| /* |
| * Copyright 2014 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrRRectEffect.h" |
| |
| #include "GrConvexPolyEffect.h" |
| #include "GrFragmentProcessor.h" |
| #include "GrInvariantOutput.h" |
| #include "GrOvalEffect.h" |
| #include "SkRRect.h" |
| #include "gl/GrGLFragmentProcessor.h" |
| #include "gl/builders/GrGLProgramBuilder.h" |
| #include "glsl/GrGLSLProgramDataManager.h" |
| |
| // The effects defined here only handle rrect radii >= kRadiusMin. |
| static const SkScalar kRadiusMin = SK_ScalarHalf; |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class CircularRRectEffect : public GrFragmentProcessor { |
| public: |
| |
| enum CornerFlags { |
| kTopLeft_CornerFlag = (1 << SkRRect::kUpperLeft_Corner), |
| kTopRight_CornerFlag = (1 << SkRRect::kUpperRight_Corner), |
| kBottomRight_CornerFlag = (1 << SkRRect::kLowerRight_Corner), |
| kBottomLeft_CornerFlag = (1 << SkRRect::kLowerLeft_Corner), |
| |
| kLeft_CornerFlags = kTopLeft_CornerFlag | kBottomLeft_CornerFlag, |
| kTop_CornerFlags = kTopLeft_CornerFlag | kTopRight_CornerFlag, |
| kRight_CornerFlags = kTopRight_CornerFlag | kBottomRight_CornerFlag, |
| kBottom_CornerFlags = kBottomLeft_CornerFlag | kBottomRight_CornerFlag, |
| |
| kAll_CornerFlags = kTopLeft_CornerFlag | kTopRight_CornerFlag | |
| kBottomLeft_CornerFlag | kBottomRight_CornerFlag, |
| |
| kNone_CornerFlags = 0 |
| }; |
| |
| // The flags are used to indicate which corners are circluar (unflagged corners are assumed to |
| // be square). |
| static GrFragmentProcessor* Create(GrPrimitiveEdgeType, uint32_t circularCornerFlags, |
| const SkRRect&); |
| |
| virtual ~CircularRRectEffect() {}; |
| |
| const char* name() const override { return "CircularRRect"; } |
| |
| const SkRRect& getRRect() const { return fRRect; } |
| |
| uint32_t getCircularCornerFlags() const { return fCircularCornerFlags; } |
| |
| GrPrimitiveEdgeType getEdgeType() const { return fEdgeType; } |
| |
| private: |
| CircularRRectEffect(GrPrimitiveEdgeType, uint32_t circularCornerFlags, const SkRRect&); |
| |
| GrGLFragmentProcessor* onCreateGLInstance() const override; |
| |
| void onGetGLProcessorKey(const GrGLSLCaps&, GrProcessorKeyBuilder*) const override; |
| |
| bool onIsEqual(const GrFragmentProcessor& other) const override; |
| |
| void onComputeInvariantOutput(GrInvariantOutput* inout) const override; |
| |
| SkRRect fRRect; |
| GrPrimitiveEdgeType fEdgeType; |
| uint32_t fCircularCornerFlags; |
| |
| GR_DECLARE_FRAGMENT_PROCESSOR_TEST; |
| |
| typedef GrFragmentProcessor INHERITED; |
| }; |
| |
| GrFragmentProcessor* CircularRRectEffect::Create(GrPrimitiveEdgeType edgeType, |
| uint32_t circularCornerFlags, |
| const SkRRect& rrect) { |
| if (kFillAA_GrProcessorEdgeType != edgeType && kInverseFillAA_GrProcessorEdgeType != edgeType) { |
| return nullptr; |
| } |
| return new CircularRRectEffect(edgeType, circularCornerFlags, rrect); |
| } |
| |
| void CircularRRectEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const { |
| inout->mulByUnknownSingleComponent(); |
| } |
| |
| CircularRRectEffect::CircularRRectEffect(GrPrimitiveEdgeType edgeType, uint32_t circularCornerFlags, |
| const SkRRect& rrect) |
| : fRRect(rrect) |
| , fEdgeType(edgeType) |
| , fCircularCornerFlags(circularCornerFlags) { |
| this->initClassID<CircularRRectEffect>(); |
| this->setWillReadFragmentPosition(); |
| } |
| |
| bool CircularRRectEffect::onIsEqual(const GrFragmentProcessor& other) const { |
| const CircularRRectEffect& crre = other.cast<CircularRRectEffect>(); |
| // The corner flags are derived from fRRect, so no need to check them. |
