| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/gl/GrGLGpu.h" |
| |
| #include "include/core/SkPixmap.h" |
| #include "include/core/SkTypes.h" |
| #include "include/gpu/GrBackendSemaphore.h" |
| #include "include/gpu/GrBackendSurface.h" |
| #include "include/gpu/GrDirectContext.h" |
| #include "include/gpu/GrTypes.h" |
| #include "include/private/SkHalf.h" |
| #include "include/private/SkTemplates.h" |
| #include "include/private/SkTo.h" |
| #include "src/core/SkAutoMalloc.h" |
| #include "src/core/SkCompressedDataUtils.h" |
| #include "src/core/SkMipmap.h" |
| #include "src/core/SkTraceEvent.h" |
| #include "src/gpu/GrBackendUtils.h" |
| #include "src/gpu/GrCpuBuffer.h" |
| #include "src/gpu/GrDataUtils.h" |
| #include "src/gpu/GrDirectContextPriv.h" |
| #include "src/gpu/GrGpuResourcePriv.h" |
| #include "src/gpu/GrPipeline.h" |
| #include "src/gpu/GrProgramInfo.h" |
| #include "src/gpu/GrRenderTarget.h" |
| #include "src/gpu/GrShaderCaps.h" |
| #include "src/gpu/GrSurfaceProxyPriv.h" |
| #include "src/gpu/GrTexture.h" |
| #include "src/gpu/gl/GrGLAttachment.h" |
| #include "src/gpu/gl/GrGLBuffer.h" |
| #include "src/gpu/gl/GrGLOpsRenderPass.h" |
| #include "src/gpu/gl/GrGLSemaphore.h" |
| #include "src/gpu/gl/GrGLTextureRenderTarget.h" |
| #include "src/gpu/gl/builders/GrGLShaderStringBuilder.h" |
| #include "src/sksl/SkSLCompiler.h" |
| |
| #include <cmath> |
| #include <memory> |
| |
| #define GL_CALL(X) GR_GL_CALL(this->glInterface(), X) |
| #define GL_CALL_RET(RET, X) GR_GL_CALL_RET(this->glInterface(), RET, X) |
| |
| #define GL_ALLOC_CALL(call) \ |
| [&] { \ |
| if (this->glCaps().skipErrorChecks()) { \ |
| GR_GL_CALL(this->glInterface(), call); \ |
| return static_cast<GrGLenum>(GR_GL_NO_ERROR); \ |
| } else { \ |
| this->clearErrorsAndCheckForOOM(); \ |
| GR_GL_CALL_NOERRCHECK(this->glInterface(), call); \ |
| return this->getErrorAndCheckForOOM(); \ |
| } \ |
| }() |
| |
| //#define USE_NSIGHT |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static const GrGLenum gXfermodeEquation2Blend[] = { |
| // Basic OpenGL blend equations. |
| GR_GL_FUNC_ADD, |
| GR_GL_FUNC_SUBTRACT, |
| GR_GL_FUNC_REVERSE_SUBTRACT, |
| |
| // GL_KHR_blend_equation_advanced. |
| GR_GL_SCREEN, |
| GR_GL_OVERLAY, |
| GR_GL_DARKEN, |
| GR_GL_LIGHTEN, |
| GR_GL_COLORDODGE, |
| GR_GL_COLORBURN, |
| GR_GL_HARDLIGHT, |
| GR_GL_SOFTLIGHT, |
| GR_GL_DIFFERENCE, |
| GR_GL_EXCLUSION, |
| GR_GL_MULTIPLY, |
| GR_GL_HSL_HUE, |
| GR_GL_HSL_SATURATION, |
| GR_GL_HSL_COLOR, |
| GR_GL_HSL_LUMINOSITY, |
| |
| // Illegal... needs to map to something. |
| GR_GL_FUNC_ADD, |
| }; |
| static_assert(0 == kAdd_GrBlendEquation); |
| static_assert(1 == kSubtract_GrBlendEquation); |
| static_assert(2 == kReverseSubtract_GrBlendEquation); |
| static_assert(3 == kScreen_GrBlendEquation); |
| static_assert(4 == kOverlay_GrBlendEquation); |
| static_assert(5 == kDarken_GrBlendEquation); |
| static_assert(6 == kLighten_GrBlendEquation); |
| static_assert(7 == kColorDodge_GrBlendEquation); |
| static_assert(8 == kColorBurn_GrBlendEquation); |
| static_assert(9 == kHardLight_GrBlendEquation); |
| static_assert(10 == kSoftLight_GrBlendEquation); |
| static_assert(11 == kDifference_GrBlendEquation); |
| static_assert(12 == kExclusion_GrBlendEquation); |
| static_assert(13 == kMultiply_GrBlendEquation); |
| static_assert(14 == kHSLHue_GrBlendEquation); |
| static_assert(15 == kHSLSaturation_GrBlendEquation); |
| static_assert(16 == kHSLColor_GrBlendEquation); |
| static_assert(17 == kHSLLuminosity_GrBlendEquation); |
| static_assert(SK_ARRAY_COUNT(gXfermodeEquation2Blend) == kGrBlendEquationCnt); |
| |
| static const GrGLenum gXfermodeCoeff2Blend[] = { |
| GR_GL_ZERO, |
| GR_GL_ONE, |
| GR_GL_SRC_COLOR, |
| GR_GL_ONE_MINUS_SRC_COLOR, |
| GR_GL_DST_COLOR, |
| GR_GL_ONE_MINUS_DST_COLOR, |
| GR_GL_SRC_ALPHA, |
| GR_GL_ONE_MINUS_SRC_ALPHA, |
| GR_GL_DST_ALPHA, |
| GR_GL_ONE_MINUS_DST_ALPHA, |
| GR_GL_CONSTANT_COLOR, |
| GR_GL_ONE_MINUS_CONSTANT_COLOR, |
| |
| // extended blend coeffs |
| GR_GL_SRC1_COLOR, |
| GR_GL_ONE_MINUS_SRC1_COLOR, |
| GR_GL_SRC1_ALPHA, |
| GR_GL_ONE_MINUS_SRC1_ALPHA, |
| |
| // Illegal... needs to map to something. |
| GR_GL_ZERO, |
| }; |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| static int gl_target_to_binding_index(GrGLenum target) { |
| switch (target) { |
| case GR_GL_TEXTURE_2D: |
| return 0; |
| case GR_GL_TEXTURE_RECTANGLE: |
| return 1; |
| case GR_GL_TEXTURE_EXTERNAL: |
| return 2; |
| } |
| SK_ABORT("Unexpected GL texture target."); |
| } |
| |
| GrGpuResource::UniqueID GrGLGpu::TextureUnitBindings::boundID(GrGLenum target) const { |
| return fTargetBindings[gl_target_to_binding_index(target)].fBoundResourceID; |
| } |
| |
| bool GrGLGpu::TextureUnitBindings::hasBeenModified(GrGLenum target) const { |
| return fTargetBindings[gl_target_to_binding_index(target)].fHasBeenModified; |
| } |
| |
| void GrGLGpu::TextureUnitBindings::setBoundID(GrGLenum target, GrGpuResource::UniqueID resourceID) { |
| int targetIndex = gl_target_to_binding_index(target); |
| fTargetBindings[targetIndex].fBoundResourceID = resourceID; |
| fTargetBindings[targetIndex].fHasBeenModified = true; |
| } |
| |
| void GrGLGpu::TextureUnitBindings::invalidateForScratchUse(GrGLenum target) { |
| this->setBoundID(target, GrGpuResource::UniqueID()); |
| } |
| |
| void GrGLGpu::TextureUnitBindings::invalidateAllTargets(bool markUnmodified) { |
| for (auto& targetBinding : fTargetBindings) { |
| targetBinding.fBoundResourceID.makeInvalid(); |
| if (markUnmodified) { |
| targetBinding.fHasBeenModified = false; |
| } |
| } |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| static GrGLenum filter_to_gl_mag_filter(GrSamplerState::Filter filter) { |
| switch (filter) { |
| case GrSamplerState::Filter::kNearest: return GR_GL_NEAREST; |
| case GrSamplerState::Filter::kLinear: return GR_GL_LINEAR; |
| } |
| SkUNREACHABLE; |
| } |
| |
| static GrGLenum filter_to_gl_min_filter(GrSamplerState::Filter filter, |
| GrSamplerState::MipmapMode mm) { |
| switch (mm) { |
| case GrSamplerState::MipmapMode::kNone: |
| return filter_to_gl_mag_filter(filter); |
| case GrSamplerState::MipmapMode::kNearest: |
| switch (filter) { |
| case GrSamplerState::Filter::kNearest: return GR_GL_NEAREST_MIPMAP_NEAREST; |
| case GrSamplerState::Filter::kLinear: return GR_GL_LINEAR_MIPMAP_NEAREST; |
| } |
| SkUNREACHABLE; |
| case GrSamplerState::MipmapMode::kLinear: |
| switch (filter) { |
| case GrSamplerState::Filter::kNearest: return GR_GL_NEAREST_MIPMAP_LINEAR; |
| case GrSamplerState::Filter::kLinear: return GR_GL_LINEAR_MIPMAP_LINEAR; |
| } |
| SkUNREACHABLE; |
| } |
| SkUNREACHABLE; |
| } |
| |
| static inline GrGLenum wrap_mode_to_gl_wrap(GrSamplerState::WrapMode wrapMode, |
| const GrCaps& caps) { |
| switch (wrapMode) { |
| case GrSamplerState::WrapMode::kClamp: return GR_GL_CLAMP_TO_EDGE; |
| case GrSamplerState::WrapMode::kRepeat: return GR_GL_REPEAT; |
| case GrSamplerState::WrapMode::kMirrorRepeat: return GR_GL_MIRRORED_REPEAT; |
| case GrSamplerState::WrapMode::kClampToBorder: |
| // May not be supported but should have been caught earlier |
| SkASSERT(caps.clampToBorderSupport()); |
| return GR_GL_CLAMP_TO_BORDER; |
| } |
| SkUNREACHABLE; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| class GrGLGpu::SamplerObjectCache { |
| public: |
| SamplerObjectCache(GrGLGpu* gpu) : fGpu(gpu) { |
| fNumTextureUnits = fGpu->glCaps().shaderCaps()->maxFragmentSamplers(); |
| fTextureUnitStates = std::make_unique<UnitState[]>(fNumTextureUnits); |
| std::fill_n(fSamplers, kNumSamplers, 0); |
| } |
| |
| ~SamplerObjectCache() { |
| if (!fNumTextureUnits) { |
| // We've already been abandoned. |
| return; |
| } |
| for (GrGLuint sampler : fSamplers) { |
| // The spec states that "zero" values should be silently ignored, however they still |
| // trigger GL errors on some NVIDIA platforms. |
| if (sampler) { |
| GR_GL_CALL(fGpu->glInterface(), DeleteSamplers(1, &sampler)); |
| } |
| } |
| } |
| |
| void bindSampler(int unitIdx, GrSamplerState state) { |
| int index = state.asIndex(); |
| if (!fSamplers[index]) { |
| GrGLuint s; |
| GR_GL_CALL(fGpu->glInterface(), GenSamplers(1, &s)); |
| if (!s) { |
| return; |
| } |
| fSamplers[index] = s; |
| GrGLenum minFilter = filter_to_gl_min_filter(state.filter(), state.mipmapMode()); |
| GrGLenum magFilter = filter_to_gl_mag_filter(state.filter()); |
| GrGLenum wrapX = wrap_mode_to_gl_wrap(state.wrapModeX(), fGpu->glCaps()); |
| GrGLenum wrapY = wrap_mode_to_gl_wrap(state.wrapModeY(), fGpu->glCaps()); |
| GR_GL_CALL(fGpu->glInterface(), |
| SamplerParameteri(s, GR_GL_TEXTURE_MIN_FILTER, minFilter)); |
| GR_GL_CALL(fGpu->glInterface(), |
| SamplerParameteri(s, GR_GL_TEXTURE_MAG_FILTER, magFilter)); |
| GR_GL_CALL(fGpu->glInterface(), SamplerParameteri(s, GR_GL_TEXTURE_WRAP_S, wrapX)); |
| GR_GL_CALL(fGpu->glInterface(), SamplerParameteri(s, GR_GL_TEXTURE_WRAP_T, wrapY)); |
| } |
| if (!fTextureUnitStates[unitIdx].fKnown || |
| fTextureUnitStates[unitIdx].fSamplerIDIfKnown != fSamplers[index]) { |
| GR_GL_CALL(fGpu->glInterface(), BindSampler(unitIdx, fSamplers[index])); |
| fTextureUnitStates[unitIdx].fSamplerIDIfKnown = fSamplers[index]; |
| fTextureUnitStates[unitIdx].fKnown = true; |
| } |
| } |
| |
| void unbindSampler(int unitIdx) { |
| if (!fTextureUnitStates[unitIdx].fKnown || |
| fTextureUnitStates[unitIdx].fSamplerIDIfKnown != 0) { |
| GR_GL_CALL(fGpu->glInterface(), BindSampler(unitIdx, 0)); |
| fTextureUnitStates[unitIdx].fSamplerIDIfKnown = 0; |
| fTextureUnitStates[unitIdx].fKnown = true; |
| } |
| } |
| |
| void invalidateBindings() { |
| std::fill_n(fTextureUnitStates.get(), fNumTextureUnits, UnitState{}); |
| } |
| |
| void abandon() { |
| fTextureUnitStates.reset(); |
| fNumTextureUnits = 0; |
| } |
| |
| void release() { |
| if (!fNumTextureUnits) { |
| // We've already been abandoned. |
| return; |
| } |
| GR_GL_CALL(fGpu->glInterface(), DeleteSamplers(kNumSamplers, fSamplers)); |
| std::fill_n(fSamplers, kNumSamplers, 0); |
| // Deleting a bound sampler implicitly binds sampler 0. We just invalidate all of our |
| // knowledge. |
| std::fill_n(fTextureUnitStates.get(), fNumTextureUnits, UnitState{}); |
| } |
| |
| private: |
| static constexpr int kNumSamplers = GrSamplerState::kNumUniqueSamplers; |
| struct UnitState { |
| bool fKnown = false; |
| GrGLuint fSamplerIDIfKnown = 0; |
| }; |
| GrGLGpu* fGpu; |
| std::unique_ptr<UnitState[]> fTextureUnitStates; |
| GrGLuint fSamplers[kNumSamplers]; |
| int fNumTextureUnits; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| sk_sp<GrGpu> GrGLGpu::Make(sk_sp<const GrGLInterface> interface, const GrContextOptions& options, |
| GrDirectContext* direct) { |
| if (!interface) { |
| interface = GrGLMakeNativeInterface(); |
| // For clients that have written their own GrGLCreateNativeInterface and haven't yet updated |
| // to GrGLMakeNativeInterface. |
| if (!interface) { |
| interface = sk_ref_sp(GrGLCreateNativeInterface()); |
| } |
| if (!interface) { |
| return nullptr; |
| } |
| } |
| #ifdef USE_NSIGHT |
| const_cast<GrContextOptions&>(options).fSuppressPathRendering = true; |
| #endif |
| auto glContext = GrGLContext::Make(std::move(interface), options); |
| if (!glContext) { |
| return nullptr; |
| } |
| return sk_sp<GrGpu>(new GrGLGpu(std::move(glContext), direct)); |
| } |
| |
| GrGLGpu::GrGLGpu(std::unique_ptr<GrGLContext> ctx, GrDirectContext* direct) |
| : GrGpu(direct) |
| , fGLContext(std::move(ctx)) |
| , fProgramCache(new ProgramCache(this)) |
| , fHWProgramID(0) |
| , fTempSrcFBOID(0) |
| , fTempDstFBOID(0) |
| , fStencilClearFBOID(0) |
| , fFinishCallbacks(this) { |
| SkASSERT(fGLContext); |
| // Clear errors so we don't get confused whether we caused an error. |
| this->clearErrorsAndCheckForOOM(); |
| // Toss out any pre-existing OOM that was hanging around before we got started. |
| this->checkAndResetOOMed(); |
| |
| fCaps = sk_ref_sp(fGLContext->caps()); |
| |
| fHWTextureUnitBindings.reset(this->numTextureUnits()); |
| |
| this->hwBufferState(GrGpuBufferType::kVertex)->fGLTarget = GR_GL_ARRAY_BUFFER; |
| this->hwBufferState(GrGpuBufferType::kIndex)->fGLTarget = GR_GL_ELEMENT_ARRAY_BUFFER; |
| this->hwBufferState(GrGpuBufferType::kDrawIndirect)->fGLTarget = GR_GL_DRAW_INDIRECT_BUFFER; |
| if (GrGLCaps::TransferBufferType::kChromium == this->glCaps().transferBufferType()) { |
| this->hwBufferState(GrGpuBufferType::kXferCpuToGpu)->fGLTarget = |
| GR_GL_PIXEL_UNPACK_TRANSFER_BUFFER_CHROMIUM; |
| this->hwBufferState(GrGpuBufferType::kXferGpuToCpu)->fGLTarget = |
| GR_GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM; |
| } else { |
| this->hwBufferState(GrGpuBufferType::kXferCpuToGpu)->fGLTarget = GR_GL_PIXEL_UNPACK_BUFFER; |
| this->hwBufferState(GrGpuBufferType::kXferGpuToCpu)->fGLTarget = GR_GL_PIXEL_PACK_BUFFER; |
| } |
| for (int i = 0; i < kGrGpuBufferTypeCount; ++i) { |
| fHWBufferState[i].invalidate(); |
| } |
| static_assert(kGrGpuBufferTypeCount == SK_ARRAY_COUNT(fHWBufferState)); |
| |
| if (this->glCaps().shaderCaps()->pathRenderingSupport()) { |
| fPathRendering = std::make_unique<GrGLPathRendering>(this); |
| } |
| |
| if (this->glCaps().useSamplerObjects()) { |
| fSamplerObjectCache = std::make_unique<SamplerObjectCache>(this); |
| } |
| } |
| |
| GrGLGpu::~GrGLGpu() { |
| // Ensure any GrGpuResource objects get deleted first, since they may require a working GrGLGpu |
| // to release the resources held by the objects themselves. |
| fPathRendering.reset(); |
| fCopyProgramArrayBuffer.reset(); |
| fMipmapProgramArrayBuffer.reset(); |
| |
| fHWProgram.reset(); |
| if (fHWProgramID) { |
| // detach the current program so there is no confusion on OpenGL's part |
| // that we want it to be deleted |
| GL_CALL(UseProgram(0)); |
| } |
| |
| if (fTempSrcFBOID) { |
| this->deleteFramebuffer(fTempSrcFBOID); |
| } |
| if (fTempDstFBOID) { |
| this->deleteFramebuffer(fTempDstFBOID); |
| } |
| if (fStencilClearFBOID) { |
| this->deleteFramebuffer(fStencilClearFBOID); |
| } |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) { |
| if (0 != fCopyPrograms[i].fProgram) { |
| GL_CALL(DeleteProgram(fCopyPrograms[i].fProgram)); |
| } |
| } |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) { |
| if (0 != fMipmapPrograms[i].fProgram) { |
| GL_CALL(DeleteProgram(fMipmapPrograms[i].fProgram)); |
| } |
| } |
| |
| fSamplerObjectCache.reset(); |
| |
| fFinishCallbacks.callAll(true); |
| } |
| |
| void GrGLGpu::disconnect(DisconnectType type) { |
| INHERITED::disconnect(type); |
| if (DisconnectType::kCleanup == type) { |
| if (fHWProgramID) { |
| GL_CALL(UseProgram(0)); |
| } |
| if (fTempSrcFBOID) { |
| this->deleteFramebuffer(fTempSrcFBOID); |
| } |
| if (fTempDstFBOID) { |
| this->deleteFramebuffer(fTempDstFBOID); |
| } |
| if (fStencilClearFBOID) { |
| this->deleteFramebuffer(fStencilClearFBOID); |
| } |
| for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) { |
| if (fCopyPrograms[i].fProgram) { |
| GL_CALL(DeleteProgram(fCopyPrograms[i].fProgram)); |
| } |
| } |
| for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) { |
| if (fMipmapPrograms[i].fProgram) { |
| GL_CALL(DeleteProgram(fMipmapPrograms[i].fProgram)); |
| } |
| } |
| |
| if (fSamplerObjectCache) { |
| fSamplerObjectCache->release(); |
| } |
| } else { |
| if (fProgramCache) { |
| fProgramCache->abandon(); |
| } |
| if (fSamplerObjectCache) { |
| fSamplerObjectCache->abandon(); |
| } |
| } |
| |
| fHWProgram.reset(); |
| fProgramCache.reset(); |
| |
| fHWProgramID = 0; |
| fTempSrcFBOID = 0; |
| fTempDstFBOID = 0; |
| fStencilClearFBOID = 0; |
| fCopyProgramArrayBuffer.reset(); |
| for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) { |
| fCopyPrograms[i].fProgram = 0; |
| } |
| fMipmapProgramArrayBuffer.reset(); |
| for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) { |
| fMipmapPrograms[i].fProgram = 0; |
| } |
| |
| if (this->glCaps().shaderCaps()->pathRenderingSupport()) { |
| this->glPathRendering()->disconnect(type); |
| } |
| fFinishCallbacks.callAll(/* doDelete */ DisconnectType::kCleanup == type); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void GrGLGpu::onResetContext(uint32_t resetBits) { |
| if (resetBits & kMisc_GrGLBackendState) { |
| // we don't use the zb at all |
| GL_CALL(Disable(GR_GL_DEPTH_TEST)); |
| GL_CALL(DepthMask(GR_GL_FALSE)); |
| |
| // We don't use face culling. |
| GL_CALL(Disable(GR_GL_CULL_FACE)); |
| // We do use separate stencil. Our algorithms don't care which face is front vs. back so |
| // just set this to the default for self-consistency. |
| GL_CALL(FrontFace(GR_GL_CCW)); |
| |
| this->hwBufferState(GrGpuBufferType::kXferCpuToGpu)->invalidate(); |
| this->hwBufferState(GrGpuBufferType::kXferGpuToCpu)->invalidate(); |
| |
| if (GR_IS_GR_GL(this->glStandard())) { |
| #ifndef USE_NSIGHT |
| // Desktop-only state that we never change |
| if (!this->glCaps().isCoreProfile()) { |
| GL_CALL(Disable(GR_GL_POINT_SMOOTH)); |
| GL_CALL(Disable(GR_GL_LINE_SMOOTH)); |
| GL_CALL(Disable(GR_GL_POLYGON_SMOOTH)); |
| GL_CALL(Disable(GR_GL_POLYGON_STIPPLE)); |
| GL_CALL(Disable(GR_GL_COLOR_LOGIC_OP)); |
| GL_CALL(Disable(GR_GL_INDEX_LOGIC_OP)); |
| } |
| // The windows NVIDIA driver has GL_ARB_imaging in the extension string when using a |
| // core profile. This seems like a bug since the core spec removes any mention of |
| // GL_ARB_imaging. |
| if (this->glCaps().imagingSupport() && !this->glCaps().isCoreProfile()) { |
| GL_CALL(Disable(GR_GL_COLOR_TABLE)); |
| } |
| GL_CALL(Disable(GR_GL_POLYGON_OFFSET_FILL)); |
| |
| fHWWireframeEnabled = kUnknown_TriState; |
| #endif |
| // Since ES doesn't support glPointSize at all we always use the VS to |
| // set the point size |
| GL_CALL(Enable(GR_GL_VERTEX_PROGRAM_POINT_SIZE)); |
| |
| } |
| |
| if (GR_IS_GR_GL_ES(this->glStandard()) && |
| this->glCaps().fbFetchRequiresEnablePerSample()) { |
| // The arm extension requires specifically enabling MSAA fetching per sample. |
| // On some devices this may have a perf hit. Also multiple render targets are disabled |
| GL_CALL(Enable(GR_GL_FETCH_PER_SAMPLE)); |
| } |
| fHWWriteToColor = kUnknown_TriState; |
| // we only ever use lines in hairline mode |
| GL_CALL(LineWidth(1)); |
| GL_CALL(Disable(GR_GL_DITHER)); |
| |
| fHWClearColor[0] = fHWClearColor[1] = fHWClearColor[2] = fHWClearColor[3] = SK_FloatNaN; |
| } |
| |
| if (resetBits & kMSAAEnable_GrGLBackendState) { |
| fMSAAEnabled = kUnknown_TriState; |
| |
