
| This 2nd assert failes because (distance += d) didn't affect distance |
| because distance >>> d. |
| */ |
| meas.getLength(); |
| } |
| |
| DEF_TEST(PathMeasure, reporter) { |
| SkPath path; |
| |
| path.moveTo(0, 0); |
| path.lineTo(SK_Scalar1, 0); |
| path.lineTo(SK_Scalar1, SK_Scalar1); |
| path.lineTo(0, SK_Scalar1); |
| |
| SkPathMeasure meas(path, true); |
| SkScalar length = meas.getLength(); |
| SkASSERT(length == SK_Scalar1*4); |
| |
| path.reset(); |
| path.moveTo(0, 0); |
| path.lineTo(SK_Scalar1*3, SK_Scalar1*4); |
| meas.setPath(&path, false); |
| length = meas.getLength(); |
| REPORTER_ASSERT(reporter, length == SK_Scalar1*5); |
| |
| path.reset(); |
| path.addCircle(0, 0, SK_Scalar1); |
| meas.setPath(&path, true); |
| length = meas.getLength(); |
| // SkDebugf("circle arc-length = %g\n", length); |
| |
| // Test the behavior following a close not followed by a move. |
| path.reset(); |
| path.lineTo(SK_Scalar1, 0); |
| path.lineTo(SK_Scalar1, SK_Scalar1); |
| path.lineTo(0, SK_Scalar1); |
| path.close(); |
| path.lineTo(-SK_Scalar1, 0); |
| meas.setPath(&path, false); |
| length = meas.getLength(); |
| REPORTER_ASSERT(reporter, length == SK_Scalar1 * 4); |
| meas.nextContour(); |
| length = meas.getLength(); |
| REPORTER_ASSERT(reporter, length == SK_Scalar1); |
| SkPoint position; |
| SkVector tangent; |
| REPORTER_ASSERT(reporter, meas.getPosTan(SK_ScalarHalf, &position, &tangent)); |
| REPORTER_ASSERT(reporter, |
| SkScalarNearlyEqual(position.fX, |
| -SK_ScalarHalf, |
| 0.0001f)); |
| REPORTER_ASSERT(reporter, position.fY == 0); |
| REPORTER_ASSERT(reporter, tangent.fX == -SK_Scalar1); |
| REPORTER_ASSERT(reporter, tangent.fY == 0); |
| |
| // Test degenerate paths |
| path.reset(); |
| path.moveTo(0, 0); |
| path.lineTo(0, 0); |
| path.lineTo(SK_Scalar1, 0); |
| path.quadTo(SK_Scalar1, 0, SK_Scalar1, 0); |
| path.quadTo(SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1 * 2); |
| path.cubicTo(SK_Scalar1, SK_Scalar1 * 2, |
| SK_Scalar1, SK_Scalar1 * 2, |
| SK_Scalar1, SK_Scalar1 * 2); |
| path.cubicTo(SK_Scalar1*2, SK_Scalar1 * 2, |
| SK_Scalar1*3, SK_Scalar1 * 2, |
| SK_Scalar1*4, SK_Scalar1 * 2); |
| meas.setPath(&path, false); |
| length = meas.getLength(); |
| REPORTER_ASSERT(reporter, length == SK_Scalar1 * 6); |
| REPORTER_ASSERT(reporter, meas.getPosTan(SK_ScalarHalf, &position, &tangent)); |
| REPORTER_ASSERT(reporter, |
| SkScalarNearlyEqual(position.fX, |
| SK_ScalarHalf, |
| 0.0001f)); |
| REPORTER_ASSERT(reporter, position.fY == 0); |
| REPORTER_ASSERT(reporter, tangent.fX == SK_Scalar1); |
| REPORTER_ASSERT(reporter, tangent.fY == 0); |
| REPORTER_ASSERT(reporter, meas.getPosTan(2.5f, &position, &tangent)); |
| REPORTER_ASSERT(reporter, |
| SkScalarNearlyEqual(position.fX, SK_Scalar1, 0.0001f)); |
| REPORTER_ASSERT(reporter, |
| SkScalarNearlyEqual(position.fY, 1.5f)); |
| REPORTER_ASSERT(reporter, tangent.fX == 0); |
| REPORTER_ASSERT(reporter, tangent.fY == SK_Scalar1); |
| REPORTER_ASSERT(reporter, meas.getPosTan(4.5f, &position, &tangent)); |
| REPORTER_ASSERT(reporter, |
| SkScalarNearlyEqual(position.fX, |
| 2.5f, |
| 0.0001f)); |
| REPORTER_ASSERT(reporter, |
| SkScalarNearlyEqual(position.fY, |
| 2.0f, |
| 0.0001f)); |
| REPORTER_ASSERT(reporter, tangent.fX == SK_Scalar1); |
| REPORTER_ASSERT(reporter, tangent.fY == 0); |
| |
| path.reset(); |
| path.moveTo(0, 0); |
| path.lineTo(SK_Scalar1, 0); |
| path.moveTo(SK_Scalar1, SK_Scalar1); |
| path.moveTo(SK_Scalar1 * 2, SK_Scalar1 * 2); |
| path.lineTo(SK_Scalar1, SK_Scalar1 * 2); |
| meas.setPath(&path, false); |
| length = meas.getLength(); |
| REPORTER_ASSERT(reporter, length == SK_Scalar1); |
| REPORTER_ASSERT(reporter, meas.getPosTan(SK_ScalarHalf, &position, &tangent)); |
| REPORTER_ASSERT(reporter, |
| SkScalarNearlyEqual(position.fX, |
| SK_ScalarHalf, |
| 0.0001f)); |
| REPORTER_ASSERT(reporter, position.fY == 0); |
| REPORTER_ASSERT(reporter, tangent.fX == SK_Scalar1); |
| REPORTER_ASSERT(reporter, tangent.fY == 0); |
| meas.nextContour(); |
| length = meas.getLength(); |
| REPORTER_ASSERT(reporter, length == SK_Scalar1); |