| return fEdgeType == crre.fEdgeType && fRRect == crre.fRRect; |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| GR_DEFINE_FRAGMENT_PROCESSOR_TEST(CircularRRectEffect); |
| |
| const GrFragmentProcessor* CircularRRectEffect::TestCreate(GrProcessorTestData* d) { |
| SkScalar w = d->fRandom->nextRangeScalar(20.f, 1000.f); |
| SkScalar h = d->fRandom->nextRangeScalar(20.f, 1000.f); |
| SkScalar r = d->fRandom->nextRangeF(kRadiusMin, 9.f); |
| SkRRect rrect; |
| rrect.setRectXY(SkRect::MakeWH(w, h), r, r); |
| GrFragmentProcessor* fp; |
| do { |
| GrPrimitiveEdgeType et = |
| (GrPrimitiveEdgeType)d->fRandom->nextULessThan(kGrProcessorEdgeTypeCnt); |
| fp = GrRRectEffect::Create(et, rrect); |
| } while (nullptr == fp); |
| return fp; |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class GLCircularRRectEffect : public GrGLFragmentProcessor { |
| public: |
| GLCircularRRectEffect(const GrProcessor&); |
| |
| virtual void emitCode(EmitArgs&) override; |
| |
| static inline void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder*); |
| |
| protected: |
| void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override; |
| |
| private: |
| GrGLSLProgramDataManager::UniformHandle fInnerRectUniform; |
| GrGLSLProgramDataManager::UniformHandle fRadiusPlusHalfUniform; |
| SkRRect fPrevRRect; |
| typedef GrGLFragmentProcessor INHERITED; |
| }; |
| |
| GLCircularRRectEffect::GLCircularRRectEffect(const GrProcessor& ) { |
| fPrevRRect.setEmpty(); |
| } |
| |
| void GLCircularRRectEffect::emitCode(EmitArgs& args) { |
| const CircularRRectEffect& crre = args.fFp.cast<CircularRRectEffect>(); |
| const char *rectName; |
| const char *radiusPlusHalfName; |
| // The inner rect is the rrect bounds inset by the radius. Its left, top, right, and bottom |
| // edges correspond to components x, y, z, and w, respectively. When a side of the rrect has |
| // only rectangular corners, that side's value corresponds to the rect edge's value outset by |
| // half a pixel. |
| fInnerRectUniform = args.fBuilder->addUniform(GrGLProgramBuilder::kFragment_Visibility, |
| kVec4f_GrSLType, kDefault_GrSLPrecision, |
| "innerRect", |
| &rectName); |
| fRadiusPlusHalfUniform = args.fBuilder->addUniform(GrGLProgramBuilder::kFragment_Visibility, |
| kFloat_GrSLType, kDefault_GrSLPrecision, |
| "radiusPlusHalf", |
| &radiusPlusHalfName); |
| |
| GrGLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder(); |
| const char* fragmentPos = fsBuilder->fragmentPosition(); |
| // At each quarter-circle corner we compute a vector that is the offset of the fragment position |
| // from the circle center. The vector is pinned in x and y to be in the quarter-plane relevant |
| // to that corner. This means that points near the interior near the rrect top edge will have |
| // a vector that points straight up for both the TL left and TR corners. Computing an |
| // alpha from this vector at either the TR or TL corner will give the correct result. Similarly, |
| // fragments near the other three edges will get the correct AA. Fragments in the interior of |
| // the rrect will have a (0,0) vector at all four corners. So long as the radius > 0.5 they will |
| // correctly produce an alpha value of 1 at all four corners. We take the min of all the alphas. |
| // The code below is a simplified version of the above that performs maxs on the vector |
| // components before computing distances and alpha values so that only one distance computation |
| // need be computed to determine the min alpha. |
| // |
| // For the cases where one half of the rrect is rectangular we drop one of the x or y |
| // computations, compute a separate rect edge alpha for the rect side, and mul the two computed |
| // alphas together. |