| if (this->caps()->mixedSamplesSupport()) { |
| // The skia blend modes all use premultiplied alpha and therefore expect RGBA coverage |
| // modulation. This state has no effect when not rendering to a mixed sampled target. |
| GL_CALL(CoverageModulation(GR_GL_RGBA)); |
| } |
| |
| fHWConservativeRasterEnabled = kUnknown_TriState; |
| } |
| |
| fHWActiveTextureUnitIdx = -1; // invalid |
| fLastPrimitiveType = static_cast<GrPrimitiveType>(-1); |
| |
| if (resetBits & kTextureBinding_GrGLBackendState) { |
| for (int s = 0; s < this->numTextureUnits(); ++s) { |
| fHWTextureUnitBindings[s].invalidateAllTargets(false); |
| } |
| if (fSamplerObjectCache) { |
| fSamplerObjectCache->invalidateBindings(); |
| } |
| } |
| |
| if (resetBits & kBlend_GrGLBackendState) { |
| fHWBlendState.invalidate(); |
| } |
| |
| if (resetBits & kView_GrGLBackendState) { |
| fHWScissorSettings.invalidate(); |
| fHWWindowRectsState.invalidate(); |
| fHWViewport.invalidate(); |
| } |
| |
| if (resetBits & kStencil_GrGLBackendState) { |
| fHWStencilSettings.invalidate(); |
| fHWStencilTestEnabled = kUnknown_TriState; |
| } |
| |
| // Vertex |
| if (resetBits & kVertex_GrGLBackendState) { |
| fHWVertexArrayState.invalidate(); |
| this->hwBufferState(GrGpuBufferType::kVertex)->invalidate(); |
| this->hwBufferState(GrGpuBufferType::kIndex)->invalidate(); |
| this->hwBufferState(GrGpuBufferType::kDrawIndirect)->invalidate(); |
| fHWPatchVertexCount = 0; |
| } |
| |
| if (resetBits & kRenderTarget_GrGLBackendState) { |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| fHWSRGBFramebuffer = kUnknown_TriState; |
| fBoundDrawFramebuffer = 0; |
| } |
| |
| if (resetBits & kPathRendering_GrGLBackendState) { |
| if (this->caps()->shaderCaps()->pathRenderingSupport()) { |
| this->glPathRendering()->resetContext(); |
| } |
| } |
| |
| // we assume these values |
| if (resetBits & kPixelStore_GrGLBackendState) { |
| if (this->caps()->writePixelsRowBytesSupport()) { |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); |
| } |
| if (this->glCaps().readPixelsRowBytesSupport()) { |
| GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); |
| } |
| if (this->glCaps().packFlipYSupport()) { |
| GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, GR_GL_FALSE)); |
| } |
| } |
| |
| if (resetBits & kProgram_GrGLBackendState) { |
| fHWProgramID = 0; |
| fHWProgram.reset(); |
| } |
| ++fResetTimestampForTextureParameters; |
| } |
| |
| static bool check_backend_texture(const GrBackendTexture& backendTex, |
| const GrGLCaps& caps, |
| GrGLTexture::Desc* desc, |
| bool skipRectTexSupportCheck = false) { |
| GrGLTextureInfo info; |
| if (!backendTex.getGLTextureInfo(&info) || !info.fID || !info.fFormat) { |
| return false; |
| } |
| |
| desc->fSize = {backendTex.width(), backendTex.height()}; |
| desc->fTarget = info.fTarget; |
| desc->fID = info.fID; |
| desc->fFormat = GrGLFormatFromGLEnum(info.fFormat); |
| |
| if (desc->fFormat == GrGLFormat::kUnknown) { |
| return false; |
| } |
| if (GR_GL_TEXTURE_EXTERNAL == desc->fTarget) { |
| if (!caps.shaderCaps()->externalTextureSupport()) { |
| return false; |
| } |
| } else if (GR_GL_TEXTURE_RECTANGLE == desc->fTarget) { |
| if (!caps.rectangleTextureSupport() && !skipRectTexSupportCheck) { |
| return false; |
| } |
| } else if (GR_GL_TEXTURE_2D != desc->fTarget) { |
| return false; |
| } |
| if (backendTex.isProtected()) { |
| // Not supported in GL backend at this time. |
| return false; |
| } |
| |
| return true; |
| } |
| |
| sk_sp<GrTexture> GrGLGpu::onWrapBackendTexture(const GrBackendTexture& backendTex, |
| GrWrapOwnership ownership, |
| GrWrapCacheable cacheable, |
| GrIOType ioType) { |
| GrGLTexture::Desc desc; |
| if (!check_backend_texture(backendTex, this->glCaps(), &desc)) { |
| return nullptr; |
| } |
| |
| if (kBorrow_GrWrapOwnership == ownership) { |
| desc.fOwnership = GrBackendObjectOwnership::kBorrowed; |
| } else { |
| desc.fOwnership = GrBackendObjectOwnership::kOwned; |
| } |
| |
| GrMipmapStatus mipmapStatus = backendTex.hasMipmaps() ? GrMipmapStatus::kValid |
| : GrMipmapStatus::kNotAllocated; |
| |
| auto texture = GrGLTexture::MakeWrapped(this, mipmapStatus, desc, |
| backendTex.getGLTextureParams(), cacheable, ioType); |
| return std::move(texture); |
| } |
| |
| static bool check_compressed_backend_texture(const GrBackendTexture& backendTex, |
| const GrGLCaps& caps, GrGLTexture::Desc* desc, |
| bool skipRectTexSupportCheck = false) { |
| GrGLTextureInfo info; |
| if (!backendTex.getGLTextureInfo(&info) || !info.fID || !info.fFormat) { |
| return false; |
| } |
| |
| desc->fSize = {backendTex.width(), backendTex.height()}; |
| desc->fTarget = info.fTarget; |
| desc->fID = info.fID; |
| desc->fFormat = GrGLFormatFromGLEnum(info.fFormat); |
| |
| if (desc->fFormat == GrGLFormat::kUnknown) { |
| return false; |
| } |
| |
| if (GR_GL_TEXTURE_2D != desc->fTarget) { |
| return false; |
| } |
| if (backendTex.isProtected()) { |
| // Not supported in GL backend at this time. |
| return false; |
| } |
| |
| return true; |
| } |
| |
| sk_sp<GrTexture> GrGLGpu::onWrapCompressedBackendTexture(const GrBackendTexture& backendTex, |
| GrWrapOwnership ownership, |
| GrWrapCacheable cacheable) { |
| GrGLTexture::Desc desc; |
| if (!check_compressed_backend_texture(backendTex, this->glCaps(), &desc)) { |
| return nullptr; |
| } |
| |
| if (kBorrow_GrWrapOwnership == ownership) { |
| desc.fOwnership = GrBackendObjectOwnership::kBorrowed; |
| } else { |
| desc.fOwnership = GrBackendObjectOwnership::kOwned; |
| } |
| |
| GrMipmapStatus mipmapStatus = backendTex.hasMipmaps() ? GrMipmapStatus::kValid |
| : GrMipmapStatus::kNotAllocated; |
| |
| auto texture = GrGLTexture::MakeWrapped(this, mipmapStatus, desc, |
| backendTex.getGLTextureParams(), cacheable, |
| kRead_GrIOType); |
| return std::move(texture); |
| } |
| |
| sk_sp<GrTexture> GrGLGpu::onWrapRenderableBackendTexture(const GrBackendTexture& backendTex, |
| int sampleCnt, |
| GrWrapOwnership ownership, |
| GrWrapCacheable cacheable) { |
| const GrGLCaps& caps = this->glCaps(); |
| |
| GrGLTexture::Desc desc; |
| if (!check_backend_texture(backendTex, this->glCaps(), &desc)) { |
| return nullptr; |
| } |
| SkASSERT(caps.isFormatRenderable(desc.fFormat, sampleCnt)); |
| SkASSERT(caps.isFormatTexturable(desc.fFormat)); |
| |
| // We don't support rendering to a EXTERNAL texture. |
| if (GR_GL_TEXTURE_EXTERNAL == desc.fTarget) { |
| return nullptr; |
| } |
| |
| if (kBorrow_GrWrapOwnership == ownership) { |
| desc.fOwnership = GrBackendObjectOwnership::kBorrowed; |
| } else { |
| desc.fOwnership = GrBackendObjectOwnership::kOwned; |
| } |
| |
| |
| sampleCnt = caps.getRenderTargetSampleCount(sampleCnt, desc.fFormat); |
| SkASSERT(sampleCnt); |
| |
| GrGLRenderTarget::IDs rtIDs; |
| if (!this->createRenderTargetObjects(desc, sampleCnt, &rtIDs)) { |
| return nullptr; |
| } |
| |
| GrMipmapStatus mipmapStatus = backendTex.hasMipmaps() ? GrMipmapStatus::kDirty |
| : GrMipmapStatus::kNotAllocated; |
| |
| sk_sp<GrGLTextureRenderTarget> texRT(GrGLTextureRenderTarget::MakeWrapped( |
| this, sampleCnt, desc, backendTex.getGLTextureParams(), rtIDs, cacheable, |
| mipmapStatus)); |
| texRT->baseLevelWasBoundToFBO(); |
| return std::move(texRT); |
| } |
| |
| sk_sp<GrRenderTarget> GrGLGpu::onWrapBackendRenderTarget(const GrBackendRenderTarget& backendRT) { |
| GrGLFramebufferInfo info; |
| if (!backendRT.getGLFramebufferInfo(&info)) { |
| return nullptr; |
| } |
| |
| if (backendRT.isProtected()) { |
| // Not supported in GL at this time. |
| return nullptr; |
| } |
| |
| const auto format = backendRT.getBackendFormat().asGLFormat(); |
| if (!this->glCaps().isFormatRenderable(format, backendRT.sampleCnt())) { |
| return nullptr; |
| } |
| |
| GrGLRenderTarget::IDs rtIDs; |
| rtIDs.fRTFBOID = info.fFBOID; |
| rtIDs.fMSColorRenderbufferID = 0; |
| rtIDs.fTexFBOID = GrGLRenderTarget::kUnresolvableFBOID; |
| rtIDs.fRTFBOOwnership = GrBackendObjectOwnership::kBorrowed; |
| |
| int sampleCount = this->glCaps().getRenderTargetSampleCount(backendRT.sampleCnt(), format); |
| |
| return GrGLRenderTarget::MakeWrapped(this, backendRT.dimensions(), format, sampleCount, rtIDs, |
| backendRT.stencilBits()); |
| } |
| |
| static bool check_write_and_transfer_input(GrGLTexture* glTex) { |
| if (!glTex) { |
| return false; |
| } |
| |
| // Write or transfer of pixels is not implemented for TEXTURE_EXTERNAL textures |
| if (GR_GL_TEXTURE_EXTERNAL == glTex->target()) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool GrGLGpu::onWritePixels(GrSurface* surface, int left, int top, int width, int height, |
| GrColorType surfaceColorType, GrColorType srcColorType, |
| const GrMipLevel texels[], int mipLevelCount, |
| bool prepForTexSampling) { |
| auto glTex = static_cast<GrGLTexture*>(surface->asTexture()); |
| |
| if (!check_write_and_transfer_input(glTex)) { |
| return false; |
| } |
| |
| this->bindTextureToScratchUnit(glTex->target(), glTex->textureID()); |
| |
| SkASSERT(!GrGLFormatIsCompressed(glTex->format())); |
| SkIRect dstRect = SkIRect::MakeXYWH(left, top, width, height); |
| return this->uploadColorTypeTexData(glTex->format(), surfaceColorType, glTex->dimensions(), |
| glTex->target(), dstRect, srcColorType, texels, |
| mipLevelCount); |
| } |
| |
| bool GrGLGpu::onTransferPixelsTo(GrTexture* texture, int left, int top, int width, int height, |
| GrColorType textureColorType, GrColorType bufferColorType, |
| GrGpuBuffer* transferBuffer, size_t offset, size_t rowBytes) { |
| GrGLTexture* glTex = static_cast<GrGLTexture*>(texture); |
| |
| // Can't transfer compressed data |
| SkASSERT(!GrGLFormatIsCompressed(glTex->format())); |
| |
| if (!check_write_and_transfer_input(glTex)) { |
| return false; |
| } |
| |
| static_assert(sizeof(int) == sizeof(int32_t), ""); |
| if (width <= 0 || height <= 0) { |
| return false; |
| } |
| |
| this->bindTextureToScratchUnit(glTex->target(), glTex->textureID()); |
| |
| SkASSERT(!transferBuffer->isMapped()); |
| SkASSERT(!transferBuffer->isCpuBuffer()); |
| const GrGLBuffer* glBuffer = static_cast<const GrGLBuffer*>(transferBuffer); |
| this->bindBuffer(GrGpuBufferType::kXferCpuToGpu, glBuffer); |
| |
| SkDEBUGCODE( |
| SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height); |
| SkIRect bounds = SkIRect::MakeWH(texture->width(), texture->height()); |
| SkASSERT(bounds.contains(subRect)); |
| ) |
| |
| size_t bpp = GrColorTypeBytesPerPixel(bufferColorType); |
| const size_t trimRowBytes = width * bpp; |
| const void* pixels = (void*)offset; |
| if (width < 0 || height < 0) { |
| return false; |
| } |
| |
| bool restoreGLRowLength = false; |
| if (trimRowBytes != rowBytes) { |
| // we should have checked for this support already |
| SkASSERT(this->glCaps().writePixelsRowBytesSupport()); |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowBytes / bpp)); |
| restoreGLRowLength = true; |
| } |
| |
| GrGLFormat textureFormat = glTex->format(); |
| // External format and type come from the upload data. |
| GrGLenum externalFormat = 0; |
| GrGLenum externalType = 0; |
| this->glCaps().getTexSubImageExternalFormatAndType( |
| textureFormat, textureColorType, bufferColorType, &externalFormat, &externalType); |
| if (!externalFormat || !externalType) { |
| return false; |
| } |
| |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, 1)); |
| GL_CALL(TexSubImage2D(glTex->target(), |
| 0, |
| left, top, |
| width, |
| height, |
| externalFormat, externalType, |
| pixels)); |
| |
| if (restoreGLRowLength) { |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); |
| } |
| |
| return true; |
| } |
| |
| bool GrGLGpu::onTransferPixelsFrom(GrSurface* surface, int left, int top, int width, int height, |
| GrColorType surfaceColorType, GrColorType dstColorType, |
| GrGpuBuffer* transferBuffer, size_t offset) { |
| auto* glBuffer = static_cast<GrGLBuffer*>(transferBuffer); |
| this->bindBuffer(GrGpuBufferType::kXferGpuToCpu, glBuffer); |
| auto offsetAsPtr = reinterpret_cast<void*>(offset); |
| return this->readOrTransferPixelsFrom(surface, left, top, width, height, surfaceColorType, |
| dstColorType, offsetAsPtr, width); |
| } |
| |
| void GrGLGpu::unbindCpuToGpuXferBuffer() { |
| auto* xferBufferState = this->hwBufferState(GrGpuBufferType::kXferCpuToGpu); |
| if (!xferBufferState->fBoundBufferUniqueID.isInvalid()) { |
| GL_CALL(BindBuffer(xferBufferState->fGLTarget, 0)); |
| xferBufferState->invalidate(); |
| } |
| } |
| |
| bool GrGLGpu::uploadColorTypeTexData(GrGLFormat textureFormat, |
| GrColorType textureColorType, |
| SkISize texDims, |
| GrGLenum target, |
| SkIRect dstRect, |
| GrColorType srcColorType, |
| const GrMipLevel texels[], |
| int mipLevelCount) { |
| // If we're uploading compressed data then we should be using uploadCompressedTexData |
| SkASSERT(!GrGLFormatIsCompressed(textureFormat)); |
| |
| SkASSERT(this->glCaps().isFormatTexturable(textureFormat)); |
| |
| size_t bpp = GrColorTypeBytesPerPixel(srcColorType); |
| |
| // External format and type come from the upload data. |
| GrGLenum externalFormat; |
| GrGLenum externalType; |
| this->glCaps().getTexSubImageExternalFormatAndType( |
| textureFormat, textureColorType, srcColorType, &externalFormat, &externalType); |
| if (!externalFormat || !externalType) { |
| return false; |
| } |
| this->uploadTexData(texDims, target, dstRect, externalFormat, externalType, bpp, texels, |
| mipLevelCount); |
| return true; |
| } |
| |
| bool GrGLGpu::uploadColorToTex(GrGLFormat textureFormat, |
| SkISize texDims, |
| GrGLenum target, |
| SkColor4f color, |
| uint32_t levelMask) { |
| GrColorType colorType; |
| GrGLenum externalFormat, externalType; |
| this->glCaps().getTexSubImageDefaultFormatTypeAndColorType(textureFormat, &externalFormat, |
| &externalType, &colorType); |
| if (colorType == GrColorType::kUnknown) { |
| return false; |
| } |
| |
| std::unique_ptr<char[]> pixelStorage; |
| size_t bpp = 0; |
| int numLevels = SkMipmap::ComputeLevelCount(texDims) + 1; |
| SkSTArray<16, GrMipLevel> levels; |
| levels.resize(numLevels); |
| SkISize levelDims = texDims; |
| for (int i = 0; i < numLevels; ++i, levelDims = {std::max(levelDims.width() >> 1, 1), |
| std::max(levelDims.height() >> 1, 1)}) { |
| if (levelMask & (1 << i)) { |
| if (!pixelStorage) { |
| // Make one tight image at the first size and reuse it for smaller levels. |
| GrImageInfo ii(colorType, kUnpremul_SkAlphaType, nullptr, levelDims); |
| size_t rb = ii.minRowBytes(); |
| pixelStorage.reset(new char[rb * levelDims.height()]); |
| if (!GrClearImage(ii, pixelStorage.get(), ii.minRowBytes(), color)) { |
| return false; |
| } |
| bpp = ii.bpp(); |
| } |
| levels[i] = {pixelStorage.get(), levelDims.width()*bpp}; |
| } |
| } |
| this->uploadTexData(texDims, target, SkIRect::MakeSize(texDims), externalFormat, externalType, |
| bpp, levels.begin(), levels.count()); |
| return true; |
| } |
| |
| void GrGLGpu::uploadTexData(SkISize texDims, |
| GrGLenum target, |
| SkIRect dstRect, |
| GrGLenum externalFormat, |
| GrGLenum externalType, |
| size_t bpp, |
| const GrMipLevel texels[], |
| int mipLevelCount) { |
| SkASSERT(!texDims.isEmpty()); |
| SkASSERT(!dstRect.isEmpty()); |
| SkASSERT(SkIRect::MakeSize(texDims).contains(dstRect)); |
| SkASSERT(mipLevelCount > 0 && mipLevelCount <= SkMipmap::ComputeLevelCount(texDims) + 1); |
| SkASSERT(mipLevelCount == 1 || dstRect == SkIRect::MakeSize(texDims)); |
| |
| const GrGLCaps& caps = this->glCaps(); |
| |
| bool restoreGLRowLength = false; |
| |
| this->unbindCpuToGpuXferBuffer(); |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, 1)); |
| |
| SkISize dims = dstRect.size(); |
| for (int level = 0; level < mipLevelCount; ++level, dims = {std::max(dims.width() >> 1, 1), |
| std::max(dims.height() >> 1, 1)}) { |
| if (!texels[level].fPixels) { |
| continue; |
| } |
| const size_t trimRowBytes = dims.width() * bpp; |
| const size_t rowBytes = texels[level].fRowBytes; |
| |
| if (caps.writePixelsRowBytesSupport() && (rowBytes != trimRowBytes || restoreGLRowLength)) { |
| GrGLint rowLength = static_cast<GrGLint>(rowBytes / bpp); |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowLength)); |
| restoreGLRowLength = true; |
| } else { |
| SkASSERT(rowBytes == trimRowBytes); |
| } |
| |
| GL_CALL(TexSubImage2D(target, level, dstRect.x(), dstRect.y(), dims.width(), dims.height(), |
| externalFormat, externalType, texels[level].fPixels)); |
| } |
| if (restoreGLRowLength) { |
| SkASSERT(caps.writePixelsRowBytesSupport()); |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); |
| } |
| } |
| |
| bool GrGLGpu::uploadCompressedTexData(SkImage::CompressionType compressionType, |
| GrGLFormat format, |
| SkISize dimensions, |
| GrMipmapped mipMapped, |
| GrGLenum target, |
| const void* data, size_t dataSize) { |
| SkASSERT(format != GrGLFormat::kUnknown); |
| const GrGLCaps& caps = this->glCaps(); |
| |
| // We only need the internal format for compressed 2D textures. |
| GrGLenum internalFormat = caps.getTexImageOrStorageInternalFormat(format); |
| if (!internalFormat) { |
| return false; |
| } |
| |
| SkASSERT(compressionType != SkImage::CompressionType::kNone); |
| |
| bool useTexStorage = caps.formatSupportsTexStorage(format); |
| |
| int numMipLevels = 1; |
| if (mipMapped == GrMipmapped::kYes) { |
| numMipLevels = SkMipmap::ComputeLevelCount(dimensions.width(), dimensions.height())+1; |
| } |
| |
| // TODO: Make sure that the width and height that we pass to OpenGL |
| // is a multiple of the block size. |
| |
| if (useTexStorage) { |
| // We never resize or change formats of textures. |
| GrGLenum error = GL_ALLOC_CALL(TexStorage2D(target, numMipLevels, internalFormat, |
| dimensions.width(), dimensions.height())); |
| if (error != GR_GL_NO_ERROR) { |
| return false; |
| } |
| |
| size_t offset = 0; |
| for (int level = 0; level < numMipLevels; ++level) { |
| |
| size_t levelDataSize = SkCompressedDataSize(compressionType, dimensions, |
| nullptr, false); |
| |
| error = GL_ALLOC_CALL(CompressedTexSubImage2D(target, |
| level, |
| 0, // left |
| 0, // top |
| dimensions.width(), |
| dimensions.height(), |
| internalFormat, |
| SkToInt(levelDataSize), |
| &((char*)data)[offset])); |
| |
| if (error != GR_GL_NO_ERROR) { |
| return false; |
| } |
| |
| offset += levelDataSize; |
| dimensions = {std::max(1, dimensions.width()/2), std::max(1, dimensions.height()/2)}; |
| } |
| } else { |
| size_t offset = 0; |
| |
| for (int level = 0; level < numMipLevels; ++level) { |
