| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "Sk4px.h" |
| #include "SkNx.h" |
| #include "SkRandom.h" |
| #include "Test.h" |
| |
| template <int N> |
| static void test_Nf(skiatest::Reporter* r) { |
| |
| auto assert_nearly_eq = [&](float eps, const SkNx<N, float>& v, |
| float a, float b, float c, float d) { |
| auto close = [=](float a, float b) { return fabsf(a-b) <= eps; }; |
| float vals[4]; |
| v.store(vals); |
| bool ok = close(vals[0], a) && close(vals[1], b) |
| && close( v[0], a) && close( v[1], b); |
| REPORTER_ASSERT(r, ok); |
| if (N == 4) { |
| ok = close(vals[2], c) && close(vals[3], d) |
| && close( v[2], c) && close( v[3], d); |
| REPORTER_ASSERT(r, ok); |
| } |
| }; |
| auto assert_eq = [&](const SkNx<N, float>& v, float a, float b, float c, float d) { |
| return assert_nearly_eq(0, v, a,b,c,d); |
| }; |
| |
| float vals[] = {3, 4, 5, 6}; |
| SkNx<N,float> a = SkNx<N,float>::Load(vals), |
| b(a), |
| c = a; |
| SkNx<N,float> d; |
| d = a; |
| |
| assert_eq(a, 3, 4, 5, 6); |
| assert_eq(b, 3, 4, 5, 6); |
| assert_eq(c, 3, 4, 5, 6); |
| assert_eq(d, 3, 4, 5, 6); |
| |
| assert_eq(a+b, 6, 8, 10, 12); |
| assert_eq(a*b, 9, 16, 25, 36); |
| assert_eq(a*b-b, 6, 12, 20, 30); |
| assert_eq((a*b).sqrt(), 3, 4, 5, 6); |
| assert_eq(a/b, 1, 1, 1, 1); |
| assert_eq(SkNx<N,float>(0)-a, -3, -4, -5, -6); |
| |
| SkNx<N,float> fours(4); |
| |
| assert_eq(fours.sqrt(), 2,2,2,2); |
| assert_nearly_eq(0.001f, fours.rsqrt0(), 0.5, 0.5, 0.5, 0.5); |
| assert_nearly_eq(0.001f, fours.rsqrt1(), 0.5, 0.5, 0.5, 0.5); |
| assert_nearly_eq(0.001f, fours.rsqrt2(), 0.5, 0.5, 0.5, 0.5); |
| |
| assert_eq( fours. invert(), 0.25, 0.25, 0.25, 0.25); |
| assert_nearly_eq(0.001f, fours.approxInvert(), 0.25, 0.25, 0.25, 0.25); |
| |
| assert_eq(SkNx<N,float>::Min(a, fours), 3, 4, 4, 4); |
| assert_eq(SkNx<N,float>::Max(a, fours), 4, 4, 5, 6); |
| |
| // Test some comparisons. This is not exhaustive. |
| REPORTER_ASSERT(r, (a == b).allTrue()); |
| REPORTER_ASSERT(r, (a+b == a*b-b).anyTrue()); |
| REPORTER_ASSERT(r, !(a+b == a*b-b).allTrue()); |
| REPORTER_ASSERT(r, !(a+b == a*b).anyTrue()); |
| REPORTER_ASSERT(r, !(a != b).anyTrue()); |
| REPORTER_ASSERT(r, (a < fours).anyTrue()); |
| REPORTER_ASSERT(r, (a <= fours).anyTrue()); |
| REPORTER_ASSERT(r, !(a > fours).allTrue()); |
| REPORTER_ASSERT(r, !(a >= fours).allTrue()); |
| } |
| |
| DEF_TEST(SkNf, r) { |
| test_Nf<2>(r); |
| test_Nf<4>(r); |
| } |
| |
| template <int N, typename T> |
| void test_Ni(skiatest::Reporter* r) { |
| auto assert_eq = [&](const SkNx<N,T>& v, T a, T b, T c, T d, T e, T f, T g, T h) { |
| T vals[8]; |
| v.store(vals); |
| |
| switch (N) { |
| case 8: REPORTER_ASSERT(r, vals[4] == e && vals[5] == f && vals[6] == g && vals[7] == h); |
| case 4: REPORTER_ASSERT(r, vals[2] == c && vals[3] == d); |
| case 2: REPORTER_ASSERT(r, vals[0] == a && vals[1] == b); |
