blob: 3476c398c459191120b008624d7668d404fc170c [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkTwoPointRadialGradient.h"
/* Two-point radial gradients are specified by two circles, each with a center
point and radius. The gradient can be considered to be a series of
concentric circles, with the color interpolated from the start circle
(at t=0) to the end circle (at t=1).
For each point (x, y) in the span, we want to find the
interpolated circle that intersects that point. The center
of the desired circle (Cx, Cy) falls at some distance t
along the line segment between the start point (Sx, Sy) and
end point (Ex, Ey):
Cx = (1 - t) * Sx + t * Ex (0 <= t <= 1)
Cy = (1 - t) * Sy + t * Ey
The radius of the desired circle (r) is also a linear interpolation t
between the start and end radii (Sr and Er):
r = (1 - t) * Sr + t * Er
But
(x - Cx)^2 + (y - Cy)^2 = r^2
so
(x - ((1 - t) * Sx + t * Ex))^2
+ (y - ((1 - t) * Sy + t * Ey))^2
= ((1 - t) * Sr + t * Er)^2
Solving for t yields
[(Sx - Ex)^2 + (Sy - Ey)^2 - (Er - Sr)^2)] * t^2
+ [2 * (Sx - Ex)(x - Sx) + 2 * (Sy - Ey)(y - Sy) - 2 * (Er - Sr) * Sr] * t
+ [(x - Sx)^2 + (y - Sy)^2 - Sr^2] = 0
To simplify, let Dx = Sx - Ex, Dy = Sy - Ey, Dr = Er - Sr, dx = x - Sx, dy = y - Sy
[Dx^2 + Dy^2 - Dr^2)] * t^2
+ 2 * [Dx * dx + Dy * dy - Dr * Sr] * t
+ [dx^2 + dy^2 - Sr^2] = 0
A quadratic in t. The two roots of the quadratic reflect the two
possible circles on which the point may fall. Solving for t yields
the gradient value to use.
If a<0, the start circle is entirely contained in the
end circle, and one of the roots will be <0 or >1 (off the line
segment). If a>0, the start circle falls at least partially
outside the end circle (or vice versa), and the gradient
defines a "tube" where a point may be on one circle (on the
inside of the tube) or the other (outside of the tube). We choose
one arbitrarily.
In order to keep the math to within the limits of fixed point,
we divide the entire quadratic by Dr^2, and replace
(x - Sx)/Dr with x' and (y - Sy)/Dr with y', giving
[Dx^2 / Dr^2 + Dy^2 / Dr^2 - 1)] * t^2
+ 2 * [x' * Dx / Dr + y' * Dy / Dr - Sr / Dr] * t
+ [x'^2 + y'^2 - Sr^2/Dr^2] = 0
(x' and y' are computed by appending the subtract and scale to the
fDstToIndex matrix in the constructor).
Since the 'A' component of the quadratic is independent of x' and y', it
is precomputed in the constructor. Since the 'B' component is linear in
x' and y', if x and y are linear in the span, 'B' can be computed
incrementally with a simple delta (db below). If it is not (e.g.,
a perspective projection), it must be computed in the loop.