| size_t levelDataSize = SkCompressedDataSize(compressionType, dimensions, |
| nullptr, false); |
| |
| const char* rawLevelData = &((char*)data)[offset]; |
| GrGLenum error = GL_ALLOC_CALL(CompressedTexImage2D(target, |
| level, |
| internalFormat, |
| dimensions.width(), |
| dimensions.height(), |
| 0, // border |
| SkToInt(levelDataSize), |
| rawLevelData)); |
| |
| if (error != GR_GL_NO_ERROR) { |
| return false; |
| } |
| |
| offset += levelDataSize; |
| dimensions = {std::max(1, dimensions.width()/2), std::max(1, dimensions.height()/2)}; |
| } |
| } |
| return true; |
| } |
| |
| bool GrGLGpu::renderbufferStorageMSAA(const GrGLContext& ctx, int sampleCount, GrGLenum format, |
| int width, int height) { |
| SkASSERT(GrGLCaps::kNone_MSFBOType != ctx.caps()->msFBOType()); |
| GrGLenum error; |
| switch (ctx.caps()->msFBOType()) { |
| case GrGLCaps::kStandard_MSFBOType: |
| error = GL_ALLOC_CALL(RenderbufferStorageMultisample(GR_GL_RENDERBUFFER, sampleCount, |
| format, width, height)); |
| break; |
| case GrGLCaps::kES_Apple_MSFBOType: |
| error = GL_ALLOC_CALL(RenderbufferStorageMultisampleES2APPLE( |
| GR_GL_RENDERBUFFER, sampleCount, format, width, height)); |
| break; |
| case GrGLCaps::kES_EXT_MsToTexture_MSFBOType: |
| case GrGLCaps::kES_IMG_MsToTexture_MSFBOType: |
| error = GL_ALLOC_CALL(RenderbufferStorageMultisampleES2EXT( |
| GR_GL_RENDERBUFFER, sampleCount, format, width, height)); |
| break; |
| case GrGLCaps::kNone_MSFBOType: |
| SkUNREACHABLE; |
| break; |
| } |
| return error == GR_GL_NO_ERROR; |
| } |
| |
| bool GrGLGpu::createRenderTargetObjects(const GrGLTexture::Desc& desc, |
| int sampleCount, |
| GrGLRenderTarget::IDs* rtIDs) { |
| rtIDs->fMSColorRenderbufferID = 0; |
| rtIDs->fRTFBOID = 0; |
| rtIDs->fRTFBOOwnership = GrBackendObjectOwnership::kOwned; |
| rtIDs->fTexFBOID = 0; |
| |
| GrGLenum colorRenderbufferFormat = 0; // suppress warning |
| |
| if (desc.fFormat == GrGLFormat::kUnknown) { |
| goto FAILED; |
| } |
| |
| if (sampleCount > 1 && GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType()) { |
| goto FAILED; |
| } |
| |
| GL_CALL(GenFramebuffers(1, &rtIDs->fTexFBOID)); |
| if (!rtIDs->fTexFBOID) { |
| goto FAILED; |
| } |
| |
| // If we are using multisampling we will create two FBOS. We render to one and then resolve to |
| // the texture bound to the other. The exception is the IMG multisample extension. With this |
| // extension the texture is multisampled when rendered to and then auto-resolves it when it is |
| // rendered from. |
| if (sampleCount > 1 && this->glCaps().usesMSAARenderBuffers()) { |
| GL_CALL(GenFramebuffers(1, &rtIDs->fRTFBOID)); |
| GL_CALL(GenRenderbuffers(1, &rtIDs->fMSColorRenderbufferID)); |
| if (!rtIDs->fRTFBOID || !rtIDs->fMSColorRenderbufferID) { |
| goto FAILED; |
| } |
| colorRenderbufferFormat = this->glCaps().getRenderbufferInternalFormat(desc.fFormat); |
| } else { |
| rtIDs->fRTFBOID = rtIDs->fTexFBOID; |
| } |
| |
| // below here we may bind the FBO |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| if (rtIDs->fRTFBOID != rtIDs->fTexFBOID) { |
| SkASSERT(sampleCount > 1); |
| GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, rtIDs->fMSColorRenderbufferID)); |
| if (!this->renderbufferStorageMSAA(*fGLContext, sampleCount, colorRenderbufferFormat, |
| desc.fSize.width(), desc.fSize.height())) { |
| goto FAILED; |
| } |
| this->bindFramebuffer(GR_GL_FRAMEBUFFER, rtIDs->fRTFBOID); |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_RENDERBUFFER, |
| rtIDs->fMSColorRenderbufferID)); |
| } |
| this->bindFramebuffer(GR_GL_FRAMEBUFFER, rtIDs->fTexFBOID); |
| |
| if (this->glCaps().usesImplicitMSAAResolve() && sampleCount > 1) { |
| GL_CALL(FramebufferTexture2DMultisample(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| desc.fTarget, |
| desc.fID, |
| 0, |
| sampleCount)); |
| } else { |
| GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| desc.fTarget, |
| desc.fID, |
| 0)); |
| } |
| |
| return true; |
| |
| FAILED: |
| if (rtIDs->fMSColorRenderbufferID) { |
| GL_CALL(DeleteRenderbuffers(1, &rtIDs->fMSColorRenderbufferID)); |
| } |
| if (rtIDs->fRTFBOID != rtIDs->fTexFBOID) { |
| this->deleteFramebuffer(rtIDs->fRTFBOID); |
| } |
| if (rtIDs->fTexFBOID) { |
| this->deleteFramebuffer(rtIDs->fTexFBOID); |
| } |
| return false; |
| } |
| |
| // good to set a break-point here to know when createTexture fails |
| static sk_sp<GrTexture> return_null_texture() { |
| // SkDEBUGFAIL("null texture"); |
| return nullptr; |
| } |
| |
| static GrGLTextureParameters::SamplerOverriddenState set_initial_texture_params( |
| const GrGLInterface* interface, GrGLenum target) { |
| // Some drivers like to know filter/wrap before seeing glTexImage2D. Some |
| // drivers have a bug where an FBO won't be complete if it includes a |
| // texture that is not mipmap complete (considering the filter in use). |
| GrGLTextureParameters::SamplerOverriddenState state; |
| state.fMinFilter = GR_GL_NEAREST; |
| state.fMagFilter = GR_GL_NEAREST; |
| state.fWrapS = GR_GL_CLAMP_TO_EDGE; |
| state.fWrapT = GR_GL_CLAMP_TO_EDGE; |
| GR_GL_CALL(interface, TexParameteri(target, GR_GL_TEXTURE_MAG_FILTER, state.fMagFilter)); |
| GR_GL_CALL(interface, TexParameteri(target, GR_GL_TEXTURE_MIN_FILTER, state.fMinFilter)); |
| GR_GL_CALL(interface, TexParameteri(target, GR_GL_TEXTURE_WRAP_S, state.fWrapS)); |
| GR_GL_CALL(interface, TexParameteri(target, GR_GL_TEXTURE_WRAP_T, state.fWrapT)); |
| return state; |
| } |
| |
| sk_sp<GrTexture> GrGLGpu::onCreateTexture(SkISize dimensions, |
| const GrBackendFormat& format, |
| GrRenderable renderable, |
| int renderTargetSampleCnt, |
| SkBudgeted budgeted, |
| GrProtected isProtected, |
| int mipLevelCount, |
| uint32_t levelClearMask) { |
| // We don't support protected textures in GL. |
| if (isProtected == GrProtected::kYes) { |
| return nullptr; |
| } |
| SkASSERT(GrGLCaps::kNone_MSFBOType != this->glCaps().msFBOType() || renderTargetSampleCnt == 1); |
| |
| SkASSERT(mipLevelCount > 0); |
| GrMipmapStatus mipmapStatus = |
| mipLevelCount > 1 ? GrMipmapStatus::kDirty : GrMipmapStatus::kNotAllocated; |
| GrGLTextureParameters::SamplerOverriddenState initialState; |
| GrGLTexture::Desc texDesc; |
| texDesc.fSize = dimensions; |
| switch (format.textureType()) { |
| case GrTextureType::kExternal: |
| case GrTextureType::kNone: |
| return nullptr; |
| case GrTextureType::k2D: |
| texDesc.fTarget = GR_GL_TEXTURE_2D; |
| break; |
| case GrTextureType::kRectangle: |
| if (mipLevelCount > 1 || !this->glCaps().rectangleTextureSupport()) { |
| return nullptr; |
| } |
| texDesc.fTarget = GR_GL_TEXTURE_RECTANGLE; |
| break; |
| } |
| texDesc.fFormat = format.asGLFormat(); |
| texDesc.fOwnership = GrBackendObjectOwnership::kOwned; |
| SkASSERT(texDesc.fFormat != GrGLFormat::kUnknown); |
| SkASSERT(!GrGLFormatIsCompressed(texDesc.fFormat)); |
| |
| texDesc.fID = this->createTexture(dimensions, texDesc.fFormat, texDesc.fTarget, renderable, |
| &initialState, mipLevelCount); |
| |
| if (!texDesc.fID) { |
| return return_null_texture(); |
| } |
| |
| sk_sp<GrGLTexture> tex; |
| if (renderable == GrRenderable::kYes) { |
| // unbind the texture from the texture unit before binding it to the frame buffer |
| GL_CALL(BindTexture(texDesc.fTarget, 0)); |
| GrGLRenderTarget::IDs rtIDDesc; |
| |
| if (!this->createRenderTargetObjects(texDesc, renderTargetSampleCnt, &rtIDDesc)) { |
| GL_CALL(DeleteTextures(1, &texDesc.fID)); |
| return return_null_texture(); |
| } |
| tex = sk_make_sp<GrGLTextureRenderTarget>( |
| this, budgeted, renderTargetSampleCnt, texDesc, rtIDDesc, mipmapStatus); |
| tex->baseLevelWasBoundToFBO(); |
| } else { |
| tex = sk_make_sp<GrGLTexture>(this, budgeted, texDesc, mipmapStatus); |
| } |
| // The non-sampler params are still at their default values. |
| tex->parameters()->set(&initialState, GrGLTextureParameters::NonsamplerState(), |
| fResetTimestampForTextureParameters); |
| if (levelClearMask) { |
| if (this->glCaps().clearTextureSupport()) { |
| GrGLenum externalFormat, externalType; |
| GrColorType colorType; |
| this->glCaps().getTexSubImageDefaultFormatTypeAndColorType( |
| texDesc.fFormat, &externalFormat, &externalType, &colorType); |
| for (int i = 0; i < mipLevelCount; ++i) { |
| if (levelClearMask & (1U << i)) { |
| GL_CALL(ClearTexImage(tex->textureID(), i, externalFormat, externalType, |
| nullptr)); |
| } |
| } |
| } else if (this->glCaps().canFormatBeFBOColorAttachment(format.asGLFormat()) && |
| !this->glCaps().performColorClearsAsDraws()) { |
| this->flushScissorTest(GrScissorTest::kDisabled); |
| this->disableWindowRectangles(); |
| this->flushColorWrite(true); |
| this->flushClearColor(SK_PMColor4fTRANSPARENT); |
| for (int i = 0; i < mipLevelCount; ++i) { |
| if (levelClearMask & (1U << i)) { |
| this->bindSurfaceFBOForPixelOps(tex.get(), i, GR_GL_FRAMEBUFFER, |
| kDst_TempFBOTarget); |
| GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT)); |
| this->unbindSurfaceFBOForPixelOps(tex.get(), i, GR_GL_FRAMEBUFFER); |
| } |
| } |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| } else { |
| this->bindTextureToScratchUnit(texDesc.fTarget, tex->textureID()); |
| static constexpr SkColor4f kZeroColor = {0, 0, 0, 0}; |
| this->uploadColorToTex(texDesc.fFormat, texDesc.fSize, texDesc.fTarget, kZeroColor, |
| levelClearMask); |
| } |
| } |
| return std::move(tex); |
| } |
| |
| sk_sp<GrTexture> GrGLGpu::onCreateCompressedTexture(SkISize dimensions, |
| const GrBackendFormat& format, |
| SkBudgeted budgeted, |
| GrMipmapped mipMapped, |
| GrProtected isProtected, |
| const void* data, size_t dataSize) { |
| // We don't support protected textures in GL. |
| if (isProtected == GrProtected::kYes) { |
| return nullptr; |
| } |
| SkImage::CompressionType compression = GrBackendFormatToCompressionType(format); |
| |
| GrGLTextureParameters::SamplerOverriddenState initialState; |
| GrGLTexture::Desc desc; |
| desc.fSize = dimensions; |
| desc.fTarget = GR_GL_TEXTURE_2D; |
| desc.fOwnership = GrBackendObjectOwnership::kOwned; |
| desc.fFormat = format.asGLFormat(); |
| desc.fID = this->createCompressedTexture2D(desc.fSize, compression, desc.fFormat, |
| mipMapped, &initialState); |
| if (!desc.fID) { |
| return nullptr; |
| } |
| |
| if (data) { |
| if (!this->uploadCompressedTexData(compression, desc.fFormat, dimensions, mipMapped, |
| GR_GL_TEXTURE_2D, data, dataSize)) { |
| GL_CALL(DeleteTextures(1, &desc.fID)); |
| return nullptr; |
| } |
| } |
| |
| // Unbind this texture from the scratch texture unit. |
| this->bindTextureToScratchUnit(GR_GL_TEXTURE_2D, 0); |
| |
| GrMipmapStatus mipmapStatus = mipMapped == GrMipmapped::kYes |
| ? GrMipmapStatus::kValid |
| : GrMipmapStatus::kNotAllocated; |
| |
| auto tex = sk_make_sp<GrGLTexture>(this, budgeted, desc, mipmapStatus); |
| // The non-sampler params are still at their default values. |
| tex->parameters()->set(&initialState, GrGLTextureParameters::NonsamplerState(), |
| fResetTimestampForTextureParameters); |
| return std::move(tex); |
| } |
| |
| GrBackendTexture GrGLGpu::onCreateCompressedBackendTexture( |
| SkISize dimensions, const GrBackendFormat& format, GrMipmapped mipMapped, |
| GrProtected isProtected) { |
| // We don't support protected textures in GL. |
| if (isProtected == GrProtected::kYes) { |
| return {}; |
| } |
| |
| this->handleDirtyContext(); |
| |
| GrGLFormat glFormat = format.asGLFormat(); |
| if (glFormat == GrGLFormat::kUnknown) { |
| return {}; |
| } |
| |
| SkImage::CompressionType compression = GrBackendFormatToCompressionType(format); |
| |
| GrGLTextureInfo info; |
| GrGLTextureParameters::SamplerOverriddenState initialState; |
| |
| info.fTarget = GR_GL_TEXTURE_2D; |
| info.fFormat = GrGLFormatToEnum(glFormat); |
| info.fID = this->createCompressedTexture2D(dimensions, compression, glFormat, |
| mipMapped, &initialState); |
| if (!info.fID) { |
| return {}; |
| } |
| |
| // Unbind this texture from the scratch texture unit. |
| this->bindTextureToScratchUnit(GR_GL_TEXTURE_2D, 0); |
| |
| auto parameters = sk_make_sp<GrGLTextureParameters>(); |
| // The non-sampler params are still at their default values. |
| parameters->set(&initialState, GrGLTextureParameters::NonsamplerState(), |
| fResetTimestampForTextureParameters); |
| |
| return GrBackendTexture(dimensions.width(), dimensions.height(), mipMapped, info, |
| std::move(parameters)); |
| } |
| |
| bool GrGLGpu::onUpdateCompressedBackendTexture(const GrBackendTexture& backendTexture, |
| sk_sp<GrRefCntedCallback> finishedCallback, |
| const BackendTextureData* data) { |
| SkASSERT(data && data->type() != BackendTextureData::Type::kPixmaps); |
| |
| GrGLTextureInfo info; |
| SkAssertResult(backendTexture.getGLTextureInfo(&info)); |
| |
| GrBackendFormat format = backendTexture.getBackendFormat(); |
| GrGLFormat glFormat = format.asGLFormat(); |
| if (glFormat == GrGLFormat::kUnknown) { |
| return false; |
| } |
| SkImage::CompressionType compression = GrBackendFormatToCompressionType(format); |
| |
| GrMipmapped mipMapped = backendTexture.hasMipmaps() ? GrMipmapped::kYes : GrMipmapped::kNo; |
| |
| const char* rawData = nullptr; |
| size_t rawDataSize = 0; |
| SkAutoMalloc am; |
| if (data->type() == BackendTextureData::Type::kCompressed) { |
| rawData = (const char*)data->compressedData(); |
| rawDataSize = data->compressedSize(); |
| } else { |
| SkASSERT(data->type() == BackendTextureData::Type::kColor); |
| SkASSERT(compression != SkImage::CompressionType::kNone); |
| |
| rawDataSize = SkCompressedDataSize(compression, backendTexture.dimensions(), nullptr, |
| backendTexture.hasMipmaps()); |
| |
| am.reset(rawDataSize); |
| |
| GrFillInCompressedData(compression, backendTexture.dimensions(), mipMapped, (char*)am.get(), |
| data->color()); |
| |
| rawData = (const char*)am.get(); |
| } |
| |
| this->bindTextureToScratchUnit(info.fTarget, info.fID); |
| |
| // If we have mips make sure the base level is set to 0 and the max level set to numMipLevels-1 |
| // so that the uploads go to the right levels. |
| if (backendTexture.hasMipMaps() && this->glCaps().mipmapLevelControlSupport()) { |
| auto params = backendTexture.getGLTextureParams(); |
| GrGLTextureParameters::NonsamplerState nonsamplerState = params->nonsamplerState(); |
| if (params->nonsamplerState().fBaseMipMapLevel != 0) { |
| GL_CALL(TexParameteri(info.fTarget, GR_GL_TEXTURE_BASE_LEVEL, 0)); |
| nonsamplerState.fBaseMipMapLevel = 0; |
| } |
| int numMipLevels = |
| SkMipmap::ComputeLevelCount(backendTexture.width(), backendTexture.height()) + 1; |
| if (params->nonsamplerState().fMaxMipmapLevel != (numMipLevels - 1)) { |
| GL_CALL(TexParameteri(info.fTarget, GR_GL_TEXTURE_MAX_LEVEL, numMipLevels - 1)); |
| nonsamplerState.fBaseMipMapLevel = numMipLevels - 1; |
| } |
| params->set(nullptr, nonsamplerState, fResetTimestampForTextureParameters); |
| } |
| |
| bool result = this->uploadCompressedTexData( |
| compression, glFormat, backendTexture.dimensions(), mipMapped, GR_GL_TEXTURE_2D, |
| rawData, rawDataSize); |
| |
| // Unbind this texture from the scratch texture unit. |
| this->bindTextureToScratchUnit(info.fTarget, 0); |
| |
| return result; |
| } |
| |
| int GrGLGpu::getCompatibleStencilIndex(GrGLFormat format) { |
| static const int kSize = 16; |
| SkASSERT(this->glCaps().canFormatBeFBOColorAttachment(format)); |
| |
| if (!this->glCaps().hasStencilFormatBeenDeterminedForFormat(format)) { |
| // Default to unsupported, set this if we find a stencil format that works. |
| int firstWorkingStencilFormatIndex = -1; |
| |
| GrGLuint colorID = this->createTexture({kSize, kSize}, format, GR_GL_TEXTURE_2D, |
| GrRenderable::kYes, nullptr, 1); |
| if (!colorID) { |
| return -1; |
| } |
| // unbind the texture from the texture unit before binding it to the frame buffer |
| GL_CALL(BindTexture(GR_GL_TEXTURE_2D, 0)); |
| |
| // Create Framebuffer |
| GrGLuint fb = 0; |
| GL_CALL(GenFramebuffers(1, &fb)); |
| this->bindFramebuffer(GR_GL_FRAMEBUFFER, fb); |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_TEXTURE_2D, |
| colorID, |
| 0)); |
| GrGLuint sbRBID = 0; |
| GL_CALL(GenRenderbuffers(1, &sbRBID)); |
| |
| // look over formats till I find a compatible one |
| int stencilFmtCnt = this->glCaps().stencilFormats().count(); |
| if (sbRBID) { |
| GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbRBID)); |
| for (int i = 0; i < stencilFmtCnt && sbRBID; ++i) { |
| GrGLFormat sFmt = this->glCaps().stencilFormats()[i]; |
| GrGLenum error = GL_ALLOC_CALL(RenderbufferStorage( |
| GR_GL_RENDERBUFFER, GrGLFormatToEnum(sFmt), kSize, kSize)); |
| if (error == GR_GL_NO_ERROR) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, sbRBID)); |
| if (GrGLFormatIsPackedDepthStencil(sFmt)) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, sbRBID)); |
| } else { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| } |
| GrGLenum status; |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status == GR_GL_FRAMEBUFFER_COMPLETE) { |
| firstWorkingStencilFormatIndex = i; |
| break; |
| } |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| if (GrGLFormatIsPackedDepthStencil(sFmt)) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| } |
| } |
| } |
| GL_CALL(DeleteRenderbuffers(1, &sbRBID)); |
| } |
| GL_CALL(DeleteTextures(1, &colorID)); |
| this->bindFramebuffer(GR_GL_FRAMEBUFFER, 0); |
| this->deleteFramebuffer(fb); |
| fGLContext->caps()->setStencilFormatIndexForFormat(format, firstWorkingStencilFormatIndex); |
| } |
| return this->glCaps().getStencilFormatIndexForFormat(format); |
| } |
| |
| GrGLuint GrGLGpu::createCompressedTexture2D( |
| SkISize dimensions, |
| SkImage::CompressionType compression, |
| GrGLFormat format, |
| GrMipmapped mipMapped, |
| GrGLTextureParameters::SamplerOverriddenState* initialState) { |
| if (format == GrGLFormat::kUnknown) { |
| return 0; |
| } |
| GrGLuint id = 0; |
| GL_CALL(GenTextures(1, &id)); |
| if (!id) { |
| return 0; |
| } |
| |
| this->bindTextureToScratchUnit(GR_GL_TEXTURE_2D, id); |
| |
| *initialState = set_initial_texture_params(this->glInterface(), GR_GL_TEXTURE_2D); |
| |
| return id; |
| } |
| |
| GrGLuint GrGLGpu::createTexture(SkISize dimensions, |
| GrGLFormat format, |
| GrGLenum target, |
| GrRenderable renderable, |
| GrGLTextureParameters::SamplerOverriddenState* initialState, |
| int mipLevelCount) { |
| SkASSERT(format != GrGLFormat::kUnknown); |
| SkASSERT(!GrGLFormatIsCompressed(format)); |
| |
| GrGLuint id = 0; |
| GL_CALL(GenTextures(1, &id)); |
| |