| REPORTER_ASSERT(reporter, meas.getPosTan(SK_ScalarHalf, &position, &tangent)); |
| REPORTER_ASSERT(reporter, |
| SkScalarNearlyEqual(position.fX, |
| 1.5f, |
| 0.0001f)); |
| REPORTER_ASSERT(reporter, |
| SkScalarNearlyEqual(position.fY, |
| 2.0f, |
| 0.0001f)); |
| REPORTER_ASSERT(reporter, tangent.fX == -SK_Scalar1); |
| REPORTER_ASSERT(reporter, tangent.fY == 0); |
| |
| test_small_segment(); |
| test_small_segment2(); |
| test_small_segment3(); |
| } |
| |
| DEF_TEST(PathMeasureConic, reporter) { |
| SkPoint stdP, hiP, pts[] = {{0,0}, {100,0}, {100,0}}; |
| SkPath p; |
| p.moveTo(0, 0); |
| p.conicTo(pts[1], pts[2], 1); |
| SkPathMeasure stdm(p, false); |
| REPORTER_ASSERT(reporter, stdm.getPosTan(20, &stdP, nullptr)); |
| p.reset(); |
| p.moveTo(0, 0); |
| p.conicTo(pts[1], pts[2], 10); |
| stdm.setPath(&p, false); |
| REPORTER_ASSERT(reporter, stdm.getPosTan(20, &hiP, nullptr)); |
| REPORTER_ASSERT(reporter, 19.5f < stdP.fX && stdP.fX < 20.5f); |
| REPORTER_ASSERT(reporter, 19.5f < hiP.fX && hiP.fX < 20.5f); |
| } |
| |
| // Regression test for b/26425223 |
| DEF_TEST(PathMeasure_nextctr, reporter) { |
| SkPath path; |
| path.moveTo(0, 0); path.lineTo(100, 0); |
| |
| SkPathMeasure meas(path, false); |
| // only expect 1 contour, even if we didn't explicitly call getLength() ourselves |
| REPORTER_ASSERT(reporter, !meas.nextContour()); |
| } |
| |
| #include "SkContourMeasure.h" |
| |
| static void test_90_degrees(sk_sp<SkContourMeasure> cm, SkScalar radius, |
| skiatest::Reporter* reporter) { |
| SkPoint pos; |
| SkVector tan; |
| SkScalar distance = cm->length() / 4; |
| bool success = cm->getPosTan(distance, &pos, &tan); |
| |
| REPORTER_ASSERT(reporter, success); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pos.fX, 0)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pos.fY, radius)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(tan.fX, -1)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(tan.fY, 0)); |
| } |
| |
| static void test_empty_contours(skiatest::Reporter* reporter) { |
| SkPath path; |
| |
| path.moveTo(0, 0).lineTo(100, 100).lineTo(200, 100); |
| path.moveTo(2, 2).moveTo(3, 3); // zero-length(s) |
| path.moveTo(4, 4).close().close().close(); // zero-length |
| path.moveTo(5, 5).lineTo(5, 5); // zero-length |
| path.moveTo(5, 5).lineTo(5, 5).close(); // zero-length |
| path.moveTo(5, 5).lineTo(5, 5).close().close(); // zero-length |
| path.moveTo(6, 6).lineTo(7, 7); |
| path.moveTo(10, 10); // zero-length |
| |
| SkContourMeasureIter fact(path, false); |
| |
| // given the above construction, we expect only 2 contours (the rest are "empty") |
| |
| REPORTER_ASSERT(reporter, fact.next()); |
| REPORTER_ASSERT(reporter, fact.next()); |
| REPORTER_ASSERT(reporter, !fact.next()); |
| } |
| |
| static void test_MLM_contours(skiatest::Reporter* reporter) { |
| SkPath path; |
| |
| // This odd sequence (with a trailing moveTo) used to return a 2nd contour, which is |
| // wrong, since the contract for a measure is to only return non-zero length contours. |
| path.moveTo(10, 10).lineTo(20, 20).moveTo(30, 30); |
| |
| for (bool forceClosed : {false, true}) { |
| SkContourMeasureIter fact(path, forceClosed); |
| REPORTER_ASSERT(reporter, fact.next()); |
| REPORTER_ASSERT(reporter, !fact.next()); |
| } |
| } |
| |
| DEF_TEST(contour_measure, reporter) { |
| SkPath path; |
| path.addCircle(0, 0, 100); |
| path.addCircle(0, 0, 10); |
| |
| SkContourMeasureIter fact(path, false); |
| path.reset(); // we should not need the path avert we created the factory |
| |
| auto cm0 = fact.next(); |
| auto cm1 = fact.next(); |
| |
| REPORTER_ASSERT(reporter, cm0->isClosed()); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(cm0->length(), 200 * SK_ScalarPI, 1.5f)); |
| |
| test_90_degrees(cm0, 100, reporter); |
| |
| REPORTER_ASSERT(reporter, cm1->isClosed()); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(cm1->length(), 20 * SK_ScalarPI, 0.5f)); |
| |
| test_90_degrees(cm1, 10, reporter); |
| |
| auto cm2 = fact.next(); |
| REPORTER_ASSERT(reporter, !cm2); |
| |
| test_empty_contours(reporter); |
| test_MLM_contours(reporter); |
| } |