| switch (crre.getCircularCornerFlags()) { |
| case CircularRRectEffect::kAll_CornerFlags: |
| fsBuilder->codeAppendf("\t\tvec2 dxy0 = %s.xy - %s.xy;\n", rectName, fragmentPos); |
| fsBuilder->codeAppendf("\t\tvec2 dxy1 = %s.xy - %s.zw;\n", fragmentPos, rectName); |
| fsBuilder->codeAppend("\t\tvec2 dxy = max(max(dxy0, dxy1), 0.0);\n"); |
| fsBuilder->codeAppendf("\t\tfloat alpha = clamp(%s - length(dxy), 0.0, 1.0);\n", |
| radiusPlusHalfName); |
| break; |
| case CircularRRectEffect::kTopLeft_CornerFlag: |
| fsBuilder->codeAppendf("\t\tvec2 dxy = max(%s.xy - %s.xy, 0.0);\n", |
| rectName, fragmentPos); |
| fsBuilder->codeAppendf("\t\tfloat rightAlpha = clamp(%s.z - %s.x, 0.0, 1.0);\n", |
| rectName, fragmentPos); |
| fsBuilder->codeAppendf("\t\tfloat bottomAlpha = clamp(%s.w - %s.y, 0.0, 1.0);\n", |
| rectName, fragmentPos); |
| fsBuilder->codeAppendf("\t\tfloat alpha = bottomAlpha * rightAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n", |
| radiusPlusHalfName); |
| break; |
| case CircularRRectEffect::kTopRight_CornerFlag: |
| fsBuilder->codeAppendf("\t\tvec2 dxy = max(vec2(%s.x - %s.z, %s.y - %s.y), 0.0);\n", |
| fragmentPos, rectName, rectName, fragmentPos); |
| fsBuilder->codeAppendf("\t\tfloat leftAlpha = clamp(%s.x - %s.x, 0.0, 1.0);\n", |
| fragmentPos, rectName); |
| fsBuilder->codeAppendf("\t\tfloat bottomAlpha = clamp(%s.w - %s.y, 0.0, 1.0);\n", |
| rectName, fragmentPos); |
| fsBuilder->codeAppendf("\t\tfloat alpha = bottomAlpha * leftAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n", |
| radiusPlusHalfName); |
| break; |
| case CircularRRectEffect::kBottomRight_CornerFlag: |
| fsBuilder->codeAppendf("\t\tvec2 dxy = max(%s.xy - %s.zw, 0.0);\n", |
| fragmentPos, rectName); |
| fsBuilder->codeAppendf("\t\tfloat leftAlpha = clamp(%s.x - %s.x, 0.0, 1.0);\n", |
| fragmentPos, rectName); |
| fsBuilder->codeAppendf("\t\tfloat topAlpha = clamp(%s.y - %s.y, 0.0, 1.0);\n", |
| fragmentPos, rectName); |
| fsBuilder->codeAppendf("\t\tfloat alpha = topAlpha * leftAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n", |
| radiusPlusHalfName); |
| break; |
| case CircularRRectEffect::kBottomLeft_CornerFlag: |
| fsBuilder->codeAppendf("\t\tvec2 dxy = max(vec2(%s.x - %s.x, %s.y - %s.w), 0.0);\n", |
| rectName, fragmentPos, fragmentPos, rectName); |
| fsBuilder->codeAppendf("\t\tfloat rightAlpha = clamp(%s.z - %s.x, 0.0, 1.0);\n", |
| rectName, fragmentPos); |
| fsBuilder->codeAppendf("\t\tfloat topAlpha = clamp(%s.y - %s.y, 0.0, 1.0);\n", |
| fragmentPos, rectName); |
| fsBuilder->codeAppendf("\t\tfloat alpha = topAlpha * rightAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n", |
| radiusPlusHalfName); |
| break; |
| case CircularRRectEffect::kLeft_CornerFlags: |
| fsBuilder->codeAppendf("\t\tvec2 dxy0 = %s.xy - %s.xy;\n", rectName, fragmentPos); |
| fsBuilder->codeAppendf("\t\tfloat dy1 = %s.y - %s.w;\n", fragmentPos, rectName); |
| fsBuilder->codeAppend("\t\tvec2 dxy = max(vec2(dxy0.x, max(dxy0.y, dy1)), 0.0);\n"); |
| fsBuilder->codeAppendf("\t\tfloat rightAlpha = clamp(%s.z - %s.x, 0.0, 1.0);\n", |
| rectName, fragmentPos); |
| fsBuilder->codeAppendf("\t\tfloat alpha = rightAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n", |
| radiusPlusHalfName); |
| break; |
| case CircularRRectEffect::kTop_CornerFlags: |
| fsBuilder->codeAppendf("\t\tvec2 dxy0 = %s.xy - %s.xy;\n", rectName, fragmentPos); |
| fsBuilder->codeAppendf("\t\tfloat dx1 = %s.x - %s.z;\n", fragmentPos, rectName); |
| fsBuilder->codeAppend("\t\tvec2 dxy = max(vec2(max(dxy0.x, dx1), dxy0.y), 0.0);\n"); |
| fsBuilder->codeAppendf("\t\tfloat bottomAlpha = clamp(%s.w - %s.y, 0.0, 1.0);\n", |
| rectName, fragmentPos); |