| if (!id) { |
| return 0; |
| } |
| |
| this->bindTextureToScratchUnit(target, id); |
| |
| if (GrRenderable::kYes == renderable && this->glCaps().textureUsageSupport()) { |
| // provides a hint about how this texture will be used |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_USAGE, GR_GL_FRAMEBUFFER_ATTACHMENT)); |
| } |
| |
| if (initialState) { |
| *initialState = set_initial_texture_params(this->glInterface(), target); |
| } else { |
| set_initial_texture_params(this->glInterface(), target); |
| } |
| |
| GrGLenum internalFormat = this->glCaps().getTexImageOrStorageInternalFormat(format); |
| |
| bool success = false; |
| if (internalFormat) { |
| if (this->glCaps().formatSupportsTexStorage(format)) { |
| auto levelCount = std::max(mipLevelCount, 1); |
| GrGLenum error = GL_ALLOC_CALL(TexStorage2D(target, levelCount, internalFormat, |
| dimensions.width(), dimensions.height())); |
| success = (error == GR_GL_NO_ERROR); |
| } else { |
| GrGLenum externalFormat, externalType; |
| this->glCaps().getTexImageExternalFormatAndType(format, &externalFormat, &externalType); |
| GrGLenum error = GR_GL_NO_ERROR; |
| if (externalFormat && externalType) { |
| for (int level = 0; level < mipLevelCount && error == GR_GL_NO_ERROR; level++) { |
| const int twoToTheMipLevel = 1 << level; |
| const int currentWidth = std::max(1, dimensions.width() / twoToTheMipLevel); |
| const int currentHeight = std::max(1, dimensions.height() / twoToTheMipLevel); |
| error = GL_ALLOC_CALL(TexImage2D(target, level, internalFormat, currentWidth, |
| currentHeight, 0, externalFormat, externalType, |
| nullptr)); |
| } |
| success = (error == GR_GL_NO_ERROR); |
| } |
| } |
| } |
| if (success) { |
| return id; |
| } |
| GL_CALL(DeleteTextures(1, &id)); |
| return 0; |
| } |
| |
| sk_sp<GrAttachment> GrGLGpu::makeStencilAttachmentForRenderTarget(const GrRenderTarget* rt, |
| SkISize dimensions, |
| int numStencilSamples) { |
| SkASSERT(dimensions.width() >= rt->width()); |
| SkASSERT(dimensions.height() >= rt->height()); |
| |
| GrGLAttachment::IDDesc sbDesc; |
| |
| int sIdx = this->getCompatibleStencilIndex(rt->backendFormat().asGLFormat()); |
| if (sIdx < 0) { |
| return nullptr; |
| } |
| |
| if (!sbDesc.fRenderbufferID) { |
| GL_CALL(GenRenderbuffers(1, &sbDesc.fRenderbufferID)); |
| } |
| if (!sbDesc.fRenderbufferID) { |
| return nullptr; |
| } |
| GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbDesc.fRenderbufferID)); |
| GrGLFormat sFmt = this->glCaps().stencilFormats()[sIdx]; |
| GrGLenum glFmt = GrGLFormatToEnum(sFmt); |
| // we do this "if" so that we don't call the multisample |
| // version on a GL that doesn't have an MSAA extension. |
| if (numStencilSamples > 1) { |
| if (!this->renderbufferStorageMSAA(*fGLContext, numStencilSamples, glFmt, |
| dimensions.width(), dimensions.height())) { |
| GL_CALL(DeleteRenderbuffers(1, &sbDesc.fRenderbufferID)); |
| return nullptr; |
| } |
| } else { |
| GrGLenum error = GL_ALLOC_CALL(RenderbufferStorage(GR_GL_RENDERBUFFER, glFmt, |
| dimensions.width(), |
| dimensions.height())); |
| if (error != GR_GL_NO_ERROR) { |
| GL_CALL(DeleteRenderbuffers(1, &sbDesc.fRenderbufferID)); |
| return nullptr; |
| } |
| } |
| fStats.incStencilAttachmentCreates(); |
| |
| return sk_sp<GrAttachment>(new GrGLAttachment( |
| this, sbDesc, dimensions, GrAttachment::UsageFlags::kStencilAttachment, |
| numStencilSamples, sFmt)); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| sk_sp<GrGpuBuffer> GrGLGpu::onCreateBuffer(size_t size, GrGpuBufferType intendedType, |
| GrAccessPattern accessPattern, const void* data) { |
| return GrGLBuffer::Make(this, size, intendedType, accessPattern, data); |
| } |
| |
| void GrGLGpu::flushScissorTest(GrScissorTest scissorTest) { |
| if (GrScissorTest::kEnabled == scissorTest) { |
| if (kYes_TriState != fHWScissorSettings.fEnabled) { |
| GL_CALL(Enable(GR_GL_SCISSOR_TEST)); |
| fHWScissorSettings.fEnabled = kYes_TriState; |
| } |
| } else { |
| if (kNo_TriState != fHWScissorSettings.fEnabled) { |
| GL_CALL(Disable(GR_GL_SCISSOR_TEST)); |
| fHWScissorSettings.fEnabled = kNo_TriState; |
| } |
| } |
| } |
| |
| void GrGLGpu::flushScissorRect(const SkIRect& scissor, int rtWidth, int rtHeight, |
| GrSurfaceOrigin rtOrigin) { |
| SkASSERT(fHWScissorSettings.fEnabled == TriState::kYes_TriState); |
| auto nativeScissor = GrNativeRect::MakeRelativeTo(rtOrigin, rtHeight, scissor); |
| if (fHWScissorSettings.fRect != nativeScissor) { |
| GL_CALL(Scissor(nativeScissor.fX, nativeScissor.fY, nativeScissor.fWidth, |
| nativeScissor.fHeight)); |
| fHWScissorSettings.fRect = nativeScissor; |
| } |
| } |
| |
| void GrGLGpu::flushWindowRectangles(const GrWindowRectsState& windowState, |
| const GrGLRenderTarget* rt, GrSurfaceOrigin origin) { |
| #ifndef USE_NSIGHT |
| typedef GrWindowRectsState::Mode Mode; |
| SkASSERT(!windowState.enabled() || rt->renderFBOID()); // Window rects can't be used on-screen. |
| SkASSERT(windowState.numWindows() <= this->caps()->maxWindowRectangles()); |
| |
| if (!this->caps()->maxWindowRectangles() || |
| fHWWindowRectsState.knownEqualTo(origin, rt->width(), rt->height(), windowState)) { |
| return; |
| } |
| |
| // This is purely a workaround for a spurious warning generated by gcc. Otherwise the above |
| // assert would be sufficient. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=5912 |
| int numWindows = std::min(windowState.numWindows(), int(GrWindowRectangles::kMaxWindows)); |
| SkASSERT(windowState.numWindows() == numWindows); |
| |
| GrNativeRect glwindows[GrWindowRectangles::kMaxWindows]; |
| const SkIRect* skwindows = windowState.windows().data(); |
| for (int i = 0; i < numWindows; ++i) { |
| glwindows[i].setRelativeTo(origin, rt->height(), skwindows[i]); |
| } |
| |
| GrGLenum glmode = (Mode::kExclusive == windowState.mode()) ? GR_GL_EXCLUSIVE : GR_GL_INCLUSIVE; |
| GL_CALL(WindowRectangles(glmode, numWindows, glwindows->asInts())); |
| |
| fHWWindowRectsState.set(origin, rt->width(), rt->height(), windowState); |
| #endif |
| } |
| |
| void GrGLGpu::disableWindowRectangles() { |
| #ifndef USE_NSIGHT |
| if (!this->caps()->maxWindowRectangles() || fHWWindowRectsState.knownDisabled()) { |
| return; |
| } |
| GL_CALL(WindowRectangles(GR_GL_EXCLUSIVE, 0, nullptr)); |
| fHWWindowRectsState.setDisabled(); |
| #endif |
| } |
| |
| bool GrGLGpu::flushGLState(GrRenderTarget* renderTarget, const GrProgramInfo& programInfo) { |
| this->handleDirtyContext(); |
| |
| sk_sp<GrGLProgram> program = fProgramCache->findOrCreateProgram(renderTarget, programInfo); |
| if (!program) { |
| GrCapsDebugf(this->caps(), "Failed to create program!\n"); |
| return false; |
| } |
| |
| this->flushProgram(std::move(program)); |
| |
| if (GrPrimitiveType::kPatches == programInfo.primitiveType()) { |
| this->flushPatchVertexCount(programInfo.tessellationPatchVertexCount()); |
| } |
| |
| // Swizzle the blend to match what the shader will output. |
| this->flushBlendAndColorWrite(programInfo.pipeline().getXferProcessor().getBlendInfo(), |
| programInfo.pipeline().writeSwizzle()); |
| |
| fHWProgram->updateUniforms(renderTarget, programInfo); |
| |
| GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(renderTarget); |
| GrStencilSettings stencil; |
| if (programInfo.isStencilEnabled()) { |
| SkASSERT(glRT->getStencilAttachment()); |
| stencil.reset(*programInfo.userStencilSettings(), |
| programInfo.pipeline().hasStencilClip(), |
| glRT->numStencilBits()); |
| } |
| this->flushStencil(stencil, programInfo.origin()); |
| this->flushScissorTest(GrScissorTest(programInfo.pipeline().isScissorTestEnabled())); |
| this->flushWindowRectangles(programInfo.pipeline().getWindowRectsState(), |
| glRT, programInfo.origin()); |
| this->flushHWAAState(glRT, programInfo.pipeline().isHWAntialiasState()); |
| this->flushConservativeRasterState(programInfo.pipeline().usesConservativeRaster()); |
| this->flushWireframeState(programInfo.pipeline().isWireframe()); |
| |
| // This must come after textures are flushed because a texture may need |
| // to be msaa-resolved (which will modify bound FBO state). |
| this->flushRenderTarget(glRT); |
| |
| return true; |
| } |
| |
| void GrGLGpu::flushProgram(sk_sp<GrGLProgram> program) { |
| if (!program) { |
| fHWProgram.reset(); |
| fHWProgramID = 0; |
| return; |
| } |
| SkASSERT((program == fHWProgram) == (fHWProgramID == program->programID())); |
| if (program == fHWProgram) { |
| return; |
| } |
| auto id = program->programID(); |
| SkASSERT(id); |
| GL_CALL(UseProgram(id)); |
| fHWProgram = std::move(program); |
| fHWProgramID = id; |
| } |
| |
| void GrGLGpu::flushProgram(GrGLuint id) { |
| SkASSERT(id); |
| if (fHWProgramID == id) { |
| SkASSERT(!fHWProgram); |
| return; |
| } |
| fHWProgram.reset(); |
| GL_CALL(UseProgram(id)); |
| fHWProgramID = id; |
| } |
| |
| GrGLenum GrGLGpu::bindBuffer(GrGpuBufferType type, const GrBuffer* buffer) { |
| this->handleDirtyContext(); |
| |
| // Index buffer state is tied to the vertex array. |
| if (GrGpuBufferType::kIndex == type) { |
| this->bindVertexArray(0); |
| } |
| |
| auto* bufferState = this->hwBufferState(type); |
| if (buffer->isCpuBuffer()) { |
| if (!bufferState->fBufferZeroKnownBound) { |
| GL_CALL(BindBuffer(bufferState->fGLTarget, 0)); |
| bufferState->fBufferZeroKnownBound = true; |
| bufferState->fBoundBufferUniqueID.makeInvalid(); |
| } |
| } else if (static_cast<const GrGpuBuffer*>(buffer)->uniqueID() != |
| bufferState->fBoundBufferUniqueID) { |
| const GrGLBuffer* glBuffer = static_cast<const GrGLBuffer*>(buffer); |
| GL_CALL(BindBuffer(bufferState->fGLTarget, glBuffer->bufferID())); |
| bufferState->fBufferZeroKnownBound = false; |
| bufferState->fBoundBufferUniqueID = glBuffer->uniqueID(); |
| } |
| |
| return bufferState->fGLTarget; |
| } |
| |
| void GrGLGpu::clear(const GrScissorState& scissor, const SkPMColor4f& color, |
| GrRenderTarget* target, GrSurfaceOrigin origin) { |
| // parent class should never let us get here with no RT |
| SkASSERT(target); |
| SkASSERT(!this->caps()->performColorClearsAsDraws()); |
| SkASSERT(!scissor.enabled() || !this->caps()->performPartialClearsAsDraws()); |
| |
| this->handleDirtyContext(); |
| |
| GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target); |
| |
| if (scissor.enabled()) { |
| this->flushRenderTarget(glRT, origin, scissor.rect()); |
| } else { |
| this->flushRenderTarget(glRT); |
| } |
| this->flushScissor(scissor, glRT->width(), glRT->height(), origin); |
| this->disableWindowRectangles(); |
| this->flushColorWrite(true); |
| this->flushClearColor(color); |
| GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT)); |
| } |
| |
| static bool use_tiled_rendering(const GrGLCaps& glCaps, |
| const GrOpsRenderPass::StencilLoadAndStoreInfo& stencilLoadStore) { |
| // Only use the tiled rendering extension if we can explicitly clear and discard the stencil. |
| // Otherwise it's faster to just not use it. |
| return glCaps.tiledRenderingSupport() && GrLoadOp::kClear == stencilLoadStore.fLoadOp && |
| GrStoreOp::kDiscard == stencilLoadStore.fStoreOp; |
| } |
| |
| void GrGLGpu::beginCommandBuffer(GrRenderTarget* rt, const SkIRect& bounds, GrSurfaceOrigin origin, |
| const GrOpsRenderPass::LoadAndStoreInfo& colorLoadStore, |
| const GrOpsRenderPass::StencilLoadAndStoreInfo& stencilLoadStore) { |
| SkASSERT(!fIsExecutingCommandBuffer_DebugOnly); |
| |
| this->handleDirtyContext(); |
| |
| auto glRT = static_cast<GrGLRenderTarget*>(rt); |
| this->flushRenderTarget(glRT); |
| SkDEBUGCODE(fIsExecutingCommandBuffer_DebugOnly = true); |
| |
| if (use_tiled_rendering(this->glCaps(), stencilLoadStore)) { |
| auto nativeBounds = GrNativeRect::MakeRelativeTo(origin, glRT->height(), bounds); |
| GrGLbitfield preserveMask = (GrLoadOp::kLoad == colorLoadStore.fLoadOp) |
| ? GR_GL_COLOR_BUFFER_BIT0 : GR_GL_NONE; |
| SkASSERT(GrLoadOp::kLoad != stencilLoadStore.fLoadOp); // Handled by use_tiled_rendering(). |
| GL_CALL(StartTiling(nativeBounds.fX, nativeBounds.fY, nativeBounds.fWidth, |
| nativeBounds.fHeight, preserveMask)); |
| } |
| |
| GrGLbitfield clearMask = 0; |
| if (GrLoadOp::kClear == colorLoadStore.fLoadOp) { |
| SkASSERT(!this->caps()->performColorClearsAsDraws()); |
| this->flushClearColor(colorLoadStore.fClearColor); |
| this->flushColorWrite(true); |
| clearMask |= GR_GL_COLOR_BUFFER_BIT; |
| } |
| if (GrLoadOp::kClear == stencilLoadStore.fLoadOp) { |
| SkASSERT(!this->caps()->performStencilClearsAsDraws()); |
| GL_CALL(StencilMask(0xffffffff)); |
| GL_CALL(ClearStencil(0)); |
| clearMask |= GR_GL_STENCIL_BUFFER_BIT; |
| } |
| if (clearMask) { |
| this->flushScissorTest(GrScissorTest::kDisabled); |
| this->disableWindowRectangles(); |
| GL_CALL(Clear(clearMask)); |
| } |
| } |
| |
| void GrGLGpu::endCommandBuffer(GrRenderTarget* rt, |
| const GrOpsRenderPass::LoadAndStoreInfo& colorLoadStore, |
| const GrOpsRenderPass::StencilLoadAndStoreInfo& stencilLoadStore) { |
| SkASSERT(fIsExecutingCommandBuffer_DebugOnly); |
| |
| this->handleDirtyContext(); |
| |
| if (rt->uniqueID() != fHWBoundRenderTargetUniqueID) { |
| // The framebuffer binding changed in the middle of a command buffer. We should have already |
| // printed a warning during onFBOChanged. |
| return; |
| } |
| |
| if (GrGLCaps::kNone_InvalidateFBType != this->glCaps().invalidateFBType()) { |
| auto glRT = static_cast<GrGLRenderTarget*>(rt); |
| |
| SkSTArray<2, GrGLenum> discardAttachments; |
| if (GrStoreOp::kDiscard == colorLoadStore.fStoreOp) { |
| discardAttachments.push_back( |
| (0 == glRT->renderFBOID()) ? GR_GL_COLOR : GR_GL_COLOR_ATTACHMENT0); |
| } |
| if (GrStoreOp::kDiscard == stencilLoadStore.fStoreOp) { |
| discardAttachments.push_back( |
| (0 == glRT->renderFBOID()) ? GR_GL_STENCIL : GR_GL_STENCIL_ATTACHMENT); |
| } |
| |
| if (!discardAttachments.empty()) { |
| if (GrGLCaps::kInvalidate_InvalidateFBType == this->glCaps().invalidateFBType()) { |
| GL_CALL(InvalidateFramebuffer(GR_GL_FRAMEBUFFER, discardAttachments.count(), |
| discardAttachments.begin())); |
| } else { |
| SkASSERT(GrGLCaps::kDiscard_InvalidateFBType == this->glCaps().invalidateFBType()); |
| GL_CALL(DiscardFramebuffer(GR_GL_FRAMEBUFFER, discardAttachments.count(), |
| discardAttachments.begin())); |
| } |
| } |
| } |
| |
| if (use_tiled_rendering(this->glCaps(), stencilLoadStore)) { |
| GrGLbitfield preserveMask = (GrStoreOp::kStore == colorLoadStore.fStoreOp) |
| ? GR_GL_COLOR_BUFFER_BIT0 : GR_GL_NONE; |
| // Handled by use_tiled_rendering(). |
| SkASSERT(GrStoreOp::kStore != stencilLoadStore.fStoreOp); |
| GL_CALL(EndTiling(preserveMask)); |
| } |
| |
| SkDEBUGCODE(fIsExecutingCommandBuffer_DebugOnly = false); |
| } |
| |
| void GrGLGpu::clearStencilClip(const GrScissorState& scissor, bool insideStencilMask, |
| GrRenderTarget* target, GrSurfaceOrigin origin) { |
| SkASSERT(target); |
| SkASSERT(!this->caps()->performStencilClearsAsDraws()); |
| SkASSERT(!scissor.enabled() || !this->caps()->performPartialClearsAsDraws()); |
| this->handleDirtyContext(); |
| |
| GrAttachment* sb = target->getStencilAttachment(); |
| if (!sb) { |
| // We should only get here if we marked a proxy as requiring a SB. However, |
| // the SB creation could later fail. Likely clipping is going to go awry now. |
| return; |
| } |
| |
| GrGLint stencilBitCount = GrBackendFormatStencilBits(sb->backendFormat()); |
| #if 0 |
| SkASSERT(stencilBitCount > 0); |
| GrGLint clipStencilMask = (1 << (stencilBitCount - 1)); |
| #else |
| // we could just clear the clip bit but when we go through |
| // ANGLE a partial stencil mask will cause clears to be |
| // turned into draws. Our contract on GrOpsTask says that |
| // changing the clip between stencil passes may or may not |
| // zero the client's clip bits. So we just clear the whole thing. |
| static const GrGLint clipStencilMask = ~0; |
| #endif |
| GrGLint value; |
| if (insideStencilMask) { |
| value = (1 << (stencilBitCount - 1)); |
| } else { |
| value = 0; |
| } |
| GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target); |
| this->flushRenderTargetNoColorWrites(glRT); |
| |
| this->flushScissor(scissor, glRT->width(), glRT->height(), origin); |
| this->disableWindowRectangles(); |
| |
| GL_CALL(StencilMask((uint32_t) clipStencilMask)); |
| GL_CALL(ClearStencil(value)); |
| GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); |
| fHWStencilSettings.invalidate(); |
| } |
| |
| bool GrGLGpu::readOrTransferPixelsFrom(GrSurface* surface, int left, int top, int width, int height, |
| GrColorType surfaceColorType, GrColorType dstColorType, |
| void* offsetOrPtr, int rowWidthInPixels) { |
| SkASSERT(surface); |
| |
| auto format = surface->backendFormat().asGLFormat(); |
| GrGLRenderTarget* renderTarget = static_cast<GrGLRenderTarget*>(surface->asRenderTarget()); |
| if (!renderTarget && !this->glCaps().isFormatRenderable(format, 1)) { |
| return false; |
| } |
| GrGLenum externalFormat = 0; |
| GrGLenum externalType = 0; |
| this->glCaps().getReadPixelsFormat(surface->backendFormat().asGLFormat(), |
| surfaceColorType, |
| dstColorType, |
| &externalFormat, |
| &externalType); |
| if (!externalFormat || !externalType) { |
| return false; |
| } |
| |
| if (renderTarget) { |
| if (renderTarget->numSamples() <= 1 || |
| renderTarget->renderFBOID() == renderTarget->textureFBOID()) { // Also catches FBO 0. |
| SkASSERT(!renderTarget->requiresManualMSAAResolve()); |
| this->flushRenderTargetNoColorWrites(renderTarget); |
| } else if (GrGLRenderTarget::kUnresolvableFBOID == renderTarget->textureFBOID()) { |
| SkASSERT(!renderTarget->requiresManualMSAAResolve()); |
| return false; |
| } else { |
| SkASSERT(renderTarget->requiresManualMSAAResolve()); |
| // we don't track the state of the READ FBO ID. |
| this->bindFramebuffer(GR_GL_READ_FRAMEBUFFER, renderTarget->textureFBOID()); |
| } |
| } else { |
| // Use a temporary FBO. |
| this->bindSurfaceFBOForPixelOps(surface, 0, GR_GL_FRAMEBUFFER, kSrc_TempFBOTarget); |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| } |
| |
| // the read rect is viewport-relative |
| GrNativeRect readRect = {left, top, width, height}; |
| |
| // determine if GL can read using the passed rowBytes or if we need a scratch buffer. |
| if (rowWidthInPixels != width) { |
| SkASSERT(this->glCaps().readPixelsRowBytesSupport()); |
| GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, rowWidthInPixels)); |
| } |
| GL_CALL(PixelStorei(GR_GL_PACK_ALIGNMENT, 1)); |
| |
| bool reattachStencil = false; |