| } |
| switch (N) { |
| case 8: REPORTER_ASSERT(r, v[4] == e && v[5] == f && |
| v[6] == g && v[7] == h); |
| case 4: REPORTER_ASSERT(r, v[2] == c && v[3] == d); |
| case 2: REPORTER_ASSERT(r, v[0] == a && v[1] == b); |
| } |
| }; |
| |
| T vals[] = { 1,2,3,4,5,6,7,8 }; |
| SkNx<N,T> a = SkNx<N,T>::Load(vals), |
| b(a), |
| c = a; |
| SkNx<N,T> d; |
| d = a; |
| |
| assert_eq(a, 1,2,3,4,5,6,7,8); |
| assert_eq(b, 1,2,3,4,5,6,7,8); |
| assert_eq(c, 1,2,3,4,5,6,7,8); |
| assert_eq(d, 1,2,3,4,5,6,7,8); |
| |
| assert_eq(a+a, 2,4,6,8,10,12,14,16); |
| assert_eq(a*a, 1,4,9,16,25,36,49,64); |
| assert_eq(a*a-a, 0,2,6,12,20,30,42,56); |
| |
| assert_eq(a >> 2, 0,0,0,1,1,1,1,2); |
| assert_eq(a << 1, 2,4,6,8,10,12,14,16); |
| |
| REPORTER_ASSERT(r, a[1] == 2); |
| } |
| |
| DEF_TEST(SkNx, r) { |
| test_Ni<2, uint16_t>(r); |
| test_Ni<4, uint16_t>(r); |
| test_Ni<8, uint16_t>(r); |
| |
| test_Ni<2, int>(r); |
| test_Ni<4, int>(r); |
| test_Ni<8, int>(r); |
| } |
| |
| DEF_TEST(SkNi_min_lt, r) { |
| // Exhaustively check the 8x8 bit space. |
| for (int a = 0; a < (1<<8); a++) { |
| for (int b = 0; b < (1<<8); b++) { |
| Sk16b aw(a), bw(b); |
| REPORTER_ASSERT(r, Sk16b::Min(aw, bw)[0] == SkTMin(a, b)); |
| REPORTER_ASSERT(r, !(aw < bw)[0] == !(a < b)); |
| }} |
| |
| // Exhausting the 16x16 bit space is kind of slow, so only do that in release builds. |
| #ifdef SK_DEBUG |
| SkRandom rand; |
| for (int i = 0; i < (1<<16); i++) { |
| uint16_t a = rand.nextU() >> 16, |
| b = rand.nextU() >> 16; |
| REPORTER_ASSERT(r, Sk16h::Min(Sk16h(a), Sk16h(b))[0] == SkTMin(a, b)); |
| } |
| #else |
| for (int a = 0; a < (1<<16); a++) { |
| for (int b = 0; b < (1<<16); b++) { |
| REPORTER_ASSERT(r, Sk16h::Min(Sk16h(a), Sk16h(b))[0] == SkTMin(a, b)); |
| }} |
| #endif |
| } |
| |
| DEF_TEST(SkNi_saturatedAdd, r) { |
| for (int a = 0; a < (1<<8); a++) { |
| for (int b = 0; b < (1<<8); b++) { |
| int exact = a+b; |
| if (exact > 255) { exact = 255; } |
| if (exact < 0) { exact = 0; } |
| |
| REPORTER_ASSERT(r, Sk16b(a).saturatedAdd(Sk16b(b))[0] == exact); |
| } |
| } |
| } |
| |
| DEF_TEST(Sk4px_muldiv255round, r) { |
| for (int a = 0; a < (1<<8); a++) { |
| for (int b = 0; b < (1<<8); b++) { |
| int exact = (a*b+127)/255; |
| |
| // Duplicate a and b 16x each. |
| auto av = Sk4px::DupAlpha(a), |
| bv = Sk4px::DupAlpha(b); |
| |
| // This way should always be exactly correct. |
| int correct = (av * bv).div255()[0]; |
| REPORTER_ASSERT(r, correct == exact); |
| |
| // We're a bit more flexible on this method: correct for 0 or 255, otherwise off by <=1. |
| int fast = av.approxMulDiv255(bv)[0]; |
| REPORTER_ASSERT(r, fast-exact >= -1 && fast-exact <= 1); |
| if (a == 0 || a == 255 || b == 0 || b == 255) { |
| REPORTER_ASSERT(r, fast == exact); |
| } |
| } |
| } |
| } |
| |
| DEF_TEST(Sk4px_widening, r) { |
| SkPMColor colors[] = { |