| fsBuilder->codeAppendf("\t\tfloat alpha = bottomAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n", |
| radiusPlusHalfName); |
| break; |
| case CircularRRectEffect::kRight_CornerFlags: |
| fsBuilder->codeAppendf("\t\tfloat dy0 = %s.y - %s.y;\n", rectName, fragmentPos); |
| fsBuilder->codeAppendf("\t\tvec2 dxy1 = %s.xy - %s.zw;\n", fragmentPos, rectName); |
| fsBuilder->codeAppend("\t\tvec2 dxy = max(vec2(dxy1.x, max(dy0, dxy1.y)), 0.0);\n"); |
| fsBuilder->codeAppendf("\t\tfloat leftAlpha = clamp(%s.x - %s.x, 0.0, 1.0);\n", |
| fragmentPos, rectName); |
| fsBuilder->codeAppendf("\t\tfloat alpha = leftAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n", |
| radiusPlusHalfName); |
| break; |
| case CircularRRectEffect::kBottom_CornerFlags: |
| fsBuilder->codeAppendf("\t\tfloat dx0 = %s.x - %s.x;\n", rectName, fragmentPos); |
| fsBuilder->codeAppendf("\t\tvec2 dxy1 = %s.xy - %s.zw;\n", fragmentPos, rectName); |
| fsBuilder->codeAppend("\t\tvec2 dxy = max(vec2(max(dx0, dxy1.x), dxy1.y), 0.0);\n"); |
| fsBuilder->codeAppendf("\t\tfloat topAlpha = clamp(%s.y - %s.y, 0.0, 1.0);\n", |
| fragmentPos, rectName); |
| fsBuilder->codeAppendf("\t\tfloat alpha = topAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n", |
| radiusPlusHalfName); |
| break; |
| } |
| |
| if (kInverseFillAA_GrProcessorEdgeType == crre.getEdgeType()) { |
| fsBuilder->codeAppend("\t\talpha = 1.0 - alpha;\n"); |
| } |
| |
| fsBuilder->codeAppendf("\t\t%s = %s;\n", args.fOutputColor, |
| (GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str()); |
| } |
| |
| void GLCircularRRectEffect::GenKey(const GrProcessor& processor, const GrGLSLCaps&, |
| GrProcessorKeyBuilder* b) { |
| const CircularRRectEffect& crre = processor.cast<CircularRRectEffect>(); |
| GR_STATIC_ASSERT(kGrProcessorEdgeTypeCnt <= 8); |
| b->add32((crre.getCircularCornerFlags() << 3) | crre.getEdgeType()); |
| } |
| |
| void GLCircularRRectEffect::onSetData(const GrGLSLProgramDataManager& pdman, |
| const GrProcessor& processor) { |
| const CircularRRectEffect& crre = processor.cast<CircularRRectEffect>(); |
| const SkRRect& rrect = crre.getRRect(); |
| if (rrect != fPrevRRect) { |
| SkRect rect = rrect.getBounds(); |
| SkScalar radius = 0; |
| switch (crre.getCircularCornerFlags()) { |
| case CircularRRectEffect::kAll_CornerFlags: |
| SkASSERT(rrect.isSimpleCircular()); |
| radius = rrect.getSimpleRadii().fX; |
| SkASSERT(radius >= kRadiusMin); |
| rect.inset(radius, radius); |
| break; |
| case CircularRRectEffect::kTopLeft_CornerFlag: |
| radius = rrect.radii(SkRRect::kUpperLeft_Corner).fX; |
| rect.fLeft += radius; |
| rect.fTop += radius; |
| rect.fRight += 0.5f; |
| rect.fBottom += 0.5f; |
| break; |
| case CircularRRectEffect::kTopRight_CornerFlag: |
| radius = rrect.radii(SkRRect::kUpperRight_Corner).fX; |
| rect.fLeft -= 0.5f; |
| rect.fTop += radius; |
| rect.fRight -= radius; |
| rect.fBottom += 0.5f; |
| break; |
| case CircularRRectEffect::kBottomRight_CornerFlag: |
| radius = rrect.radii(SkRRect::kLowerRight_Corner).fX; |
| rect.fLeft -= 0.5f; |
| rect.fTop -= 0.5f; |
| rect.fRight -= radius; |
| rect.fBottom -= radius; |
| break; |
| case CircularRRectEffect::kBottomLeft_CornerFlag: |
| radius = rrect.radii(SkRRect::kLowerLeft_Corner).fX; |
| rect.fLeft += radius; |
| rect.fTop -= 0.5f; |
| rect.fRight += 0.5f; |
| rect.fBottom -= radius; |
| break; |
| case CircularRRectEffect::kLeft_CornerFlags: |
| radius = rrect.radii(SkRRect::kUpperLeft_Corner).fX; |
| rect.fLeft += radius; |
| rect.fTop += radius; |
| rect.fRight += 0.5f; |
| rect.fBottom -= radius; |
| break; |
| case CircularRRectEffect::kTop_CornerFlags: |
| radius = rrect.radii(SkRRect::kUpperLeft_Corner).fX; |