| if (this->glCaps().detachStencilFromMSAABuffersBeforeReadPixels() && |
| renderTarget && |
| renderTarget->getStencilAttachment() && |
| renderTarget->numSamples() > 1) { |
| // Fix Adreno devices that won't read from MSAA framebuffers with stencil attached |
| reattachStencil = true; |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| } |
| |
| GL_CALL(ReadPixels(readRect.fX, readRect.fY, readRect.fWidth, readRect.fHeight, |
| externalFormat, externalType, offsetOrPtr)); |
| |
| if (reattachStencil) { |
| auto* stencilAttachment = |
| static_cast<GrGLAttachment*>(renderTarget->getStencilAttachment()); |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, stencilAttachment->renderbufferID())); |
| } |
| |
| if (rowWidthInPixels != width) { |
| SkASSERT(this->glCaps().readPixelsRowBytesSupport()); |
| GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); |
| } |
| |
| if (!renderTarget) { |
| this->unbindSurfaceFBOForPixelOps(surface, 0, GR_GL_FRAMEBUFFER); |
| } |
| return true; |
| } |
| |
| bool GrGLGpu::onReadPixels(GrSurface* surface, int left, int top, int width, int height, |
| GrColorType surfaceColorType, GrColorType dstColorType, void* buffer, |
| size_t rowBytes) { |
| SkASSERT(surface); |
| |
| size_t bytesPerPixel = GrColorTypeBytesPerPixel(dstColorType); |
| |
| // GL_PACK_ROW_LENGTH is in terms of pixels not bytes. |
| int rowPixelWidth; |
| |
| if (rowBytes == SkToSizeT(width * bytesPerPixel)) { |
| rowPixelWidth = width; |
| } else { |
| SkASSERT(!(rowBytes % bytesPerPixel)); |
| rowPixelWidth = rowBytes / bytesPerPixel; |
| } |
| return this->readOrTransferPixelsFrom(surface, left, top, width, height, surfaceColorType, |
| dstColorType, buffer, rowPixelWidth); |
| } |
| |
| GrOpsRenderPass* GrGLGpu::onGetOpsRenderPass( |
| GrRenderTarget* rt, |
| GrAttachment*, |
| GrSurfaceOrigin origin, |
| const SkIRect& bounds, |
| const GrOpsRenderPass::LoadAndStoreInfo& colorInfo, |
| const GrOpsRenderPass::StencilLoadAndStoreInfo& stencilInfo, |
| const SkTArray<GrSurfaceProxy*, true>& sampledProxies, |
| GrXferBarrierFlags renderPassXferBarriers) { |
| if (!fCachedOpsRenderPass) { |
| fCachedOpsRenderPass = std::make_unique<GrGLOpsRenderPass>(this); |
| } |
| |
| fCachedOpsRenderPass->set(rt, bounds, origin, colorInfo, stencilInfo); |
| return fCachedOpsRenderPass.get(); |
| } |
| |
| void GrGLGpu::flushRenderTarget(GrGLRenderTarget* target, GrSurfaceOrigin origin, |
| const SkIRect& bounds) { |
| this->flushRenderTargetNoColorWrites(target); |
| this->didWriteToSurface(target, origin, &bounds); |
| } |
| |
| void GrGLGpu::flushRenderTarget(GrGLRenderTarget* target) { |
| this->flushRenderTargetNoColorWrites(target); |
| this->didWriteToSurface(target, kTopLeft_GrSurfaceOrigin, nullptr); |
| } |
| |
| void GrGLGpu::flushRenderTargetNoColorWrites(GrGLRenderTarget* target) { |
| SkASSERT(target); |
| GrGpuResource::UniqueID rtID = target->uniqueID(); |
| if (fHWBoundRenderTargetUniqueID != rtID) { |
| this->bindFramebuffer(GR_GL_FRAMEBUFFER, target->renderFBOID()); |
| #ifdef SK_DEBUG |
| // don't do this check in Chromium -- this is causing |
| // lots of repeated command buffer flushes when the compositor is |
| // rendering with Ganesh, which is really slow; even too slow for |
| // Debug mode. |
| if (!this->glCaps().skipErrorChecks()) { |
| GrGLenum status; |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status != GR_GL_FRAMEBUFFER_COMPLETE) { |
| SkDebugf("GrGLGpu::flushRenderTarget glCheckFramebufferStatus %x\n", status); |
| } |
| } |
| #endif |
| fHWBoundRenderTargetUniqueID = rtID; |
| this->flushViewport(target->width(), target->height()); |
| } |
| |
| if (this->glCaps().srgbWriteControl()) { |
| this->flushFramebufferSRGB(this->caps()->isFormatSRGB(target->backendFormat())); |
| } |
| |
| if (this->glCaps().shouldQueryImplementationReadSupport(target->format())) { |
| GrGLint format; |
| GrGLint type; |
| GR_GL_GetIntegerv(this->glInterface(), GR_GL_IMPLEMENTATION_COLOR_READ_FORMAT, &format); |
| GR_GL_GetIntegerv(this->glInterface(), GR_GL_IMPLEMENTATION_COLOR_READ_TYPE, &type); |
| this->glCaps().didQueryImplementationReadSupport(target->format(), format, type); |
| } |
| } |
| |
| void GrGLGpu::flushFramebufferSRGB(bool enable) { |
| if (enable && kYes_TriState != fHWSRGBFramebuffer) { |
| GL_CALL(Enable(GR_GL_FRAMEBUFFER_SRGB)); |
| fHWSRGBFramebuffer = kYes_TriState; |
| } else if (!enable && kNo_TriState != fHWSRGBFramebuffer) { |
| GL_CALL(Disable(GR_GL_FRAMEBUFFER_SRGB)); |
| fHWSRGBFramebuffer = kNo_TriState; |
| } |
| } |
| |
| void GrGLGpu::flushViewport(int width, int height) { |
| GrNativeRect viewport = {0, 0, width, height}; |
| if (fHWViewport != viewport) { |
| GL_CALL(Viewport(viewport.fX, viewport.fY, viewport.fWidth, viewport.fHeight)); |
| fHWViewport = viewport; |
| } |
| } |
| |
| GrGLenum GrGLGpu::prepareToDraw(GrPrimitiveType primitiveType) { |
| fStats.incNumDraws(); |
| |
| if (this->glCaps().requiresCullFaceEnableDisableWhenDrawingLinesAfterNonLines() && |
| GrIsPrimTypeLines(primitiveType) && !GrIsPrimTypeLines(fLastPrimitiveType)) { |
| GL_CALL(Enable(GR_GL_CULL_FACE)); |
| GL_CALL(Disable(GR_GL_CULL_FACE)); |
| } |
| fLastPrimitiveType = primitiveType; |
| |
| switch (primitiveType) { |
| case GrPrimitiveType::kTriangles: |
| return GR_GL_TRIANGLES; |
| case GrPrimitiveType::kTriangleStrip: |
| return GR_GL_TRIANGLE_STRIP; |
| case GrPrimitiveType::kPoints: |
| return GR_GL_POINTS; |
| case GrPrimitiveType::kLines: |
| return GR_GL_LINES; |
| case GrPrimitiveType::kLineStrip: |
| return GR_GL_LINE_STRIP; |
| case GrPrimitiveType::kPatches: |
| return GR_GL_PATCHES; |
| case GrPrimitiveType::kPath: |
| SK_ABORT("non-mesh-based GrPrimitiveType"); |
| return 0; |
| } |
| SK_ABORT("invalid GrPrimitiveType"); |
| } |
| |
| void GrGLGpu::onResolveRenderTarget(GrRenderTarget* target, const SkIRect& resolveRect) { |
| // Some extensions automatically resolves the texture when it is read. |
| SkASSERT(this->glCaps().usesMSAARenderBuffers()); |
| |
| GrGLRenderTarget* rt = static_cast<GrGLRenderTarget*>(target); |
| SkASSERT(rt->textureFBOID() != rt->renderFBOID()); |
| SkASSERT(rt->textureFBOID() != 0 && rt->renderFBOID() != 0); |
| this->bindFramebuffer(GR_GL_READ_FRAMEBUFFER, rt->renderFBOID()); |
| this->bindFramebuffer(GR_GL_DRAW_FRAMEBUFFER, rt->textureFBOID()); |
| |
| // make sure we go through flushRenderTarget() since we've modified |
| // the bound DRAW FBO ID. |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| if (GrGLCaps::kES_Apple_MSFBOType == this->glCaps().msFBOType()) { |
| // Apple's extension uses the scissor as the blit bounds. |
| // Passing in kTopLeft_GrSurfaceOrigin will make sure no transformation of the rect |
| // happens inside flushScissor since resolveRect is already in native device coordinates. |
| GrScissorState scissor(rt->dimensions()); |
| SkAssertResult(scissor.set(resolveRect)); |
| this->flushScissor(scissor, rt->width(), rt->height(), kTopLeft_GrSurfaceOrigin); |
| this->disableWindowRectangles(); |
| GL_CALL(ResolveMultisampleFramebuffer()); |
| } else { |
| int l, b, r, t; |
| if (GrGLCaps::kResolveMustBeFull_BlitFrambufferFlag & |
| this->glCaps().blitFramebufferSupportFlags()) { |
| l = 0; |
| b = 0; |
| r = target->width(); |
| t = target->height(); |
| } else { |
| l = resolveRect.x(); |
| b = resolveRect.y(); |
| r = resolveRect.x() + resolveRect.width(); |
| t = resolveRect.y() + resolveRect.height(); |
| } |
| |
| // BlitFrameBuffer respects the scissor, so disable it. |
| this->flushScissorTest(GrScissorTest::kDisabled); |
| this->disableWindowRectangles(); |
| GL_CALL(BlitFramebuffer(l, b, r, t, l, b, r, t, GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST)); |
| } |
| } |
| |
| namespace { |
| |
| |
| GrGLenum gr_to_gl_stencil_op(GrStencilOp op) { |
| static const GrGLenum gTable[kGrStencilOpCount] = { |
| GR_GL_KEEP, // kKeep |
| GR_GL_ZERO, // kZero |
| GR_GL_REPLACE, // kReplace |
| GR_GL_INVERT, // kInvert |
| GR_GL_INCR_WRAP, // kIncWrap |
| GR_GL_DECR_WRAP, // kDecWrap |
| GR_GL_INCR, // kIncClamp |
| GR_GL_DECR, // kDecClamp |
| }; |
| static_assert(0 == (int)GrStencilOp::kKeep); |
| static_assert(1 == (int)GrStencilOp::kZero); |
| static_assert(2 == (int)GrStencilOp::kReplace); |
| static_assert(3 == (int)GrStencilOp::kInvert); |
| static_assert(4 == (int)GrStencilOp::kIncWrap); |
| static_assert(5 == (int)GrStencilOp::kDecWrap); |
| static_assert(6 == (int)GrStencilOp::kIncClamp); |
| static_assert(7 == (int)GrStencilOp::kDecClamp); |
| SkASSERT(op < (GrStencilOp)kGrStencilOpCount); |
| return gTable[(int)op]; |
| } |
| |
| void set_gl_stencil(const GrGLInterface* gl, |
| const GrStencilSettings::Face& face, |
| GrGLenum glFace) { |
| GrGLenum glFunc = GrToGLStencilFunc(face.fTest); |
| GrGLenum glFailOp = gr_to_gl_stencil_op(face.fFailOp); |
| GrGLenum glPassOp = gr_to_gl_stencil_op(face.fPassOp); |
| |
| GrGLint ref = face.fRef; |
| GrGLint mask = face.fTestMask; |
| GrGLint writeMask = face.fWriteMask; |
| |
| if (GR_GL_FRONT_AND_BACK == glFace) { |
| // we call the combined func just in case separate stencil is not |
| // supported. |
| GR_GL_CALL(gl, StencilFunc(glFunc, ref, mask)); |
| GR_GL_CALL(gl, StencilMask(writeMask)); |
| GR_GL_CALL(gl, StencilOp(glFailOp, GR_GL_KEEP, glPassOp)); |
| } else { |
| GR_GL_CALL(gl, StencilFuncSeparate(glFace, glFunc, ref, mask)); |
| GR_GL_CALL(gl, StencilMaskSeparate(glFace, writeMask)); |
| GR_GL_CALL(gl, StencilOpSeparate(glFace, glFailOp, GR_GL_KEEP, glPassOp)); |
| } |
| } |
| } // namespace |
| |
| void GrGLGpu::flushStencil(const GrStencilSettings& stencilSettings, GrSurfaceOrigin origin) { |
| if (stencilSettings.isDisabled()) { |
| this->disableStencil(); |
| } else if (fHWStencilSettings != stencilSettings || |
| (stencilSettings.isTwoSided() && fHWStencilOrigin != origin)) { |
| if (kYes_TriState != fHWStencilTestEnabled) { |
| GL_CALL(Enable(GR_GL_STENCIL_TEST)); |
| |
| fHWStencilTestEnabled = kYes_TriState; |
| } |
| if (!stencilSettings.isTwoSided()) { |
| set_gl_stencil(this->glInterface(), stencilSettings.singleSidedFace(), |
| GR_GL_FRONT_AND_BACK); |
| } else { |
| set_gl_stencil(this->glInterface(), stencilSettings.postOriginCWFace(origin), |
| GR_GL_FRONT); |
| set_gl_stencil(this->glInterface(), stencilSettings.postOriginCCWFace(origin), |
| GR_GL_BACK); |
| } |
| fHWStencilSettings = stencilSettings; |
| fHWStencilOrigin = origin; |
| } |
| } |
| |
| void GrGLGpu::disableStencil() { |
| if (kNo_TriState != fHWStencilTestEnabled) { |
| GL_CALL(Disable(GR_GL_STENCIL_TEST)); |
| |
| fHWStencilTestEnabled = kNo_TriState; |
| fHWStencilSettings.invalidate(); |
| } |
| } |
| |
| void GrGLGpu::flushHWAAState(GrRenderTarget* rt, bool useHWAA) { |
| // rt is only optional if useHWAA is false. |
| SkASSERT(rt || !useHWAA); |
| #ifdef SK_DEBUG |
| if (useHWAA && rt->numSamples() <= 1) { |
| SkASSERT(this->caps()->mixedSamplesSupport()); |
| SkASSERT(0 != static_cast<GrGLRenderTarget*>(rt)->renderFBOID()); |
| SkASSERT(rt->getStencilAttachment()); |
| } |
| #endif |
| |
| if (this->caps()->multisampleDisableSupport()) { |
| if (useHWAA) { |
| if (kYes_TriState != fMSAAEnabled) { |
| GL_CALL(Enable(GR_GL_MULTISAMPLE)); |
| fMSAAEnabled = kYes_TriState; |
| } |
| } else { |
| if (kNo_TriState != fMSAAEnabled) { |
| GL_CALL(Disable(GR_GL_MULTISAMPLE)); |
| fMSAAEnabled = kNo_TriState; |
| } |
| } |
| } |
| } |
| |
| void GrGLGpu::flushConservativeRasterState(bool enabled) { |
| if (this->caps()->conservativeRasterSupport()) { |
| if (enabled) { |
| if (kYes_TriState != fHWConservativeRasterEnabled) { |
| GL_CALL(Enable(GR_GL_CONSERVATIVE_RASTERIZATION)); |
| fHWConservativeRasterEnabled = kYes_TriState; |
| } |
| } else { |
| if (kNo_TriState != fHWConservativeRasterEnabled) { |
| GL_CALL(Disable(GR_GL_CONSERVATIVE_RASTERIZATION)); |
| fHWConservativeRasterEnabled = kNo_TriState; |
| } |
| } |
| } |
| } |
| |
| void GrGLGpu::flushWireframeState(bool enabled) { |
| if (this->caps()->wireframeSupport()) { |
| if (this->caps()->wireframeMode() || enabled) { |
| if (kYes_TriState != fHWWireframeEnabled) { |
| GL_CALL(PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_LINE)); |
| fHWWireframeEnabled = kYes_TriState; |
| } |
| } else { |
| if (kNo_TriState != fHWWireframeEnabled) { |
| GL_CALL(PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_FILL)); |
| fHWWireframeEnabled = kNo_TriState; |
| } |
| } |
| } |
| } |
| |
| void GrGLGpu::flushBlendAndColorWrite( |
| const GrXferProcessor::BlendInfo& blendInfo, const GrSwizzle& swizzle) { |
| if (this->glCaps().neverDisableColorWrites() && !blendInfo.fWriteColor) { |
| // We need to work around a driver bug by using a blend state that preserves the dst color, |
| // rather than disabling color writes. |
| GrXferProcessor::BlendInfo preserveDstBlend; |
| preserveDstBlend.fSrcBlend = kZero_GrBlendCoeff; |
| preserveDstBlend.fDstBlend = kOne_GrBlendCoeff; |
| this->flushBlendAndColorWrite(preserveDstBlend, swizzle); |
| return; |
| } |
| |
| GrBlendEquation equation = blendInfo.fEquation; |
| GrBlendCoeff srcCoeff = blendInfo.fSrcBlend; |
| GrBlendCoeff dstCoeff = blendInfo.fDstBlend; |
| |
| // Any optimization to disable blending should have already been applied and |
| // tweaked the equation to "add" or "subtract", and the coeffs to (1, 0). |
| bool blendOff = GrBlendShouldDisable(equation, srcCoeff, dstCoeff) || |
| !blendInfo.fWriteColor; |
| |
| if (blendOff) { |
| if (kNo_TriState != fHWBlendState.fEnabled) { |
| GL_CALL(Disable(GR_GL_BLEND)); |
| |
| // Workaround for the ARM KHR_blend_equation_advanced disable flags issue |
| // https://code.google.com/p/skia/issues/detail?id=3943 |
| if (kARM_GrGLVendor == this->ctxInfo().vendor() && |
| GrBlendEquationIsAdvanced(fHWBlendState.fEquation)) { |
| SkASSERT(this->caps()->advancedBlendEquationSupport()); |
| // Set to any basic blending equation. |
| GrBlendEquation blend_equation = kAdd_GrBlendEquation; |
| GL_CALL(BlendEquation(gXfermodeEquation2Blend[blend_equation])); |
| fHWBlendState.fEquation = blend_equation; |
| } |
| |
| fHWBlendState.fEnabled = kNo_TriState; |
| } |
| } else { |
| if (kYes_TriState != fHWBlendState.fEnabled) { |
| GL_CALL(Enable(GR_GL_BLEND)); |
| |
| fHWBlendState.fEnabled = kYes_TriState; |
| } |
| |
| if (fHWBlendState.fEquation != equation) { |
| GL_CALL(BlendEquation(gXfermodeEquation2Blend[equation])); |
| fHWBlendState.fEquation = equation; |
| } |
| |
| if (GrBlendEquationIsAdvanced(equation)) { |
| SkASSERT(this->caps()->advancedBlendEquationSupport()); |
| // Advanced equations have no other blend state. |
| return; |
| } |
| |
| if (fHWBlendState.fSrcCoeff != srcCoeff || fHWBlendState.fDstCoeff != dstCoeff) { |
| GL_CALL(BlendFunc(gXfermodeCoeff2Blend[srcCoeff], |
| gXfermodeCoeff2Blend[dstCoeff])); |
| fHWBlendState.fSrcCoeff = srcCoeff; |
| fHWBlendState.fDstCoeff = dstCoeff; |
| } |
| |
| if ((GrBlendCoeffRefsConstant(srcCoeff) || GrBlendCoeffRefsConstant(dstCoeff))) { |
| SkPMColor4f blendConst = swizzle.applyTo(blendInfo.fBlendConstant); |
| if (!fHWBlendState.fConstColorValid || fHWBlendState.fConstColor != blendConst) { |
| GL_CALL(BlendColor(blendConst.fR, blendConst.fG, blendConst.fB, blendConst.fA)); |
| fHWBlendState.fConstColor = blendConst; |
| fHWBlendState.fConstColorValid = true; |
| } |
| } |
| } |
| |
| this->flushColorWrite(blendInfo.fWriteColor); |
| } |
| |
| void GrGLGpu::bindTexture(int unitIdx, GrSamplerState samplerState, const GrSwizzle& swizzle, |
| GrGLTexture* texture) { |
| SkASSERT(texture); |
| |
| #ifdef SK_DEBUG |
| if (!this->caps()->npotTextureTileSupport()) { |
| if (samplerState.isRepeatedX()) { |
| const int w = texture->width(); |
| SkASSERT(SkIsPow2(w)); |
| } |
| if (samplerState.isRepeatedY()) { |
| const int h = texture->height(); |
| SkASSERT(SkIsPow2(h)); |
| } |
| } |
| #endif |
| |
| GrGpuResource::UniqueID textureID = texture->uniqueID(); |
| GrGLenum target = texture->target(); |
| if (fHWTextureUnitBindings[unitIdx].boundID(target) != textureID) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(BindTexture(target, texture->textureID())); |
| fHWTextureUnitBindings[unitIdx].setBoundID(target, textureID); |
| } |
| |
| if (samplerState.mipmapped() == GrMipmapped::kYes) { |
| if (!this->caps()->mipmapSupport() || texture->mipmapped() == GrMipmapped::kNo) { |
| samplerState.setMipmapMode(GrSamplerState::MipmapMode::kNone); |
| } else { |
| SkASSERT(!texture->mipmapsAreDirty()); |
| } |
| } |
| |
| auto timestamp = texture->parameters()->resetTimestamp(); |
| bool setAll = timestamp < fResetTimestampForTextureParameters; |
| const GrGLTextureParameters::SamplerOverriddenState* samplerStateToRecord = nullptr; |
| GrGLTextureParameters::SamplerOverriddenState newSamplerState; |
| if (this->glCaps().useSamplerObjects()) { |
| fSamplerObjectCache->bindSampler(unitIdx, samplerState); |
| if (this->glCaps().mustSetAnyTexParameterToEnableMipmapping()) { |
| if (samplerState.mipmapped() == GrMipmapped::kYes) { |
| GrGLenum minFilter = filter_to_gl_min_filter(samplerState.filter(), |
| samplerState.mipmapMode()); |
| const GrGLTextureParameters::SamplerOverriddenState& oldSamplerState = |
| texture->parameters()->samplerOverriddenState(); |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MIN_FILTER, minFilter)); |
| newSamplerState = oldSamplerState; |
| newSamplerState.fMinFilter = minFilter; |
| samplerStateToRecord = &newSamplerState; |
| } |
| } |
| } else { |
| if (fSamplerObjectCache) { |
| fSamplerObjectCache->unbindSampler(unitIdx); |
| } |
| const GrGLTextureParameters::SamplerOverriddenState& oldSamplerState = |
| texture->parameters()->samplerOverriddenState(); |
| samplerStateToRecord = &newSamplerState; |
| |
| newSamplerState.fMinFilter = filter_to_gl_min_filter(samplerState.filter(), |
| samplerState.mipmapMode()); |
| newSamplerState.fMagFilter = filter_to_gl_mag_filter(samplerState.filter()); |
| |
| newSamplerState.fWrapS = wrap_mode_to_gl_wrap(samplerState.wrapModeX(), this->glCaps()); |
| newSamplerState.fWrapT = wrap_mode_to_gl_wrap(samplerState.wrapModeY(), this->glCaps()); |
| |
| // These are the OpenGL default values. |
| newSamplerState.fMinLOD = -1000.f; |
| newSamplerState.fMaxLOD = 1000.f; |
| |
| if (setAll || newSamplerState.fMagFilter != oldSamplerState.fMagFilter) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MAG_FILTER, newSamplerState.fMagFilter)); |
| } |