*/
namespace {
inline SkFixed two_point_radial(SkScalar b, SkScalar fx, SkScalar fy,
SkScalar sr2d2, SkScalar foura,
SkScalar oneOverTwoA, bool posRoot) {
SkScalar c = SkScalarSquare(fx) + SkScalarSquare(fy) - sr2d2;
if (0 == foura) {
return SkScalarToFixed(SkScalarDiv(-c, b));
}
SkScalar discrim = SkScalarSquare(b) - SkScalarMul(foura, c);
if (discrim < 0) {
discrim = -discrim;
}
SkScalar rootDiscrim = SkScalarSqrt(discrim);
SkScalar result;
if (posRoot) {
result = SkScalarMul(-b + rootDiscrim, oneOverTwoA);
} else {
result = SkScalarMul(-b - rootDiscrim, oneOverTwoA);
}
return SkScalarToFixed(result);
}
typedef void (* TwoPointRadialShadeProc)(SkScalar fx, SkScalar dx,
SkScalar fy, SkScalar dy,
SkScalar b, SkScalar db,
SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot,
SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache,
int count);
void shadeSpan_twopoint_clamp(SkScalar fx, SkScalar dx,
SkScalar fy, SkScalar dy,
SkScalar b, SkScalar db,
SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot,
SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache,
int count) {
for (; count > 0; --count) {
SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura,
fOneOverTwoA, posRoot);
SkFixed index = SkClampMax(t, 0xFFFF);
SkASSERT(index <= 0xFFFF);
*dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift];
fx += dx;
fy += dy;
b += db;
}
}
void shadeSpan_twopoint_mirror(SkScalar fx, SkScalar dx,
SkScalar fy, SkScalar dy,
SkScalar b, SkScalar db,
SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot,
SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache,
int count) {
for (; count > 0; --count) {
SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura,
fOneOverTwoA, posRoot);
SkFixed index = mirror_tileproc(t);
SkASSERT(index <= 0xFFFF);
*dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift];
fx += dx;
fy += dy;
b += db;
}
}
void shadeSpan_twopoint_repeat(SkScalar fx, SkScalar dx,
SkScalar fy, SkScalar dy,
SkScalar b, SkScalar db,
SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot,
SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache,
int count) {
for (; count > 0; --count) {
SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura,
fOneOverTwoA, posRoot);
SkFixed index = repeat_tileproc(t);
SkASSERT(index <= 0xFFFF);
*dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift];
fx += dx;
fy += dy;
b += db;
}
}
}
/////////////////////////////////////////////////////////////////////
SkTwoPointRadialGradient::SkTwoPointRadialGradient(
const SkPoint& start, SkScalar startRadius,
const SkPoint& end, SkScalar endRadius,
const SkColor colors[], const SkScalar pos[],
int colorCount, SkShader::TileMode mode,
SkUnitMapper* mapper)
: SkGradientShaderBase(colors, pos, colorCount, mode, mapper),
fCenter1(start),
fCenter2(end),
fRadius1(startRadius),
fRadius2(endRadius) {
init();
}
SkShader::BitmapType SkTwoPointRadialGradient::asABitmap(
SkBitmap* bitmap,
SkMatrix* matrix,
SkShader::TileMode* xy) const {
if (bitmap) {
this->getGradientTableBitmap(bitmap);
}
SkScalar diffL = 0; // just to avoid gcc warning
if (matrix) {
diffL = SkScalarSqrt(SkScalarSquare(fDiff.fX) +
SkScalarSquare(fDiff.fY));
}
if (matrix) {
if (diffL) {
SkScalar invDiffL = SkScalarInvert(diffL);
matrix->setSinCos(-SkScalarMul(invDiffL, fDiff.fY),
SkScalarMul(invDiffL, fDiff.fX));
} else {
matrix->reset();
}
matrix->preConcat(fPtsToUnit);
}
if (xy) {
xy[0] = fTileMode;
xy[1] = kClamp_TileMode;
}
return kTwoPointRadial_BitmapType;
}
SkShader::GradientType SkTwoPointRadialGradient::asAGradient(
SkShader::GradientInfo* info) const {
if (info) {
commonAsAGradient(info);
info->fPoint[0] = fCenter1;
info->fPoint[1] = fCenter2;
info->fRadius[0] = fRadius1;
info->fRadius[1] = fRadius2;
}
return kRadial2_GradientType;
}
void SkTwoPointRadialGradient::shadeSpan(int x, int y, SkPMColor* dstCParam,
int count) {
SkASSERT(count > 0);
SkPMColor* SK_RESTRICT dstC = dstCParam;
// Zero difference between radii: fill with transparent black.