| rect.fLeft += radius; |
| rect.fTop += radius; |
| rect.fRight -= radius; |
| rect.fBottom += 0.5f; |
| break; |
| case CircularRRectEffect::kRight_CornerFlags: |
| radius = rrect.radii(SkRRect::kUpperRight_Corner).fX; |
| rect.fLeft -= 0.5f; |
| rect.fTop += radius; |
| rect.fRight -= radius; |
| rect.fBottom -= radius; |
| break; |
| case CircularRRectEffect::kBottom_CornerFlags: |
| radius = rrect.radii(SkRRect::kLowerLeft_Corner).fX; |
| rect.fLeft += radius; |
| rect.fTop -= 0.5f; |
| rect.fRight -= radius; |
| rect.fBottom -= radius; |
| break; |
| default: |
| SkFAIL("Should have been one of the above cases."); |
| } |
| pdman.set4f(fInnerRectUniform, rect.fLeft, rect.fTop, rect.fRight, rect.fBottom); |
| pdman.set1f(fRadiusPlusHalfUniform, radius + 0.5f); |
| fPrevRRect = rrect; |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| void CircularRRectEffect::onGetGLProcessorKey(const GrGLSLCaps& caps, |
| GrProcessorKeyBuilder* b) const { |
| GLCircularRRectEffect::GenKey(*this, caps, b); |
| } |
| |
| GrGLFragmentProcessor* CircularRRectEffect::onCreateGLInstance() const { |
| return new GLCircularRRectEffect(*this); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class EllipticalRRectEffect : public GrFragmentProcessor { |
| public: |
| static GrFragmentProcessor* Create(GrPrimitiveEdgeType, const SkRRect&); |
| |
| virtual ~EllipticalRRectEffect() {}; |
| |
| const char* name() const override { return "EllipticalRRect"; } |
| |
| const SkRRect& getRRect() const { return fRRect; } |
| |
| GrPrimitiveEdgeType getEdgeType() const { return fEdgeType; } |
| |
| private: |
| EllipticalRRectEffect(GrPrimitiveEdgeType, const SkRRect&); |
| |
| GrGLFragmentProcessor* onCreateGLInstance() const override; |
| |
| void onGetGLProcessorKey(const GrGLSLCaps&, GrProcessorKeyBuilder*) const override; |
| |
| bool onIsEqual(const GrFragmentProcessor& other) const override; |
| |
| void onComputeInvariantOutput(GrInvariantOutput* inout) const override; |
| |
| SkRRect fRRect; |
| GrPrimitiveEdgeType fEdgeType; |
| |
| GR_DECLARE_FRAGMENT_PROCESSOR_TEST; |
| |
| typedef GrFragmentProcessor INHERITED; |
| }; |
| |
| GrFragmentProcessor* |
| EllipticalRRectEffect::Create(GrPrimitiveEdgeType edgeType, const SkRRect& rrect) { |
| if (kFillAA_GrProcessorEdgeType != edgeType && kInverseFillAA_GrProcessorEdgeType != edgeType) { |
| return nullptr; |
| } |
| return new EllipticalRRectEffect(edgeType, rrect); |
| } |
| |
| void EllipticalRRectEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const { |
| inout->mulByUnknownSingleComponent(); |
| } |
| |
| EllipticalRRectEffect::EllipticalRRectEffect(GrPrimitiveEdgeType edgeType, const SkRRect& rrect) |
| : fRRect(rrect) |
| , fEdgeType(edgeType) { |
| this->initClassID<EllipticalRRectEffect>(); |
| this->setWillReadFragmentPosition(); |
| } |
| |
| bool EllipticalRRectEffect::onIsEqual(const GrFragmentProcessor& other) const { |
| const EllipticalRRectEffect& erre = other.cast<EllipticalRRectEffect>(); |
| return fEdgeType == erre.fEdgeType && fRRect == erre.fRRect; |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| GR_DEFINE_FRAGMENT_PROCESSOR_TEST(EllipticalRRectEffect); |
| |
| const GrFragmentProcessor* EllipticalRRectEffect::TestCreate(GrProcessorTestData* d) { |
| SkScalar w = d->fRandom->nextRangeScalar(20.f, 1000.f); |
| SkScalar h = d->fRandom->nextRangeScalar(20.f, 1000.f); |
| SkVector r[4]; |
| r[SkRRect::kUpperLeft_Corner].fX = d->fRandom->nextRangeF(kRadiusMin, 9.f); |
| // ensure at least one corner really is elliptical |
| do { |
| r[SkRRect::kUpperLeft_Corner].fY = d->fRandom->nextRangeF(kRadiusMin, 9.f); |