| if (setAll || newSamplerState.fMinFilter != oldSamplerState.fMinFilter) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MIN_FILTER, newSamplerState.fMinFilter)); |
| } |
| if (this->glCaps().mipmapLodControlSupport()) { |
| if (setAll || newSamplerState.fMinLOD != oldSamplerState.fMinLOD) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameterf(target, GR_GL_TEXTURE_MIN_LOD, newSamplerState.fMinLOD)); |
| } |
| if (setAll || newSamplerState.fMaxLOD != oldSamplerState.fMaxLOD) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameterf(target, GR_GL_TEXTURE_MAX_LOD, newSamplerState.fMaxLOD)); |
| } |
| } |
| if (setAll || newSamplerState.fWrapS != oldSamplerState.fWrapS) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_WRAP_S, newSamplerState.fWrapS)); |
| } |
| if (setAll || newSamplerState.fWrapT != oldSamplerState.fWrapT) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_WRAP_T, newSamplerState.fWrapT)); |
| } |
| if (this->glCaps().clampToBorderSupport()) { |
| // Make sure the border color is transparent black (the default) |
| if (setAll || oldSamplerState.fBorderColorInvalid) { |
| this->setTextureUnit(unitIdx); |
| static const GrGLfloat kTransparentBlack[4] = {0.f, 0.f, 0.f, 0.f}; |
| GL_CALL(TexParameterfv(target, GR_GL_TEXTURE_BORDER_COLOR, kTransparentBlack)); |
| } |
| } |
| } |
| GrGLTextureParameters::NonsamplerState newNonsamplerState; |
| newNonsamplerState.fBaseMipMapLevel = 0; |
| newNonsamplerState.fMaxMipmapLevel = texture->maxMipmapLevel(); |
| newNonsamplerState.fSwizzleIsRGBA = true; |
| |
| const GrGLTextureParameters::NonsamplerState& oldNonsamplerState = |
| texture->parameters()->nonsamplerState(); |
| if (this->glCaps().textureSwizzleSupport()) { |
| if (setAll || !oldNonsamplerState.fSwizzleIsRGBA) { |
| static constexpr GrGLenum kRGBA[4] { |
| GR_GL_RED, |
| GR_GL_GREEN, |
| GR_GL_BLUE, |
| GR_GL_ALPHA |
| }; |
| this->setTextureUnit(unitIdx); |
| if (GR_IS_GR_GL(this->glStandard())) { |
| static_assert(sizeof(kRGBA[0]) == sizeof(GrGLint)); |
| GL_CALL(TexParameteriv(target, GR_GL_TEXTURE_SWIZZLE_RGBA, |
| reinterpret_cast<const GrGLint*>(kRGBA))); |
| } else if (GR_IS_GR_GL_ES(this->glStandard())) { |
| // ES3 added swizzle support but not GL_TEXTURE_SWIZZLE_RGBA. |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_R, kRGBA[0])); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_G, kRGBA[1])); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_B, kRGBA[2])); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_A, kRGBA[3])); |
| } |
| } |
| } |
| // These are not supported in ES2 contexts |
| if (this->glCaps().mipmapLevelControlSupport() && |
| (texture->textureType() != GrTextureType::kExternal || |
| !this->glCaps().dontSetBaseOrMaxLevelForExternalTextures())) { |
| if (newNonsamplerState.fBaseMipMapLevel != oldNonsamplerState.fBaseMipMapLevel) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_BASE_LEVEL, |
| newNonsamplerState.fBaseMipMapLevel)); |
| } |
| if (newNonsamplerState.fMaxMipmapLevel != oldNonsamplerState.fMaxMipmapLevel) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MAX_LEVEL, |
| newNonsamplerState.fMaxMipmapLevel)); |
| } |
| } |
| texture->parameters()->set(samplerStateToRecord, newNonsamplerState, |
| fResetTimestampForTextureParameters); |
| } |
| |
| void GrGLGpu::onResetTextureBindings() { |
| static constexpr GrGLenum kTargets[] = {GR_GL_TEXTURE_2D, GR_GL_TEXTURE_RECTANGLE, |
| GR_GL_TEXTURE_EXTERNAL}; |
| for (int i = 0; i < this->numTextureUnits(); ++i) { |
| this->setTextureUnit(i); |
| for (auto target : kTargets) { |
| if (fHWTextureUnitBindings[i].hasBeenModified(target)) { |
| GL_CALL(BindTexture(target, 0)); |
| } |
| } |
| fHWTextureUnitBindings[i].invalidateAllTargets(true); |
| } |
| } |
| |
| void GrGLGpu::flushPatchVertexCount(uint8_t count) { |
| SkASSERT(this->caps()->shaderCaps()->tessellationSupport()); |
| if (fHWPatchVertexCount != count) { |
| GL_CALL(PatchParameteri(GR_GL_PATCH_VERTICES, count)); |
| fHWPatchVertexCount = count; |
| } |
| } |
| |
| void GrGLGpu::flushColorWrite(bool writeColor) { |
| if (!writeColor) { |
| if (kNo_TriState != fHWWriteToColor) { |
| GL_CALL(ColorMask(GR_GL_FALSE, GR_GL_FALSE, |
| GR_GL_FALSE, GR_GL_FALSE)); |
| fHWWriteToColor = kNo_TriState; |
| } |
| } else { |
| if (kYes_TriState != fHWWriteToColor) { |
| GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE)); |
| fHWWriteToColor = kYes_TriState; |
| } |
| } |
| } |
| |
| void GrGLGpu::flushClearColor(const SkPMColor4f& color) { |
| GrGLfloat r = color.fR, g = color.fG, b = color.fB, a = color.fA; |
| if (this->glCaps().clearToBoundaryValuesIsBroken() && |
| (1 == r || 0 == r) && (1 == g || 0 == g) && (1 == b || 0 == b) && (1 == a || 0 == a)) { |
| static const GrGLfloat safeAlpha1 = nextafter(1.f, 2.f); |
| static const GrGLfloat safeAlpha0 = nextafter(0.f, -1.f); |
| a = (1 == a) ? safeAlpha1 : safeAlpha0; |
| } |
| if (r != fHWClearColor[0] || g != fHWClearColor[1] || |
| b != fHWClearColor[2] || a != fHWClearColor[3]) { |
| GL_CALL(ClearColor(r, g, b, a)); |
| fHWClearColor[0] = r; |
| fHWClearColor[1] = g; |
| fHWClearColor[2] = b; |
| fHWClearColor[3] = a; |
| } |
| } |
| |
| void GrGLGpu::setTextureUnit(int unit) { |
| SkASSERT(unit >= 0 && unit < this->numTextureUnits()); |
| if (unit != fHWActiveTextureUnitIdx) { |
| GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + unit)); |
| fHWActiveTextureUnitIdx = unit; |
| } |
| } |
| |
| void GrGLGpu::bindTextureToScratchUnit(GrGLenum target, GrGLint textureID) { |
| // Bind the last texture unit since it is the least likely to be used by GrGLProgram. |
| int lastUnitIdx = this->numTextureUnits() - 1; |
| if (lastUnitIdx != fHWActiveTextureUnitIdx) { |
| GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + lastUnitIdx)); |
| fHWActiveTextureUnitIdx = lastUnitIdx; |
| } |
| // Clear out the this field so that if a GrGLProgram does use this unit it will rebind the |
| // correct texture. |
| fHWTextureUnitBindings[lastUnitIdx].invalidateForScratchUse(target); |
| GL_CALL(BindTexture(target, textureID)); |
| } |
| |
| // Determines whether glBlitFramebuffer could be used between src and dst by onCopySurface. |
| static inline bool can_blit_framebuffer_for_copy_surface(const GrSurface* dst, |
| const GrSurface* src, |
| const SkIRect& srcRect, |
| const SkIPoint& dstPoint, |
| const GrGLCaps& caps) { |
| int dstSampleCnt = 0; |
| int srcSampleCnt = 0; |
| if (const GrRenderTarget* rt = dst->asRenderTarget()) { |
| dstSampleCnt = rt->numSamples(); |
| } |
| if (const GrRenderTarget* rt = src->asRenderTarget()) { |
| srcSampleCnt = rt->numSamples(); |
| } |
| SkASSERT((dstSampleCnt > 0) == SkToBool(dst->asRenderTarget())); |
| SkASSERT((srcSampleCnt > 0) == SkToBool(src->asRenderTarget())); |
| |
| GrGLFormat dstFormat = dst->backendFormat().asGLFormat(); |
| GrGLFormat srcFormat = src->backendFormat().asGLFormat(); |
| |
| const GrGLTexture* dstTex = static_cast<const GrGLTexture*>(dst->asTexture()); |
| const GrGLTexture* srcTex = static_cast<const GrGLTexture*>(src->asTexture()); |
| |
| GrTextureType dstTexType; |
| GrTextureType* dstTexTypePtr = nullptr; |
| GrTextureType srcTexType; |
| GrTextureType* srcTexTypePtr = nullptr; |
| if (dstTex) { |
| dstTexType = dstTex->textureType(); |
| dstTexTypePtr = &dstTexType; |
| } |
| if (srcTex) { |
| srcTexType = srcTex->textureType(); |
| srcTexTypePtr = &srcTexType; |
| } |
| |
| return caps.canCopyAsBlit(dstFormat, dstSampleCnt, dstTexTypePtr, |
| srcFormat, srcSampleCnt, srcTexTypePtr, |
| src->getBoundsRect(), true, srcRect, dstPoint); |
| } |
| |
| static bool rt_has_msaa_render_buffer(const GrGLRenderTarget* rt, const GrGLCaps& glCaps) { |
| // A RT has a separate MSAA renderbuffer if: |
| // 1) It's multisampled |
| // 2) We're using an extension with separate MSAA renderbuffers |
| // 3) It's not FBO 0, which is special and always auto-resolves |
| return rt->numSamples() > 1 && glCaps.usesMSAARenderBuffers() && rt->renderFBOID() != 0; |
| } |
| |
| static inline bool can_copy_texsubimage(const GrSurface* dst, const GrSurface* src, |
| const GrGLCaps& caps) { |
| |
| const GrGLRenderTarget* dstRT = static_cast<const GrGLRenderTarget*>(dst->asRenderTarget()); |
| const GrGLRenderTarget* srcRT = static_cast<const GrGLRenderTarget*>(src->asRenderTarget()); |
| const GrGLTexture* dstTex = static_cast<const GrGLTexture*>(dst->asTexture()); |
| const GrGLTexture* srcTex = static_cast<const GrGLTexture*>(src->asTexture()); |
| |
| bool dstHasMSAARenderBuffer = dstRT ? rt_has_msaa_render_buffer(dstRT, caps) : false; |
| bool srcHasMSAARenderBuffer = srcRT ? rt_has_msaa_render_buffer(srcRT, caps) : false; |
| |
| GrGLFormat dstFormat = dst->backendFormat().asGLFormat(); |
| GrGLFormat srcFormat = src->backendFormat().asGLFormat(); |
| |
| GrTextureType dstTexType; |
| GrTextureType* dstTexTypePtr = nullptr; |
| GrTextureType srcTexType; |
| GrTextureType* srcTexTypePtr = nullptr; |
| if (dstTex) { |
| dstTexType = dstTex->textureType(); |
| dstTexTypePtr = &dstTexType; |
| } |
| if (srcTex) { |
| srcTexType = srcTex->textureType(); |
| srcTexTypePtr = &srcTexType; |
| } |
| |
| return caps.canCopyTexSubImage(dstFormat, dstHasMSAARenderBuffer, dstTexTypePtr, |
| srcFormat, srcHasMSAARenderBuffer, srcTexTypePtr); |
| } |
| |
| // If a temporary FBO was created, its non-zero ID is returned. |
| void GrGLGpu::bindSurfaceFBOForPixelOps(GrSurface* surface, int mipLevel, GrGLenum fboTarget, |
| TempFBOTarget tempFBOTarget) { |
| GrGLRenderTarget* rt = static_cast<GrGLRenderTarget*>(surface->asRenderTarget()); |
| if (!rt || mipLevel > 0) { |
| SkASSERT(surface->asTexture()); |
| GrGLTexture* texture = static_cast<GrGLTexture*>(surface->asTexture()); |
| GrGLuint texID = texture->textureID(); |
| GrGLenum target = texture->target(); |
| GrGLuint* tempFBOID; |
| tempFBOID = kSrc_TempFBOTarget == tempFBOTarget ? &fTempSrcFBOID : &fTempDstFBOID; |
| |
| if (0 == *tempFBOID) { |
| GR_GL_CALL(this->glInterface(), GenFramebuffers(1, tempFBOID)); |
| } |
| |
| this->bindFramebuffer(fboTarget, *tempFBOID); |
| GR_GL_CALL( |
| this->glInterface(), |
| FramebufferTexture2D(fboTarget, GR_GL_COLOR_ATTACHMENT0, target, texID, mipLevel)); |
| if (mipLevel == 0) { |
| texture->baseLevelWasBoundToFBO(); |
| } |
| } else { |
| this->bindFramebuffer(fboTarget, rt->renderFBOID()); |
| } |
| } |
| |
| void GrGLGpu::unbindSurfaceFBOForPixelOps(GrSurface* surface, int mipLevel, GrGLenum fboTarget) { |
| // bindSurfaceFBOForPixelOps temporarily binds textures that are not render targets to |
| if (mipLevel > 0 || !surface->asRenderTarget()) { |
| SkASSERT(surface->asTexture()); |
| GrGLenum textureTarget = static_cast<GrGLTexture*>(surface->asTexture())->target(); |
| GR_GL_CALL(this->glInterface(), FramebufferTexture2D(fboTarget, |
| GR_GL_COLOR_ATTACHMENT0, |
| textureTarget, |
| 0, |
| 0)); |
| } |
| } |
| |
| void GrGLGpu::onFBOChanged() { |
| if (this->caps()->workarounds().flush_on_framebuffer_change || |
| this->caps()->workarounds().restore_scissor_on_fbo_change) { |
| this->flush(FlushType::kForce); |
| } |
| #ifdef SK_DEBUG |
| if (fIsExecutingCommandBuffer_DebugOnly) { |
| SkDebugf("WARNING: GL FBO binding changed while executing a command buffer. " |
| "This will severely hurt performance.\n"); |
| } |
| #endif |
| } |
| |
| void GrGLGpu::bindFramebuffer(GrGLenum target, GrGLuint fboid) { |
| fStats.incRenderTargetBinds(); |
| GL_CALL(BindFramebuffer(target, fboid)); |
| if (target == GR_GL_FRAMEBUFFER || target == GR_GL_DRAW_FRAMEBUFFER) { |
| fBoundDrawFramebuffer = fboid; |
| } |
| |
| if (this->caps()->workarounds().restore_scissor_on_fbo_change) { |
| // The driver forgets the correct scissor when modifying the FBO binding. |
| if (!fHWScissorSettings.fRect.isInvalid()) { |
| const GrNativeRect& r = fHWScissorSettings.fRect; |
| GL_CALL(Scissor(r.fX, r.fY, r.fWidth, r.fHeight)); |
| } |
| } |
| |
| this->onFBOChanged(); |
| } |
| |
| void GrGLGpu::deleteFramebuffer(GrGLuint fboid) { |
| // We're relying on the GL state shadowing being correct in the workaround code below so we |
| // need to handle a dirty context. |
| this->handleDirtyContext(); |
| if (fboid == fBoundDrawFramebuffer && |
| this->caps()->workarounds().unbind_attachments_on_bound_render_fbo_delete) { |
| // This workaround only applies to deleting currently bound framebuffers |
| // on Adreno 420. Because this is a somewhat rare case, instead of |
| // tracking all the attachments of every framebuffer instead just always |
| // unbind all attachments. |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_RENDERBUFFER, 0)); |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| } |
| |
| GL_CALL(DeleteFramebuffers(1, &fboid)); |
| |
| // Deleting the currently bound framebuffer rebinds to 0. |
| if (fboid == fBoundDrawFramebuffer) { |
| this->onFBOChanged(); |
| } |
| } |
| |
| bool GrGLGpu::onCopySurface(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| // Don't prefer copying as a draw if the dst doesn't already have a FBO object. |
| // This implicitly handles this->glCaps().useDrawInsteadOfAllRenderTargetWrites(). |
| bool preferCopy = SkToBool(dst->asRenderTarget()); |
| auto dstFormat = dst->backendFormat().asGLFormat(); |
| if (preferCopy && this->glCaps().canCopyAsDraw(dstFormat, SkToBool(src->asTexture()))) { |
| if (this->copySurfaceAsDraw(dst, src, srcRect, dstPoint)) { |
| return true; |
| } |
| } |
| |
| if (can_copy_texsubimage(dst, src, this->glCaps())) { |
| this->copySurfaceAsCopyTexSubImage(dst, src, srcRect, dstPoint); |
| return true; |
| } |
| |
| if (can_blit_framebuffer_for_copy_surface(dst, src, srcRect, dstPoint, this->glCaps())) { |
| return this->copySurfaceAsBlitFramebuffer(dst, src, srcRect, dstPoint); |
| } |
| |
| if (!preferCopy && this->glCaps().canCopyAsDraw(dstFormat, SkToBool(src->asTexture()))) { |
| if (this->copySurfaceAsDraw(dst, src, srcRect, dstPoint)) { |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool GrGLGpu::createCopyProgram(GrTexture* srcTex) { |
| TRACE_EVENT0("skia.gpu", TRACE_FUNC); |
| |
| int progIdx = TextureToCopyProgramIdx(srcTex); |
| const GrShaderCaps* shaderCaps = this->caps()->shaderCaps(); |
| GrSLType samplerType = GrSLCombinedSamplerTypeForTextureType(srcTex->textureType()); |
| |
| if (!fCopyProgramArrayBuffer) { |
| static const GrGLfloat vdata[] = { |
| 0, 0, |
| 0, 1, |
| 1, 0, |
| 1, 1 |
| }; |
| fCopyProgramArrayBuffer = GrGLBuffer::Make(this, sizeof(vdata), GrGpuBufferType::kVertex, |
| kStatic_GrAccessPattern, vdata); |
| } |
| if (!fCopyProgramArrayBuffer) { |
| return false; |
| } |
| |
| SkASSERT(!fCopyPrograms[progIdx].fProgram); |
| GL_CALL_RET(fCopyPrograms[progIdx].fProgram, CreateProgram()); |
| if (!fCopyPrograms[progIdx].fProgram) { |
| return false; |
| } |
| |
| GrShaderVar aVertex("a_vertex", kHalf2_GrSLType, GrShaderVar::TypeModifier::In); |
| GrShaderVar uTexCoordXform("u_texCoordXform", kHalf4_GrSLType, |
| GrShaderVar::TypeModifier::Uniform); |
| GrShaderVar uPosXform("u_posXform", kHalf4_GrSLType, GrShaderVar::TypeModifier::Uniform); |
| GrShaderVar uTexture("u_texture", samplerType, GrShaderVar::TypeModifier::Uniform); |
| GrShaderVar vTexCoord("v_texCoord", kHalf2_GrSLType, GrShaderVar::TypeModifier::Out); |
| GrShaderVar oFragColor("o_FragColor", kHalf4_GrSLType, GrShaderVar::TypeModifier::Out); |
| |
| SkString vshaderTxt; |
| if (shaderCaps->noperspectiveInterpolationSupport()) { |
| if (const char* extension = shaderCaps->noperspectiveInterpolationExtensionString()) { |
| vshaderTxt.appendf("#extension %s : require\n", extension); |
| } |
| vTexCoord.addModifier("noperspective"); |
| } |
| |
| aVertex.appendDecl(shaderCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| uTexCoordXform.appendDecl(shaderCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| uPosXform.appendDecl(shaderCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| vTexCoord.appendDecl(shaderCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| |
| vshaderTxt.append( |
| "// Copy Program VS\n" |
| "void main() {" |
| " v_texCoord = half2(a_vertex.xy * u_texCoordXform.xy + u_texCoordXform.zw);" |
| " sk_Position.xy = a_vertex * u_posXform.xy + u_posXform.zw;" |
| " sk_Position.zw = half2(0, 1);" |
| "}" |
| ); |
| |
| SkString fshaderTxt; |
| if (shaderCaps->noperspectiveInterpolationSupport()) { |
| if (const char* extension = shaderCaps->noperspectiveInterpolationExtensionString()) { |
| fshaderTxt.appendf("#extension %s : require\n", extension); |
| } |
| } |
| vTexCoord.setTypeModifier(GrShaderVar::TypeModifier::In); |
| vTexCoord.appendDecl(shaderCaps, &fshaderTxt); |
| fshaderTxt.append(";"); |
| uTexture.appendDecl(shaderCaps, &fshaderTxt); |
| fshaderTxt.append(";"); |
| fshaderTxt.appendf( |
| "// Copy Program FS\n" |
| "void main() {" |
| " sk_FragColor = sample(u_texture, v_texCoord);" |
| "}" |
| ); |
| |
| auto errorHandler = this->getContext()->priv().getShaderErrorHandler(); |
| SkSL::String sksl(vshaderTxt.c_str(), vshaderTxt.size()); |
| SkSL::Program::Settings settings; |
| SkSL::String glsl; |
| std::unique_ptr<SkSL::Program> program = GrSkSLtoGLSL(*fGLContext, SkSL::Program::kVertex_Kind, |
| sksl, settings, &glsl, errorHandler); |
| GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fCopyPrograms[progIdx].fProgram, |
| GR_GL_VERTEX_SHADER, glsl, &fStats, errorHandler); |
| SkASSERT(program->fInputs.isEmpty()); |
| |
| sksl.assign(fshaderTxt.c_str(), fshaderTxt.size()); |
| program = GrSkSLtoGLSL(*fGLContext, SkSL::Program::kFragment_Kind, sksl, settings, &glsl, |
| errorHandler); |
| GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fCopyPrograms[progIdx].fProgram, |
| GR_GL_FRAGMENT_SHADER, glsl, &fStats, |
| errorHandler); |
| SkASSERT(program->fInputs.isEmpty()); |
| |
| GL_CALL(LinkProgram(fCopyPrograms[progIdx].fProgram)); |
| |
| GL_CALL_RET(fCopyPrograms[progIdx].fTextureUniform, |
| GetUniformLocation(fCopyPrograms[progIdx].fProgram, "u_texture")); |
| GL_CALL_RET(fCopyPrograms[progIdx].fPosXformUniform, |
| GetUniformLocation(fCopyPrograms[progIdx].fProgram, "u_posXform")); |
| GL_CALL_RET(fCopyPrograms[progIdx].fTexCoordXformUniform, |
| GetUniformLocation(fCopyPrograms[progIdx].fProgram, "u_texCoordXform")); |
| |
| GL_CALL(BindAttribLocation(fCopyPrograms[progIdx].fProgram, 0, "a_vertex")); |
| |
| GL_CALL(DeleteShader(vshader)); |
| GL_CALL(DeleteShader(fshader)); |
| |
| return true; |
| } |
| |
| bool GrGLGpu::createMipmapProgram(int progIdx) { |
| const bool oddWidth = SkToBool(progIdx & 0x2); |