| SkPreMultiplyColor(0xff00ff00), |
| SkPreMultiplyColor(0x40008000), |
| SkPreMultiplyColor(0x7f020406), |
| SkPreMultiplyColor(0x00000000), |
| }; |
| auto packed = Sk4px::Load4(colors); |
| |
| auto wideLo = packed.widenLo(), |
| wideHi = packed.widenHi(), |
| wideLoHi = packed.widenLoHi(), |
| wideLoHiAlt = wideLo + wideHi; |
| REPORTER_ASSERT(r, 0 == memcmp(&wideLoHi, &wideLoHiAlt, sizeof(wideLoHi))); |
| } |
| |
| DEF_TEST(SkNx_abs, r) { |
| auto fs = Sk4f(0.0f, -0.0f, 2.0f, -4.0f).abs(); |
| REPORTER_ASSERT(r, fs[0] == 0.0f); |
| REPORTER_ASSERT(r, fs[1] == 0.0f); |
| REPORTER_ASSERT(r, fs[2] == 2.0f); |
| REPORTER_ASSERT(r, fs[3] == 4.0f); |
| } |
| |
| DEF_TEST(SkNx_floor, r) { |
| auto fs = Sk4f(0.4f, -0.4f, 0.6f, -0.6f).floor(); |
| REPORTER_ASSERT(r, fs[0] == 0.0f); |
| REPORTER_ASSERT(r, fs[1] == -1.0f); |
| REPORTER_ASSERT(r, fs[2] == 0.0f); |
| REPORTER_ASSERT(r, fs[3] == -1.0f); |
| } |
| |
| DEF_TEST(SkNx_shuffle, r) { |
| Sk4f f4(0,10,20,30); |
| |
| Sk2f f2 = SkNx_shuffle<2,1>(f4); |
| REPORTER_ASSERT(r, f2[0] == 20); |
| REPORTER_ASSERT(r, f2[1] == 10); |
| |
| f4 = SkNx_shuffle<0,1,1,0>(f2); |
| REPORTER_ASSERT(r, f4[0] == 20); |
| REPORTER_ASSERT(r, f4[1] == 10); |
| REPORTER_ASSERT(r, f4[2] == 10); |
| REPORTER_ASSERT(r, f4[3] == 20); |
| } |
| |
| DEF_TEST(SkNx_int_float, r) { |
| Sk4f f(-2.3f, 1.0f, 0.45f, 0.6f); |
| |
| Sk4i i = SkNx_cast<int>(f); |
| REPORTER_ASSERT(r, i[0] == -2); |
| REPORTER_ASSERT(r, i[1] == 1); |
| REPORTER_ASSERT(r, i[2] == 0); |
| REPORTER_ASSERT(r, i[3] == 0); |
| |
| f = SkNx_cast<float>(i); |
| REPORTER_ASSERT(r, f[0] == -2.0f); |
| REPORTER_ASSERT(r, f[1] == 1.0f); |
| REPORTER_ASSERT(r, f[2] == 0.0f); |
| REPORTER_ASSERT(r, f[3] == 0.0f); |
| } |
| |
| #include "SkRandom.h" |
| |
| DEF_TEST(SkNx_u16_float, r) { |
| { |
| // u16 --> float |
| auto h4 = Sk4h(15, 17, 257, 65535); |
| auto f4 = SkNx_cast<float>(h4); |
| REPORTER_ASSERT(r, f4[0] == 15.0f); |
| REPORTER_ASSERT(r, f4[1] == 17.0f); |
| REPORTER_ASSERT(r, f4[2] == 257.0f); |
| REPORTER_ASSERT(r, f4[3] == 65535.0f); |
| } |
| { |
| // float -> u16 |
| auto f4 = Sk4f(15, 17, 257, 65535); |
| auto h4 = SkNx_cast<uint16_t>(f4); |
| REPORTER_ASSERT(r, h4[0] == 15); |
| REPORTER_ASSERT(r, h4[1] == 17); |
| REPORTER_ASSERT(r, h4[2] == 257); |
| REPORTER_ASSERT(r, h4[3] == 65535); |
| } |
| |
| // starting with any u16 value, we should be able to have a perfect round-trip in/out of floats |
| // |
| SkRandom rand; |
| for (int i = 0; i < 10000; ++i) { |
| const uint16_t s16[4] { |
| (uint16_t)rand.nextU16(), (uint16_t)rand.nextU16(), |
| (uint16_t)rand.nextU16(), (uint16_t)rand.nextU16(), |
| }; |
| auto u4_0 = Sk4h::Load(s16); |
| auto f4 = SkNx_cast<float>(u4_0); |
| auto u4_1 = SkNx_cast<uint16_t>(f4); |
| uint16_t d16[4]; |
| u4_1.store(d16); |
| REPORTER_ASSERT(r, !memcmp(s16, d16, sizeof(s16))); |
| } |
| } |