| } while (r[SkRRect::kUpperLeft_Corner].fY == r[SkRRect::kUpperLeft_Corner].fX); |
| |
| SkRRect rrect; |
| if (d->fRandom->nextBool()) { |
| // half the time create a four-radii rrect. |
| r[SkRRect::kLowerRight_Corner].fX = d->fRandom->nextRangeF(kRadiusMin, 9.f); |
| r[SkRRect::kLowerRight_Corner].fY = d->fRandom->nextRangeF(kRadiusMin, 9.f); |
| |
| r[SkRRect::kUpperRight_Corner].fX = r[SkRRect::kLowerRight_Corner].fX; |
| r[SkRRect::kUpperRight_Corner].fY = r[SkRRect::kUpperLeft_Corner].fY; |
| |
| r[SkRRect::kLowerLeft_Corner].fX = r[SkRRect::kUpperLeft_Corner].fX; |
| r[SkRRect::kLowerLeft_Corner].fY = r[SkRRect::kLowerRight_Corner].fY; |
| |
| rrect.setRectRadii(SkRect::MakeWH(w, h), r); |
| } else { |
| rrect.setRectXY(SkRect::MakeWH(w, h), r[SkRRect::kUpperLeft_Corner].fX, |
| r[SkRRect::kUpperLeft_Corner].fY); |
| } |
| GrFragmentProcessor* fp; |
| do { |
| GrPrimitiveEdgeType et = |
| (GrPrimitiveEdgeType)d->fRandom->nextULessThan(kGrProcessorEdgeTypeCnt); |
| fp = GrRRectEffect::Create(et, rrect); |
| } while (nullptr == fp); |
| return fp; |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class GLEllipticalRRectEffect : public GrGLFragmentProcessor { |
| public: |
| GLEllipticalRRectEffect(const GrProcessor&); |
| |
| virtual void emitCode(EmitArgs&) override; |
| |
| static inline void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder*); |
| |
| protected: |
| void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override; |
| |
| private: |
| GrGLSLProgramDataManager::UniformHandle fInnerRectUniform; |
| GrGLSLProgramDataManager::UniformHandle fInvRadiiSqdUniform; |
| SkRRect fPrevRRect; |
| typedef GrGLFragmentProcessor INHERITED; |
| }; |
| |
| GLEllipticalRRectEffect::GLEllipticalRRectEffect(const GrProcessor& effect) { |
| fPrevRRect.setEmpty(); |
| } |
| |
| void GLEllipticalRRectEffect::emitCode(EmitArgs& args) { |
| const EllipticalRRectEffect& erre = args.fFp.cast<EllipticalRRectEffect>(); |
| const char *rectName; |
| // The inner rect is the rrect bounds inset by the x/y radii |
| fInnerRectUniform = args.fBuilder->addUniform(GrGLProgramBuilder::kFragment_Visibility, |
| kVec4f_GrSLType, kDefault_GrSLPrecision, |
| "innerRect", |
| &rectName); |
| |
| GrGLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder(); |
| const char* fragmentPos = fsBuilder->fragmentPosition(); |
| // At each quarter-ellipse corner we compute a vector that is the offset of the fragment pos |
| // to the ellipse center. The vector is pinned in x and y to be in the quarter-plane relevant |
| // to that corner. This means that points near the interior near the rrect top edge will have |
| // a vector that points straight up for both the TL left and TR corners. Computing an |
| // alpha from this vector at either the TR or TL corner will give the correct result. Similarly, |
| // fragments near the other three edges will get the correct AA. Fragments in the interior of |
| // the rrect will have a (0,0) vector at all four corners. So long as the radii > 0.5 they will |
| // correctly produce an alpha value of 1 at all four corners. We take the min of all the alphas. |
| // |
| // The code below is a simplified version of the above that performs maxs on the vector |
| // components before computing distances and alpha values so that only one distance computation |
| // need be computed to determine the min alpha. |
| fsBuilder->codeAppendf("\t\tvec2 dxy0 = %s.xy - %s.xy;\n", rectName, fragmentPos); |
| fsBuilder->codeAppendf("\t\tvec2 dxy1 = %s.xy - %s.zw;\n", fragmentPos, rectName); |
| // The uniforms with the inv squared radii are highp to prevent underflow. |
| switch (erre.getRRect().getType()) { |
| case SkRRect::kSimple_Type: { |