| const bool oddHeight = SkToBool(progIdx & 0x1); |
| const int numTaps = (oddWidth ? 2 : 1) * (oddHeight ? 2 : 1); |
| |
| const GrShaderCaps* shaderCaps = this->caps()->shaderCaps(); |
| |
| SkASSERT(!fMipmapPrograms[progIdx].fProgram); |
| GL_CALL_RET(fMipmapPrograms[progIdx].fProgram, CreateProgram()); |
| if (!fMipmapPrograms[progIdx].fProgram) { |
| return false; |
| } |
| |
| GrShaderVar aVertex("a_vertex", kHalf2_GrSLType, GrShaderVar::TypeModifier::In); |
| GrShaderVar uTexCoordXform("u_texCoordXform", kHalf4_GrSLType, |
| GrShaderVar::TypeModifier::Uniform); |
| GrShaderVar uTexture("u_texture", kTexture2DSampler_GrSLType, |
| GrShaderVar::TypeModifier::Uniform); |
| // We need 1, 2, or 4 texture coordinates (depending on parity of each dimension): |
| GrShaderVar vTexCoords[] = { |
| GrShaderVar("v_texCoord0", kHalf2_GrSLType, GrShaderVar::TypeModifier::Out), |
| GrShaderVar("v_texCoord1", kHalf2_GrSLType, GrShaderVar::TypeModifier::Out), |
| GrShaderVar("v_texCoord2", kHalf2_GrSLType, GrShaderVar::TypeModifier::Out), |
| GrShaderVar("v_texCoord3", kHalf2_GrSLType, GrShaderVar::TypeModifier::Out), |
| }; |
| GrShaderVar oFragColor("o_FragColor", kHalf4_GrSLType,GrShaderVar::TypeModifier::Out); |
| |
| SkString vshaderTxt; |
| if (shaderCaps->noperspectiveInterpolationSupport()) { |
| if (const char* extension = shaderCaps->noperspectiveInterpolationExtensionString()) { |
| vshaderTxt.appendf("#extension %s : require\n", extension); |
| } |
| vTexCoords[0].addModifier("noperspective"); |
| vTexCoords[1].addModifier("noperspective"); |
| vTexCoords[2].addModifier("noperspective"); |
| vTexCoords[3].addModifier("noperspective"); |
| } |
| |
| aVertex.appendDecl(shaderCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| uTexCoordXform.appendDecl(shaderCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| for (int i = 0; i < numTaps; ++i) { |
| vTexCoords[i].appendDecl(shaderCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| } |
| |
| vshaderTxt.append( |
| "// Mipmap Program VS\n" |
| "void main() {" |
| " sk_Position.xy = a_vertex * half2(2, 2) - half2(1, 1);" |
| " sk_Position.zw = half2(0, 1);" |
| ); |
| |
| // Insert texture coordinate computation: |
| if (oddWidth && oddHeight) { |
| vshaderTxt.append( |
| " v_texCoord0 = a_vertex.xy * u_texCoordXform.yw;" |
| " v_texCoord1 = a_vertex.xy * u_texCoordXform.yw + half2(u_texCoordXform.x, 0);" |
| " v_texCoord2 = a_vertex.xy * u_texCoordXform.yw + half2(0, u_texCoordXform.z);" |
| " v_texCoord3 = a_vertex.xy * u_texCoordXform.yw + u_texCoordXform.xz;" |
| ); |
| } else if (oddWidth) { |
| vshaderTxt.append( |
| " v_texCoord0 = a_vertex.xy * half2(u_texCoordXform.y, 1);" |
| " v_texCoord1 = a_vertex.xy * half2(u_texCoordXform.y, 1) + half2(u_texCoordXform.x, 0);" |
| ); |
| } else if (oddHeight) { |
| vshaderTxt.append( |
| " v_texCoord0 = a_vertex.xy * half2(1, u_texCoordXform.w);" |
| " v_texCoord1 = a_vertex.xy * half2(1, u_texCoordXform.w) + half2(0, u_texCoordXform.z);" |
| ); |
| } else { |
| vshaderTxt.append( |
| " v_texCoord0 = a_vertex.xy;" |
| ); |
| } |
| |
| vshaderTxt.append("}"); |
| |
| SkString fshaderTxt; |
| if (shaderCaps->noperspectiveInterpolationSupport()) { |
| if (const char* extension = shaderCaps->noperspectiveInterpolationExtensionString()) { |
| fshaderTxt.appendf("#extension %s : require\n", extension); |
| } |
| } |
| for (int i = 0; i < numTaps; ++i) { |
| vTexCoords[i].setTypeModifier(GrShaderVar::TypeModifier::In); |
| vTexCoords[i].appendDecl(shaderCaps, &fshaderTxt); |
| fshaderTxt.append(";"); |
| } |
| uTexture.appendDecl(shaderCaps, &fshaderTxt); |
| fshaderTxt.append(";"); |
| fshaderTxt.append( |
| "// Mipmap Program FS\n" |
| "void main() {" |
| ); |
| |
| if (oddWidth && oddHeight) { |
| fshaderTxt.append( |
| " sk_FragColor = (sample(u_texture, v_texCoord0) + " |
| " sample(u_texture, v_texCoord1) + " |
| " sample(u_texture, v_texCoord2) + " |
| " sample(u_texture, v_texCoord3)) * 0.25;" |
| ); |
| } else if (oddWidth || oddHeight) { |
| fshaderTxt.append( |
| " sk_FragColor = (sample(u_texture, v_texCoord0) + " |
| " sample(u_texture, v_texCoord1)) * 0.5;" |
| ); |
| } else { |
| fshaderTxt.append( |
| " sk_FragColor = sample(u_texture, v_texCoord0);" |
| ); |
| } |
| |
| fshaderTxt.append("}"); |
| |
| auto errorHandler = this->getContext()->priv().getShaderErrorHandler(); |
| SkSL::String sksl(vshaderTxt.c_str(), vshaderTxt.size()); |
| SkSL::Program::Settings settings; |
| SkSL::String glsl; |
| std::unique_ptr<SkSL::Program> program = GrSkSLtoGLSL(*fGLContext, SkSL::Program::kVertex_Kind, |
| sksl, settings, &glsl, errorHandler); |
| GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fMipmapPrograms[progIdx].fProgram, |
| GR_GL_VERTEX_SHADER, glsl, &fStats, errorHandler); |
| SkASSERT(program->fInputs.isEmpty()); |
| |
| sksl.assign(fshaderTxt.c_str(), fshaderTxt.size()); |
| program = GrSkSLtoGLSL(*fGLContext, SkSL::Program::kFragment_Kind, sksl, settings, &glsl, |
| errorHandler); |
| GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fMipmapPrograms[progIdx].fProgram, |
| GR_GL_FRAGMENT_SHADER, glsl, &fStats, |
| errorHandler); |
| SkASSERT(program->fInputs.isEmpty()); |
| |
| GL_CALL(LinkProgram(fMipmapPrograms[progIdx].fProgram)); |
| |
| GL_CALL_RET(fMipmapPrograms[progIdx].fTextureUniform, |
| GetUniformLocation(fMipmapPrograms[progIdx].fProgram, "u_texture")); |
| GL_CALL_RET(fMipmapPrograms[progIdx].fTexCoordXformUniform, |
| GetUniformLocation(fMipmapPrograms[progIdx].fProgram, "u_texCoordXform")); |
| |
| GL_CALL(BindAttribLocation(fMipmapPrograms[progIdx].fProgram, 0, "a_vertex")); |
| |
| GL_CALL(DeleteShader(vshader)); |
| GL_CALL(DeleteShader(fshader)); |
| |
| return true; |
| } |
| |
| bool GrGLGpu::copySurfaceAsDraw(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| auto* srcTex = static_cast<GrGLTexture*>(src->asTexture()); |
| auto* dstTex = static_cast<GrGLTexture*>(src->asTexture()); |
| auto* dstRT = static_cast<GrGLRenderTarget*>(src->asRenderTarget()); |
| if (!srcTex) { |
| return false; |
| } |
| int progIdx = TextureToCopyProgramIdx(srcTex); |
| if (!dstRT) { |
| SkASSERT(dstTex); |
| if (!this->glCaps().isFormatRenderable(dstTex->format(), 1)) { |
| return false; |
| } |
| } |
| if (!fCopyPrograms[progIdx].fProgram) { |
| if (!this->createCopyProgram(srcTex)) { |
| SkDebugf("Failed to create copy program.\n"); |
| return false; |
| } |
| } |
| int w = srcRect.width(); |
| int h = srcRect.height(); |
| // We don't swizzle at all in our copies. |
| this->bindTexture(0, GrSamplerState::Filter::kNearest, GrSwizzle::RGBA(), srcTex); |
| this->bindSurfaceFBOForPixelOps(dst, 0, GR_GL_FRAMEBUFFER, kDst_TempFBOTarget); |
| this->flushViewport(dst->width(), dst->height()); |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, w, h); |
| this->flushProgram(fCopyPrograms[progIdx].fProgram); |
| fHWVertexArrayState.setVertexArrayID(this, 0); |
| GrGLAttribArrayState* attribs = fHWVertexArrayState.bindInternalVertexArray(this); |
| attribs->enableVertexArrays(this, 1); |
| attribs->set(this, 0, fCopyProgramArrayBuffer.get(), kFloat2_GrVertexAttribType, |
| kFloat2_GrSLType, 2 * sizeof(GrGLfloat), 0); |
| // dst rect edges in NDC (-1 to 1) |
| int dw = dst->width(); |
| int dh = dst->height(); |
| GrGLfloat dx0 = 2.f * dstPoint.fX / dw - 1.f; |
| GrGLfloat dx1 = 2.f * (dstPoint.fX + w) / dw - 1.f; |
| GrGLfloat dy0 = 2.f * dstPoint.fY / dh - 1.f; |
| GrGLfloat dy1 = 2.f * (dstPoint.fY + h) / dh - 1.f; |
| GrGLfloat sx0 = (GrGLfloat)srcRect.fLeft; |
| GrGLfloat sx1 = (GrGLfloat)(srcRect.fLeft + w); |
| GrGLfloat sy0 = (GrGLfloat)srcRect.fTop; |
| GrGLfloat sy1 = (GrGLfloat)(srcRect.fTop + h); |
| int sw = src->width(); |
| int sh = src->height(); |
| if (srcTex->textureType() != GrTextureType::kRectangle) { |
| // src rect edges in normalized texture space (0 to 1) |
| sx0 /= sw; |
| sx1 /= sw; |
| sy0 /= sh; |
| sy1 /= sh; |
| } |
| GL_CALL(Uniform4f(fCopyPrograms[progIdx].fPosXformUniform, dx1 - dx0, dy1 - dy0, dx0, dy0)); |
| GL_CALL(Uniform4f(fCopyPrograms[progIdx].fTexCoordXformUniform, |
| sx1 - sx0, sy1 - sy0, sx0, sy0)); |
| GL_CALL(Uniform1i(fCopyPrograms[progIdx].fTextureUniform, 0)); |
| this->flushBlendAndColorWrite(GrXferProcessor::BlendInfo(), GrSwizzle::RGBA()); |
| this->flushHWAAState(nullptr, false); |
| this->flushConservativeRasterState(false); |
| this->flushWireframeState(false); |
| this->flushScissorTest(GrScissorTest::kDisabled); |
| this->disableWindowRectangles(); |
| this->disableStencil(); |
| if (this->glCaps().srgbWriteControl()) { |
| this->flushFramebufferSRGB(true); |
| } |
| GL_CALL(DrawArrays(GR_GL_TRIANGLE_STRIP, 0, 4)); |
| this->unbindSurfaceFBOForPixelOps(dst, 0, GR_GL_FRAMEBUFFER); |
| // The rect is already in device space so we pass in kTopLeft so no flip is done. |
| this->didWriteToSurface(dst, kTopLeft_GrSurfaceOrigin, &dstRect); |
| return true; |
| } |
| |
| void GrGLGpu::copySurfaceAsCopyTexSubImage(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| SkASSERT(can_copy_texsubimage(dst, src, this->glCaps())); |
| this->bindSurfaceFBOForPixelOps(src, 0, GR_GL_FRAMEBUFFER, kSrc_TempFBOTarget); |
| GrGLTexture* dstTex = static_cast<GrGLTexture *>(dst->asTexture()); |
| SkASSERT(dstTex); |
| // We modified the bound FBO |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| |
| this->bindTextureToScratchUnit(dstTex->target(), dstTex->textureID()); |
| GL_CALL(CopyTexSubImage2D(dstTex->target(), 0, |
| dstPoint.fX, dstPoint.fY, |
| srcRect.fLeft, srcRect.fTop, |
| srcRect.width(), srcRect.height())); |
| this->unbindSurfaceFBOForPixelOps(src, 0, GR_GL_FRAMEBUFFER); |
| SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, |
| srcRect.width(), srcRect.height()); |
| // The rect is already in device space so we pass in kTopLeft so no flip is done. |
| this->didWriteToSurface(dst, kTopLeft_GrSurfaceOrigin, &dstRect); |
| } |
| |
| bool GrGLGpu::copySurfaceAsBlitFramebuffer(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| SkASSERT(can_blit_framebuffer_for_copy_surface(dst, src, srcRect, dstPoint, this->glCaps())); |
| SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, |
| srcRect.width(), srcRect.height()); |
| if (dst == src) { |
| if (SkIRect::Intersects(dstRect, srcRect)) { |
| return false; |
| } |
| } |
| |
| this->bindSurfaceFBOForPixelOps(dst, 0, GR_GL_DRAW_FRAMEBUFFER, kDst_TempFBOTarget); |
| this->bindSurfaceFBOForPixelOps(src, 0, GR_GL_READ_FRAMEBUFFER, kSrc_TempFBOTarget); |
| // We modified the bound FBO |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| |
| // BlitFrameBuffer respects the scissor, so disable it. |
| this->flushScissorTest(GrScissorTest::kDisabled); |
| this->disableWindowRectangles(); |
| |
| GL_CALL(BlitFramebuffer(srcRect.fLeft, |
| srcRect.fTop, |
| srcRect.fRight, |
| srcRect.fBottom, |
| dstRect.fLeft, |
| dstRect.fTop, |
| dstRect.fRight, |
| dstRect.fBottom, |
| GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST)); |
| this->unbindSurfaceFBOForPixelOps(dst, 0, GR_GL_DRAW_FRAMEBUFFER); |
| this->unbindSurfaceFBOForPixelOps(src, 0, GR_GL_READ_FRAMEBUFFER); |
| |
| // The rect is already in device space so we pass in kTopLeft so no flip is done. |
| this->didWriteToSurface(dst, kTopLeft_GrSurfaceOrigin, &dstRect); |
| return true; |
| } |
| |
| bool GrGLGpu::onRegenerateMipMapLevels(GrTexture* texture) { |
| auto glTex = static_cast<GrGLTexture*>(texture); |
| // Mipmaps are only supported on 2D textures: |
| if (GR_GL_TEXTURE_2D != glTex->target()) { |
| return false; |
| } |
| GrGLFormat format = glTex->format(); |
| // Manual implementation of mipmap generation, to work around driver bugs w/sRGB. |
| // Uses draw calls to do a series of downsample operations to successive mips. |
| |
| // The manual approach requires the ability to limit which level we're sampling and that the |
| // destination can be bound to a FBO: |
| if (!this->glCaps().doManualMipmapping() || !this->glCaps().isFormatRenderable(format, 1)) { |
| GrGLenum target = glTex->target(); |
| this->bindTextureToScratchUnit(target, glTex->textureID()); |
| GL_CALL(GenerateMipmap(glTex->target())); |
| return true; |
| } |
| |
| int width = texture->width(); |
| int height = texture->height(); |
| int levelCount = SkMipmap::ComputeLevelCount(width, height) + 1; |
| SkASSERT(levelCount == texture->maxMipmapLevel() + 1); |
| |
| // Create (if necessary), then bind temporary FBO: |
| if (0 == fTempDstFBOID) { |
| GL_CALL(GenFramebuffers(1, &fTempDstFBOID)); |
| } |
| this->bindFramebuffer(GR_GL_FRAMEBUFFER, fTempDstFBOID); |
| fHWBoundRenderTargetUniqueID.makeInvalid(); |
| |
| // Bind the texture, to get things configured for filtering. |
| // We'll be changing our base level further below: |
| this->setTextureUnit(0); |
| // The mipmap program does not do any swizzling. |
| this->bindTexture(0, GrSamplerState::Filter::kLinear, GrSwizzle::RGBA(), glTex); |
| |
| // Vertex data: |
| if (!fMipmapProgramArrayBuffer) { |
| static const GrGLfloat vdata[] = { |
| 0, 0, |
| 0, 1, |
| 1, 0, |
| 1, 1 |
| }; |
| fMipmapProgramArrayBuffer = GrGLBuffer::Make(this, sizeof(vdata), GrGpuBufferType::kVertex, |
| kStatic_GrAccessPattern, vdata); |
| } |
| if (!fMipmapProgramArrayBuffer) { |
| return false; |
| } |
| |
| fHWVertexArrayState.setVertexArrayID(this, 0); |
| |
| GrGLAttribArrayState* attribs = fHWVertexArrayState.bindInternalVertexArray(this); |
| attribs->enableVertexArrays(this, 1); |
| attribs->set(this, 0, fMipmapProgramArrayBuffer.get(), kFloat2_GrVertexAttribType, |
| kFloat2_GrSLType, 2 * sizeof(GrGLfloat), 0); |
| |
| // Set "simple" state once: |
| this->flushBlendAndColorWrite(GrXferProcessor::BlendInfo(), GrSwizzle::RGBA()); |
| this->flushHWAAState(nullptr, false); |
| this->flushScissorTest(GrScissorTest::kDisabled); |
| this->disableWindowRectangles(); |
| this->disableStencil(); |
| |
| // Do all the blits: |
| width = texture->width(); |
| height = texture->height(); |
| |
| for (GrGLint level = 1; level < levelCount; ++level) { |
| // Get and bind the program for this particular downsample (filter shape can vary): |
| int progIdx = TextureSizeToMipmapProgramIdx(width, height); |
| if (!fMipmapPrograms[progIdx].fProgram) { |
| if (!this->createMipmapProgram(progIdx)) { |
| SkDebugf("Failed to create mipmap program.\n"); |
| // Invalidate all params to cover base level change in a previous iteration. |
| glTex->textureParamsModified(); |
| return false; |
| } |
| } |
| this->flushProgram(fMipmapPrograms[progIdx].fProgram); |
| |
| // Texcoord uniform is expected to contain (1/w, (w-1)/w, 1/h, (h-1)/h) |
| const float invWidth = 1.0f / width; |
| const float invHeight = 1.0f / height; |
| GL_CALL(Uniform4f(fMipmapPrograms[progIdx].fTexCoordXformUniform, |
| invWidth, (width - 1) * invWidth, invHeight, (height - 1) * invHeight)); |
| GL_CALL(Uniform1i(fMipmapPrograms[progIdx].fTextureUniform, 0)); |
| |
| // Only sample from previous mip |
| SkASSERT(this->glCaps().mipmapLevelControlSupport()); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_BASE_LEVEL, level - 1)); |
| |
| GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_TEXTURE_2D, |
| glTex->textureID(), level)); |
| |
| width = std::max(1, width / 2); |
| height = std::max(1, height / 2); |
| this->flushViewport(width, height); |
| |
| GL_CALL(DrawArrays(GR_GL_TRIANGLE_STRIP, 0, 4)); |
| } |
| |
| // Unbind: |
| GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_TEXTURE_2D, 0, 0)); |
| |
| // We modified the base level param. |
| GrGLTextureParameters::NonsamplerState nonsamplerState = glTex->parameters()->nonsamplerState(); |
| // We drew the 2nd to last level into the last level. |
| nonsamplerState.fBaseMipMapLevel = levelCount - 2; |
| glTex->parameters()->set(nullptr, nonsamplerState, fResetTimestampForTextureParameters); |
| |
| return true; |
| } |
| |
| void GrGLGpu::querySampleLocations( |
| GrRenderTarget* renderTarget, SkTArray<SkPoint>* sampleLocations) { |
| this->flushRenderTargetNoColorWrites(static_cast<GrGLRenderTarget*>(renderTarget)); |
| |
| int effectiveSampleCnt; |
| GR_GL_GetIntegerv(this->glInterface(), GR_GL_SAMPLES, &effectiveSampleCnt); |
| SkASSERT(effectiveSampleCnt >= renderTarget->numSamples()); |
| |
| sampleLocations->reset(effectiveSampleCnt); |
| for (int i = 0; i < effectiveSampleCnt; ++i) { |
| GL_CALL(GetMultisamplefv(GR_GL_SAMPLE_POSITION, i, &(*sampleLocations)[i].fX)); |
| } |
| } |
| |
| void GrGLGpu::xferBarrier(GrRenderTarget* rt, GrXferBarrierType type) { |
| SkASSERT(type); |
| switch (type) { |
| case kTexture_GrXferBarrierType: { |
| GrGLRenderTarget* glrt = static_cast<GrGLRenderTarget*>(rt); |
| SkASSERT(glrt->textureFBOID() != 0 && glrt->renderFBOID() != 0); |
| if (glrt->textureFBOID() != glrt->renderFBOID()) { |
| // The render target uses separate storage so no need for glTextureBarrier. |
| // FIXME: The render target will resolve automatically when its texture is bound, |
| // but we could resolve only the bounds that will be read if we do it here instead. |
| return; |
| } |
| SkASSERT(this->caps()->textureBarrierSupport()); |
| GL_CALL(TextureBarrier()); |
| return; |
| } |
| case kBlend_GrXferBarrierType: |
| SkASSERT(GrCaps::kAdvanced_BlendEquationSupport == |
| this->caps()->blendEquationSupport()); |
| GL_CALL(BlendBarrier()); |
| return; |
| default: break; // placate compiler warnings that kNone not handled |
| } |
| } |
| |
| void GrGLGpu::insertManualFramebufferBarrier() { |
| SkASSERT(this->caps()->requiresManualFBBarrierAfterTessellatedStencilDraw()); |
| GL_CALL(MemoryBarrier(GR_GL_FRAMEBUFFER_BARRIER_BIT)); |
| } |
| |
| GrBackendTexture GrGLGpu::onCreateBackendTexture(SkISize dimensions, |
| const GrBackendFormat& format, |
| GrRenderable renderable, |
| GrMipmapped mipMapped, |
| GrProtected isProtected) { |
| // We don't support protected textures in GL. |
| if (isProtected == GrProtected::kYes) { |
| return {}; |
| } |
| |
| this->handleDirtyContext(); |
| |
| GrGLFormat glFormat = format.asGLFormat(); |
| if (glFormat == GrGLFormat::kUnknown) { |
| return {}; |
| } |
| |
| int numMipLevels = 1; |
| if (mipMapped == GrMipmapped::kYes) { |
| numMipLevels = SkMipmap::ComputeLevelCount(dimensions.width(), dimensions.height()) + 1; |
| } |
| |
| // Compressed formats go through onCreateCompressedBackendTexture |
| SkASSERT(!GrGLFormatIsCompressed(glFormat)); |
| |
| GrGLTextureInfo info; |
| GrGLTextureParameters::SamplerOverriddenState initialState; |