| const char *invRadiiXYSqdName; |
| fInvRadiiSqdUniform = args.fBuilder->addUniform(GrGLProgramBuilder::kFragment_Visibility, |
| kVec2f_GrSLType, kHigh_GrSLPrecision, |
| "invRadiiXY", |
| &invRadiiXYSqdName); |
| fsBuilder->codeAppend("\t\tvec2 dxy = max(max(dxy0, dxy1), 0.0);\n"); |
| // Z is the x/y offsets divided by squared radii. |
| fsBuilder->codeAppendf("\t\tvec2 Z = dxy * %s;\n", invRadiiXYSqdName); |
| break; |
| } |
| case SkRRect::kNinePatch_Type: { |
| const char *invRadiiLTRBSqdName; |
| fInvRadiiSqdUniform = args.fBuilder->addUniform(GrGLProgramBuilder::kFragment_Visibility, |
| kVec4f_GrSLType, kHigh_GrSLPrecision, |
| "invRadiiLTRB", |
| &invRadiiLTRBSqdName); |
| fsBuilder->codeAppend("\t\tvec2 dxy = max(max(dxy0, dxy1), 0.0);\n"); |
| // Z is the x/y offsets divided by squared radii. We only care about the (at most) one |
| // corner where both the x and y offsets are positive, hence the maxes. (The inverse |
| // squared radii will always be positive.) |
| fsBuilder->codeAppendf("\t\tvec2 Z = max(max(dxy0 * %s.xy, dxy1 * %s.zw), 0.0);\n", |
| invRadiiLTRBSqdName, invRadiiLTRBSqdName); |
| break; |
| } |
| default: |
| SkFAIL("RRect should always be simple or nine-patch."); |
| } |
| // implicit is the evaluation of (x/a)^2 + (y/b)^2 - 1. |
| fsBuilder->codeAppend("\t\tfloat implicit = dot(Z, dxy) - 1.0;\n"); |
| // grad_dot is the squared length of the gradient of the implicit. |
| fsBuilder->codeAppendf("\t\tfloat grad_dot = 4.0 * dot(Z, Z);\n"); |
| // avoid calling inversesqrt on zero. |
| fsBuilder->codeAppend("\t\tgrad_dot = max(grad_dot, 1.0e-4);\n"); |
| fsBuilder->codeAppendf("\t\tfloat approx_dist = implicit * inversesqrt(grad_dot);\n"); |
| |
| if (kFillAA_GrProcessorEdgeType == erre.getEdgeType()) { |
| fsBuilder->codeAppend("\t\tfloat alpha = clamp(0.5 - approx_dist, 0.0, 1.0);\n"); |
| } else { |
| fsBuilder->codeAppend("\t\tfloat alpha = clamp(0.5 + approx_dist, 0.0, 1.0);\n"); |
| } |
| |
| fsBuilder->codeAppendf("\t\t%s = %s;\n", args.fOutputColor, |
| (GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str()); |
| } |
| |
| void GLEllipticalRRectEffect::GenKey(const GrProcessor& effect, const GrGLSLCaps&, |
| GrProcessorKeyBuilder* b) { |
| const EllipticalRRectEffect& erre = effect.cast<EllipticalRRectEffect>(); |
| GR_STATIC_ASSERT(kLast_GrProcessorEdgeType < (1 << 3)); |
| b->add32(erre.getRRect().getType() | erre.getEdgeType() << 3); |
| } |
| |
| void GLEllipticalRRectEffect::onSetData(const GrGLSLProgramDataManager& pdman, |
| const GrProcessor& effect) { |
| const EllipticalRRectEffect& erre = effect.cast<EllipticalRRectEffect>(); |
| const SkRRect& rrect = erre.getRRect(); |
| if (rrect != fPrevRRect) { |
| SkRect rect = rrect.getBounds(); |
| const SkVector& r0 = rrect.radii(SkRRect::kUpperLeft_Corner); |
| SkASSERT(r0.fX >= kRadiusMin); |
| SkASSERT(r0.fY >= kRadiusMin); |
| switch (erre.getRRect().getType()) { |
| case SkRRect::kSimple_Type: |
| rect.inset(r0.fX, r0.fY); |
| pdman.set2f(fInvRadiiSqdUniform, 1.f / (r0.fX * r0.fX), |
| 1.f / (r0.fY * r0.fY)); |
| break; |
| case SkRRect::kNinePatch_Type: { |
| const SkVector& r1 = rrect.radii(SkRRect::kLowerRight_Corner); |
| SkASSERT(r1.fX >= kRadiusMin); |
| SkASSERT(r1.fY >= kRadiusMin); |
| rect.fLeft += r0.fX; |
| rect.fTop += r0.fY; |
| rect.fRight -= r1.fX; |
| rect.fBottom -= r1.fY; |
| pdman.set4f(fInvRadiiSqdUniform, 1.f / (r0.fX * r0.fX), |
| 1.f / (r0.fY * r0.fY), |
| 1.f / (r1.fX * r1.fX), |
| 1.f / (r1.fY * r1.fY)); |
| break; |
| } |
| default: |
| SkFAIL("RRect should always be simple or nine-patch."); |
| } |
| pdman.set4f(fInnerRectUniform, rect.fLeft, rect.fTop, rect.fRight, rect.fBottom); |
| fPrevRRect = rrect; |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| void EllipticalRRectEffect::onGetGLProcessorKey(const GrGLSLCaps& caps, |
| GrProcessorKeyBuilder* b) const { |
| GLEllipticalRRectEffect::GenKey(*this, caps, b); |
| } |
| |
| GrGLFragmentProcessor* EllipticalRRectEffect::onCreateGLInstance() const { |
| return new GLEllipticalRRectEffect(*this); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| GrFragmentProcessor* GrRRectEffect::Create(GrPrimitiveEdgeType edgeType, const SkRRect& rrect) { |
| if (rrect.isRect()) { |
| return GrConvexPolyEffect::Create(edgeType, rrect.getBounds()); |
| } |
| |
| if (rrect.isOval()) { |
| return GrOvalEffect::Create(edgeType, rrect.getBounds()); |
| } |
| |
| if (rrect.isSimple()) { |
| if (rrect.getSimpleRadii().fX < kRadiusMin || rrect.getSimpleRadii().fY < kRadiusMin) { |
| // In this case the corners are extremely close to rectangular and we collapse the |
| // clip to a rectangular clip. |
| return GrConvexPolyEffect::Create(edgeType, rrect.getBounds()); |
| } |
| if (rrect.getSimpleRadii().fX == rrect.getSimpleRadii().fY) { |
| return CircularRRectEffect::Create(edgeType, CircularRRectEffect::kAll_CornerFlags, |
| rrect); |
| } else { |
| return EllipticalRRectEffect::Create(edgeType, rrect); |
| } |
| } |
| |
| if (rrect.isComplex() || rrect.isNinePatch()) { |
| // Check for the "tab" cases - two adjacent circular corners and two square corners. |
| SkScalar circularRadius = 0; |
| uint32_t cornerFlags = 0; |
| |
| SkVector radii[4]; |
| bool squashedRadii = false; |
| for (int c = 0; c < 4; ++c) { |
| radii[c] = rrect.radii((SkRRect::Corner)c); |
| SkASSERT((0 == radii[c].fX) == (0 == radii[c].fY)); |
| if (0 == radii[c].fX) { |
| // The corner is square, so no need to squash or flag as circular. |
| continue; |
| } |
| if (radii[c].fX < kRadiusMin || radii[c].fY < kRadiusMin) { |
| radii[c].set(0, 0); |
| squashedRadii = true; |
| continue; |
| } |
| if (radii[c].fX != radii[c].fY) { |
| cornerFlags = ~0U; |
| break; |
| } |
| if (!cornerFlags) { |
| circularRadius = radii[c].fX; |
| cornerFlags = 1 << c; |
| } else { |
| if (radii[c].fX != circularRadius) { |
| cornerFlags = ~0U; |
| break; |
| } |
| cornerFlags |= 1 << c; |
| } |
| } |
| |
| switch (cornerFlags) { |
| case CircularRRectEffect::kAll_CornerFlags: |
| // This rrect should have been caught in the simple case above. Though, it would |
| // be correctly handled in the fallthrough code. |
| SkASSERT(false); |
| case CircularRRectEffect::kTopLeft_CornerFlag: |
| case CircularRRectEffect::kTopRight_CornerFlag: |
| case CircularRRectEffect::kBottomRight_CornerFlag: |
| case CircularRRectEffect::kBottomLeft_CornerFlag: |
| case CircularRRectEffect::kLeft_CornerFlags: |
| case CircularRRectEffect::kTop_CornerFlags: |
| case CircularRRectEffect::kRight_CornerFlags: |
| case CircularRRectEffect::kBottom_CornerFlags: { |
| SkTCopyOnFirstWrite<SkRRect> rr(rrect); |
| if (squashedRadii) { |
| rr.writable()->setRectRadii(rrect.getBounds(), radii); |
| } |
| return CircularRRectEffect::Create(edgeType, cornerFlags, *rr); |
| } |
| case CircularRRectEffect::kNone_CornerFlags: |
| return GrConvexPolyEffect::Create(edgeType, rrect.getBounds()); |
| default: { |
| if (squashedRadii) { |
| // If we got here then we squashed some but not all the radii to zero. (If all |
| // had been squashed cornerFlags would be 0.) The elliptical effect doesn't |
| // support some rounded and some square corners. |
| return nullptr; |
| } |
| if (rrect.isNinePatch()) { |
| return EllipticalRRectEffect::Create(edgeType, rrect); |
| } |
| return nullptr; |
| } |
| } |
| } |
| |
| return nullptr; |
| } |