| |
| if (glFormat == GrGLFormat::kUnknown) { |
| return {}; |
| } |
| switch (format.textureType()) { |
| case GrTextureType::kNone: |
| case GrTextureType::kExternal: |
| return {}; |
| case GrTextureType::k2D: |
| info.fTarget = GR_GL_TEXTURE_2D; |
| break; |
| case GrTextureType::kRectangle: |
| if (!this->glCaps().rectangleTextureSupport() || mipMapped == GrMipmapped::kYes) { |
| return {}; |
| } |
| info.fTarget = GR_GL_TEXTURE_RECTANGLE; |
| break; |
| } |
| info.fFormat = GrGLFormatToEnum(glFormat); |
| info.fID = this->createTexture(dimensions, glFormat, info.fTarget, renderable, &initialState, |
| numMipLevels); |
| if (!info.fID) { |
| return {}; |
| } |
| |
| // Unbind this texture from the scratch texture unit. |
| this->bindTextureToScratchUnit(info.fTarget, 0); |
| |
| auto parameters = sk_make_sp<GrGLTextureParameters>(); |
| // The non-sampler params are still at their default values. |
| parameters->set(&initialState, GrGLTextureParameters::NonsamplerState(), |
| fResetTimestampForTextureParameters); |
| |
| return GrBackendTexture(dimensions.width(), dimensions.height(), mipMapped, info, |
| std::move(parameters)); |
| } |
| |
| bool GrGLGpu::onUpdateBackendTexture(const GrBackendTexture& backendTexture, |
| sk_sp<GrRefCntedCallback> finishedCallback, |
| const BackendTextureData* data) { |
| GrGLTextureInfo info; |
| SkAssertResult(backendTexture.getGLTextureInfo(&info)); |
| |
| int numMipLevels = 1; |
| if (backendTexture.hasMipmaps()) { |
| numMipLevels = |
| SkMipmap::ComputeLevelCount(backendTexture.width(), backendTexture.height()) + 1; |
| } |
| |
| GrGLFormat glFormat = GrGLFormatFromGLEnum(info.fFormat); |
| |
| this->bindTextureToScratchUnit(info.fTarget, info.fID); |
| |
| // If we have mips make sure the base level is set to 0 and the max level set to numMipLevels-1 |
| // so that the uploads go to the right levels. |
| if (numMipLevels && this->glCaps().mipmapLevelControlSupport()) { |
| auto params = backendTexture.getGLTextureParams(); |
| GrGLTextureParameters::NonsamplerState nonsamplerState = params->nonsamplerState(); |
| if (params->nonsamplerState().fBaseMipMapLevel != 0) { |
| GL_CALL(TexParameteri(info.fTarget, GR_GL_TEXTURE_BASE_LEVEL, 0)); |
| nonsamplerState.fBaseMipMapLevel = 0; |
| } |
| if (params->nonsamplerState().fMaxMipmapLevel != (numMipLevels - 1)) { |
| GL_CALL(TexParameteri(info.fTarget, GR_GL_TEXTURE_MAX_LEVEL, numMipLevels - 1)); |
| nonsamplerState.fBaseMipMapLevel = numMipLevels - 1; |
| } |
| params->set(nullptr, nonsamplerState, fResetTimestampForTextureParameters); |
| } |
| |
| SkASSERT(data->type() != BackendTextureData::Type::kCompressed); |
| bool result = false; |
| if (data->type() == BackendTextureData::Type::kPixmaps) { |
| SkTDArray<GrMipLevel> texels; |
| GrColorType colorType = SkColorTypeToGrColorType(data->pixmap(0).colorType()); |
| texels.append(numMipLevels); |
| for (int i = 0; i < numMipLevels; ++i) { |
| texels[i] = {data->pixmap(i).addr(), data->pixmap(i).rowBytes()}; |
| } |
| SkIRect dstRect = SkIRect::MakeSize(backendTexture.dimensions()); |
| result = this->uploadColorTypeTexData(glFormat, colorType, backendTexture.dimensions(), |
| info.fTarget, dstRect, colorType, texels.begin(), |
| texels.count()); |
| } else if (data->type() == BackendTextureData::Type::kColor) { |
| uint32_t levelMask = (1 << numMipLevels) - 1; |
| result = this->uploadColorToTex(glFormat, backendTexture.dimensions(), info.fTarget, |
| data->color(), levelMask); |
| } |
| |
| // Unbind this texture from the scratch texture unit. |
| this->bindTextureToScratchUnit(info.fTarget, 0); |
| return result; |
| } |
| |
| void GrGLGpu::deleteBackendTexture(const GrBackendTexture& tex) { |
| SkASSERT(GrBackendApi::kOpenGL == tex.backend()); |
| |
| GrGLTextureInfo info; |
| if (tex.getGLTextureInfo(&info)) { |
| GL_CALL(DeleteTextures(1, &info.fID)); |
| } |
| } |
| |
| bool GrGLGpu::compile(const GrProgramDesc& desc, const GrProgramInfo& programInfo) { |
| SkASSERT(!(GrProcessor::CustomFeatures::kSampleLocations & programInfo.requestedFeatures())); |
| |
| Stats::ProgramCacheResult stat; |
| |
| sk_sp<GrGLProgram> tmp = fProgramCache->findOrCreateProgram(desc, programInfo, &stat); |
| if (!tmp) { |
| return false; |
| } |
| |
| return stat != Stats::ProgramCacheResult::kHit; |
| } |
| |
| #if GR_TEST_UTILS |
| |
| bool GrGLGpu::isTestingOnlyBackendTexture(const GrBackendTexture& tex) const { |
| SkASSERT(GrBackendApi::kOpenGL == tex.backend()); |
| |
| GrGLTextureInfo info; |
| if (!tex.getGLTextureInfo(&info)) { |
| return false; |
| } |
| |
| GrGLboolean result; |
| GL_CALL_RET(result, IsTexture(info.fID)); |
| |
| return (GR_GL_TRUE == result); |
| } |
| |
| GrBackendRenderTarget GrGLGpu::createTestingOnlyBackendRenderTarget(SkISize dimensions, |
| GrColorType colorType, |
| int sampleCnt, |
| GrProtected isProtected) { |
| if (dimensions.width() > this->caps()->maxRenderTargetSize() || |
| dimensions.height() > this->caps()->maxRenderTargetSize()) { |
| return {}; |
| } |
| if (isProtected == GrProtected::kYes) { |
| return {}; |
| } |
| |
| this->handleDirtyContext(); |
| auto format = this->glCaps().getFormatFromColorType(colorType); |
| sampleCnt = this->glCaps().getRenderTargetSampleCount(sampleCnt, format); |
| if (!sampleCnt) { |
| return {}; |
| } |
| // We make a texture instead of a render target if we're using a |
| // "multisampled_render_to_texture" style extension or have a BGRA format that |
| // is allowed for textures but not render buffer internal formats. |
| bool useTexture = false; |
| if (sampleCnt > 1 && !this->glCaps().usesMSAARenderBuffers()) { |
| useTexture = true; |
| } else if (format == GrGLFormat::kBGRA8 && |
| this->glCaps().getRenderbufferInternalFormat(GrGLFormat::kBGRA8) != GR_GL_BGRA8) { |
| // We have a BGRA extension that doesn't support BGRA render buffers. We can use a texture |
| // unless we've been asked for MSAA. Note we already checked above for render-to- |
| // multisampled-texture style extensions. |
| if (sampleCnt > 1) { |
| return {}; |
| } |
| useTexture = true; |
| } |
| int sFormatIdx = this->getCompatibleStencilIndex(format); |
| if (sFormatIdx < 0) { |
| return {}; |
| } |
| GrGLuint colorID = 0; |
| GrGLuint stencilID = 0; |
| GrGLFramebufferInfo info; |
| info.fFBOID = 0; |
| info.fFormat = GrGLFormatToEnum(format); |
| |
| auto deleteIDs = [&](bool saveFBO = false) { |
| if (colorID) { |
| if (useTexture) { |
| GL_CALL(DeleteTextures(1, &colorID)); |
| } else { |
| GL_CALL(DeleteRenderbuffers(1, &colorID)); |
| } |
| } |
| if (stencilID) { |
| GL_CALL(DeleteRenderbuffers(1, &stencilID)); |
| } |
| if (!saveFBO && info.fFBOID) { |
| this->deleteFramebuffer(info.fFBOID); |
| } |
| }; |
| |
| if (useTexture) { |
| GL_CALL(GenTextures(1, &colorID)); |
| } else { |
| GL_CALL(GenRenderbuffers(1, &colorID)); |
| } |
| GL_CALL(GenRenderbuffers(1, &stencilID)); |
| if (!stencilID || !colorID) { |
| deleteIDs(); |
| return {}; |
| } |
| |
| GL_CALL(GenFramebuffers(1, &info.fFBOID)); |
| if (!info.fFBOID) { |
| deleteIDs(); |
| return {}; |
| } |
| |
| this->invalidateBoundRenderTarget(); |
| |
| this->bindFramebuffer(GR_GL_FRAMEBUFFER, info.fFBOID); |
| if (useTexture) { |
| GrGLTextureParameters::SamplerOverriddenState initialState; |
| colorID = this->createTexture(dimensions, format, GR_GL_TEXTURE_2D, GrRenderable::kYes, |
| &initialState, 1); |
| if (!colorID) { |
| deleteIDs(); |
| return {}; |
| } |
| if (sampleCnt == 1) { |
| GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_TEXTURE_2D, colorID, 0)); |
| } else { |
| GL_CALL(FramebufferTexture2DMultisample(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_TEXTURE_2D, colorID, 0, sampleCnt)); |
| } |
| } else { |
| GrGLenum renderBufferFormat = this->glCaps().getRenderbufferInternalFormat(format); |
| GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, colorID)); |
| if (sampleCnt == 1) { |
| GL_CALL(RenderbufferStorage(GR_GL_RENDERBUFFER, renderBufferFormat, dimensions.width(), |
| dimensions.height())); |
| } else { |
| if (!this->renderbufferStorageMSAA(this->glContext(), sampleCnt, renderBufferFormat, |
| dimensions.width(), dimensions.height())) { |
| deleteIDs(); |
| return {}; |
| } |
| } |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_RENDERBUFFER, colorID)); |
| } |
| GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, stencilID)); |
| auto stencilBufferFormat = this->glCaps().stencilFormats()[sFormatIdx]; |
| if (sampleCnt == 1) { |
| GL_CALL(RenderbufferStorage(GR_GL_RENDERBUFFER, GrGLFormatToEnum(stencilBufferFormat), |
| dimensions.width(), dimensions.height())); |
| } else { |
| if (!this->renderbufferStorageMSAA(this->glContext(), sampleCnt, |
| GrGLFormatToEnum(stencilBufferFormat), |
| dimensions.width(), dimensions.height())) { |
| deleteIDs(); |
| return {}; |
| } |
| } |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, GR_GL_RENDERBUFFER, |
| stencilID)); |
| if (GrGLFormatIsPackedDepthStencil(this->glCaps().stencilFormats()[sFormatIdx])) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, stencilID)); |
| } |
| |
| // We don't want to have to recover the renderbuffer/texture IDs later to delete them. OpenGL |
| // has this rule that if a renderbuffer/texture is deleted and a FBO other than the current FBO |
| // has the RB attached then deletion is delayed. So we unbind the FBO here and delete the |
| // renderbuffers/texture. |
| this->bindFramebuffer(GR_GL_FRAMEBUFFER, 0); |
| deleteIDs(/* saveFBO = */ true); |
| |
| this->bindFramebuffer(GR_GL_FRAMEBUFFER, info.fFBOID); |
| GrGLenum status; |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (GR_GL_FRAMEBUFFER_COMPLETE != status) { |
| this->deleteFramebuffer(info.fFBOID); |
| return {}; |
| } |
| |
| auto stencilBits = SkToInt(GrGLFormatStencilBits(this->glCaps().stencilFormats()[sFormatIdx])); |
| |
| GrBackendRenderTarget beRT = GrBackendRenderTarget(dimensions.width(), dimensions.height(), |
| sampleCnt, stencilBits, info); |
| SkASSERT(this->caps()->areColorTypeAndFormatCompatible(colorType, beRT.getBackendFormat())); |
| return beRT; |
| } |
| |
| void GrGLGpu::deleteTestingOnlyBackendRenderTarget(const GrBackendRenderTarget& backendRT) { |
| SkASSERT(GrBackendApi::kOpenGL == backendRT.backend()); |
| GrGLFramebufferInfo info; |
| if (backendRT.getGLFramebufferInfo(&info)) { |
| if (info.fFBOID) { |
| this->deleteFramebuffer(info.fFBOID); |
| } |
| } |
| } |
| |
| void GrGLGpu::testingOnly_flushGpuAndSync() { |
| GL_CALL(Finish()); |
| } |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| GrGLAttribArrayState* GrGLGpu::HWVertexArrayState::bindInternalVertexArray(GrGLGpu* gpu, |
| const GrBuffer* ibuf) { |
| SkASSERT(!ibuf || ibuf->isCpuBuffer() || !static_cast<const GrGpuBuffer*>(ibuf)->isMapped()); |
| GrGLAttribArrayState* attribState; |
| |
| if (gpu->glCaps().isCoreProfile()) { |
| if (!fCoreProfileVertexArray) { |
| GrGLuint arrayID; |
| GR_GL_CALL(gpu->glInterface(), GenVertexArrays(1, &arrayID)); |
| int attrCount = gpu->glCaps().maxVertexAttributes(); |
| fCoreProfileVertexArray = new GrGLVertexArray(arrayID, attrCount); |
| } |
| if (ibuf) { |
| attribState = fCoreProfileVertexArray->bindWithIndexBuffer(gpu, ibuf); |
| } else { |
| attribState = fCoreProfileVertexArray->bind(gpu); |
| } |
| } else { |
| if (ibuf) { |
| // bindBuffer implicitly binds VAO 0 when binding an index buffer. |
| gpu->bindBuffer(GrGpuBufferType::kIndex, ibuf); |
| } else { |
| this->setVertexArrayID(gpu, 0); |
| } |
| int attrCount = gpu->glCaps().maxVertexAttributes(); |
| if (fDefaultVertexArrayAttribState.count() != attrCount) { |
| fDefaultVertexArrayAttribState.resize(attrCount); |
| } |
| attribState = &fDefaultVertexArrayAttribState; |
| } |
| return attribState; |
| } |
| |
| void GrGLGpu::addFinishedProc(GrGpuFinishedProc finishedProc, |
| GrGpuFinishedContext finishedContext) { |
| fFinishCallbacks.add(finishedProc, finishedContext); |
| } |
| |
| void GrGLGpu::flush(FlushType flushType) { |
| if (fNeedsGLFlush || flushType == FlushType::kForce) { |
| GL_CALL(Flush()); |
| fNeedsGLFlush = false; |
| } |
| } |
| |
| bool GrGLGpu::onSubmitToGpu(bool syncCpu) { |
| if (syncCpu || (!fFinishCallbacks.empty() && !this->caps()->fenceSyncSupport())) { |
| GL_CALL(Finish()); |
| fFinishCallbacks.callAll(true); |
| } else { |
| this->flush(); |
| // See if any previously inserted finish procs are good to go. |
| fFinishCallbacks.check(); |
| } |
| if (!this->glCaps().skipErrorChecks()) { |
| this->clearErrorsAndCheckForOOM(); |
| } |
| return true; |
| } |
| |
| void GrGLGpu::submit(GrOpsRenderPass* renderPass) { |
| // The GrGLOpsRenderPass doesn't buffer ops so there is nothing to do here |
| SkASSERT(fCachedOpsRenderPass.get() == renderPass); |
| fCachedOpsRenderPass->reset(); |
| } |
| |
| GrFence SK_WARN_UNUSED_RESULT GrGLGpu::insertFence() { |
| if (!this->caps()->fenceSyncSupport()) { |
| return 0; |
| } |
| GrGLsync sync; |
| if (this->glCaps().fenceType() == GrGLCaps::FenceType::kNVFence) { |
| static_assert(sizeof(GrGLsync) >= sizeof(GrGLuint)); |
| GrGLuint fence = 0; |
| GL_CALL(GenFences(1, &fence)); |
| GL_CALL(SetFence(fence, GR_GL_ALL_COMPLETED)); |
| sync = reinterpret_cast<GrGLsync>(static_cast<intptr_t>(fence)); |
| } else { |
| GL_CALL_RET(sync, FenceSync(GR_GL_SYNC_GPU_COMMANDS_COMPLETE, 0)); |
| } |
| this->setNeedsFlush(); |
| static_assert(sizeof(GrFence) >= sizeof(GrGLsync)); |
| return (GrFence)sync; |
| } |
| |
| bool GrGLGpu::waitSync(GrGLsync sync, uint64_t timeout, bool flush) { |
| if (this->glCaps().fenceType() == GrGLCaps::FenceType::kNVFence) { |
| GrGLuint nvFence = static_cast<GrGLuint>(reinterpret_cast<intptr_t>(sync)); |
| if (!timeout) { |
| if (flush) { |
| this->flush(FlushType::kForce); |
| } |
| GrGLboolean result; |
| GL_CALL_RET(result, TestFence(nvFence)); |
| return result == GR_GL_TRUE; |
| } |
| // Ignore non-zero timeouts. GL_NV_fence has no timeout functionality. |
| // If this really becomes necessary we could poll TestFence(). |
| // FinishFence always flushes so no need to check flush param. |
| GL_CALL(FinishFence(nvFence)); |
| return true; |
| } else { |
| GrGLbitfield flags = flush ? GR_GL_SYNC_FLUSH_COMMANDS_BIT : 0; |
| GrGLenum result; |
| GL_CALL_RET(result, ClientWaitSync(sync, flags, timeout)); |
| return (GR_GL_CONDITION_SATISFIED == result || GR_GL_ALREADY_SIGNALED == result); |
| } |
| } |
| |
| bool GrGLGpu::waitFence(GrFence fence) { |
| if (!this->caps()->fenceSyncSupport()) { |
| return true; |
| } |
| return this->waitSync(reinterpret_cast<GrGLsync>(fence), 0, false); |
| } |
| |
| void GrGLGpu::deleteFence(GrFence fence) const { |
| if (this->caps()->fenceSyncSupport()) { |
| this->deleteSync(reinterpret_cast<GrGLsync>(fence)); |
| } |
| } |
| |
| std::unique_ptr<GrSemaphore> SK_WARN_UNUSED_RESULT GrGLGpu::makeSemaphore(bool isOwned) { |
| SkASSERT(this->caps()->semaphoreSupport()); |
| return GrGLSemaphore::Make(this, isOwned); |
| } |
| |
| std::unique_ptr<GrSemaphore> GrGLGpu::wrapBackendSemaphore( |
| const GrBackendSemaphore& semaphore, |
| GrResourceProvider::SemaphoreWrapType wrapType, |
| GrWrapOwnership ownership) { |
| SkASSERT(this->caps()->semaphoreSupport()); |
| return GrGLSemaphore::MakeWrapped(this, semaphore.glSync(), ownership); |
| } |
| |
| void GrGLGpu::insertSemaphore(GrSemaphore* semaphore) { |
| SkASSERT(semaphore); |
| GrGLSemaphore* glSem = static_cast<GrGLSemaphore*>(semaphore); |
| |
| GrGLsync sync; |
| GL_CALL_RET(sync, FenceSync(GR_GL_SYNC_GPU_COMMANDS_COMPLETE, 0)); |
| glSem->setSync(sync); |
| this->setNeedsFlush(); |
| } |
| |
| void GrGLGpu::waitSemaphore(GrSemaphore* semaphore) { |
| SkASSERT(semaphore); |
| GrGLSemaphore* glSem = static_cast<GrGLSemaphore*>(semaphore); |
| |
| GL_CALL(WaitSync(glSem->sync(), 0, GR_GL_TIMEOUT_IGNORED)); |
| } |
| |
| void GrGLGpu::checkFinishProcs() { |
| fFinishCallbacks.check(); |
| } |
| |
| void GrGLGpu::clearErrorsAndCheckForOOM() { |
| while (this->getErrorAndCheckForOOM() != GR_GL_NO_ERROR) {} |
| } |
| |
| GrGLenum GrGLGpu::getErrorAndCheckForOOM() { |
| #if GR_GL_CHECK_ERROR |
| if (this->glInterface()->checkAndResetOOMed()) { |
| this->setOOMed(); |
| } |
| #endif |
| GrGLenum error = this->fGLContext->glInterface()->fFunctions.fGetError(); |
| if (error == GR_GL_OUT_OF_MEMORY) { |
| this->setOOMed(); |
| } |
| return error; |
| } |
| |
| void GrGLGpu::deleteSync(GrGLsync sync) const { |
| if (this->glCaps().fenceType() == GrGLCaps::FenceType::kNVFence) { |
| GrGLuint nvFence = SkToUInt(reinterpret_cast<intptr_t>(sync)); |
| GL_CALL(DeleteFences(1, &nvFence)); |
| } else { |
| GL_CALL(DeleteSync(sync)); |
| } |
| } |
| |
| std::unique_ptr<GrSemaphore> GrGLGpu::prepareTextureForCrossContextUsage(GrTexture* texture) { |
| // Set up a semaphore to be signaled once the data is ready, and flush GL |
| std::unique_ptr<GrSemaphore> semaphore = this->makeSemaphore(true); |
| SkASSERT(semaphore); |
| this->insertSemaphore(semaphore.get()); |
| // We must call flush here to make sure the GrGLSync object gets created and sent to the gpu. |
| this->flush(FlushType::kForce); |
| |
| return semaphore; |
| } |
| |
| int GrGLGpu::TextureToCopyProgramIdx(GrTexture* texture) { |
| switch (GrSLCombinedSamplerTypeForTextureType(texture->textureType())) { |
| case kTexture2DSampler_GrSLType: |
| return 0; |
| case kTexture2DRectSampler_GrSLType: |
| return 1; |
| case kTextureExternalSampler_GrSLType: |
| return 2; |
| default: |
| SK_ABORT("Unexpected samper type"); |
| } |
| } |
| |
| #ifdef SK_ENABLE_DUMP_GPU |
| #include "src/utils/SkJSONWriter.h" |
| void GrGLGpu::onDumpJSON(SkJSONWriter* writer) const { |
| // We are called by the base class, which has already called beginObject(). We choose to nest |
| // all of our caps information in a named sub-object. |
| writer->beginObject("GL GPU"); |
| |
| const GrGLubyte* str; |
| GL_CALL_RET(str, GetString(GR_GL_VERSION)); |
| writer->appendString("GL_VERSION", (const char*)(str)); |
| GL_CALL_RET(str, GetString(GR_GL_RENDERER)); |
| writer->appendString("GL_RENDERER", (const char*)(str)); |
| GL_CALL_RET(str, GetString(GR_GL_VENDOR)); |
| writer->appendString("GL_VENDOR", (const char*)(str)); |
| GL_CALL_RET(str, GetString(GR_GL_SHADING_LANGUAGE_VERSION)); |
| writer->appendString("GL_SHADING_LANGUAGE_VERSION", (const char*)(str)); |
| |
| writer->appendName("extensions"); |
| glInterface()->fExtensions.dumpJSON(writer); |
| |
| writer->endObject(); |
| } |
| #endif |