if (fDiffRadius == 0) {
sk_bzero(dstC, count * sizeof(*dstC));
return;
}
SkMatrix::MapXYProc dstProc = fDstToIndexProc;
TileProc proc = fTileProc;
const SkPMColor* SK_RESTRICT cache = this->getCache32();
SkScalar foura = fA * 4;
bool posRoot = fDiffRadius < 0;
if (fDstToIndexClass != kPerspective_MatrixClass) {
SkPoint srcPt;
dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf,
SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
SkScalar dx, fx = srcPt.fX;
SkScalar dy, fy = srcPt.fY;
if (fDstToIndexClass == kFixedStepInX_MatrixClass) {
SkFixed fixedX, fixedY;
(void)fDstToIndex.fixedStepInX(SkIntToScalar(y), &fixedX, &fixedY);
dx = SkFixedToScalar(fixedX);
dy = SkFixedToScalar(fixedY);
} else {
SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
dx = fDstToIndex.getScaleX();
dy = fDstToIndex.getSkewY();
}
SkScalar b = (SkScalarMul(fDiff.fX, fx) +
SkScalarMul(fDiff.fY, fy) - fStartRadius) * 2;
SkScalar db = (SkScalarMul(fDiff.fX, dx) +
SkScalarMul(fDiff.fY, dy)) * 2;
TwoPointRadialShadeProc shadeProc = shadeSpan_twopoint_repeat;
if (SkShader::kClamp_TileMode == fTileMode) {
shadeProc = shadeSpan_twopoint_clamp;
} else if (SkShader::kMirror_TileMode == fTileMode) {
shadeProc = shadeSpan_twopoint_mirror;
} else {
SkASSERT(SkShader::kRepeat_TileMode == fTileMode);
}
(*shadeProc)(fx, dx, fy, dy, b, db,
fSr2D2, foura, fOneOverTwoA, posRoot,
dstC, cache, count);
} else { // perspective case
SkScalar dstX = SkIntToScalar(x);
SkScalar dstY = SkIntToScalar(y);
for (; count > 0; --count) {
SkPoint srcPt;
dstProc(fDstToIndex, dstX, dstY, &srcPt);
SkScalar fx = srcPt.fX;
SkScalar fy = srcPt.fY;
SkScalar b = (SkScalarMul(fDiff.fX, fx) +
SkScalarMul(fDiff.fY, fy) - fStartRadius) * 2;
SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura,
fOneOverTwoA, posRoot);
SkFixed index = proc(t);
SkASSERT(index <= 0xFFFF);
*dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift];
dstX += SK_Scalar1;
}
}
}
bool SkTwoPointRadialGradient::setContext(
const SkBitmap& device,
const SkPaint& paint,
const SkMatrix& matrix){
if (!this->INHERITED::setContext(device, paint, matrix)) {
return false;
}
// For now, we might have divided by zero, so detect that
if (0 == fDiffRadius) {
return false;
}
// we don't have a span16 proc
fFlags &= ~kHasSpan16_Flag;
return true;
}
SkTwoPointRadialGradient::SkTwoPointRadialGradient(
SkFlattenableReadBuffer& buffer)
: INHERITED(buffer),
fCenter1(buffer.readPoint()),
fCenter2(buffer.readPoint()),
fRadius1(buffer.readScalar()),
fRadius2(buffer.readScalar()) {
init();
};
void SkTwoPointRadialGradient::flatten(
SkFlattenableWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writePoint(fCenter1);
buffer.writePoint(fCenter2);
buffer.writeScalar(fRadius1);
buffer.writeScalar(fRadius2);
}
void SkTwoPointRadialGradient::init() {
fDiff = fCenter1 - fCenter2;
fDiffRadius = fRadius2 - fRadius1;
// hack to avoid zero-divide for now
SkScalar inv = fDiffRadius ? SkScalarInvert(fDiffRadius) : 0;
fDiff.fX = SkScalarMul(fDiff.fX, inv);
fDiff.fY = SkScalarMul(fDiff.fY, inv);
fStartRadius = SkScalarMul(fRadius1, inv);
fSr2D2 = SkScalarSquare(fStartRadius);
fA = SkScalarSquare(fDiff.fX) + SkScalarSquare(fDiff.fY) - SK_Scalar1;
fOneOverTwoA = fA ? SkScalarInvert(fA * 2) : 0;
fPtsToUnit.setTranslate(-fCenter1.fX, -fCenter1.fY);
fPtsToUnit.postScale(inv, inv);
}
/////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
// For brevity
typedef GrGLUniformManager::UniformHandle UniformHandle;
static const UniformHandle kInvalidUniformHandle = GrGLUniformManager::kInvalidUniformHandle;
class GrGLRadial2Gradient : public GrGLGradientStage {
public:
GrGLRadial2Gradient(const GrProgramStageFactory& factory,
const GrCustomStage&);
virtual ~GrGLRadial2Gradient() { }
virtual void setupVariables(GrGLShaderBuilder* builder) SK_OVERRIDE;
virtual void emitVS(GrGLShaderBuilder* builder,
const char* vertexCoords) SK_OVERRIDE;
virtual void emitFS(GrGLShaderBuilder* builder,
const char* outputColor,
const char* inputColor,
const TextureSamplerArray&) SK_OVERRIDE;
virtual void setData(const GrGLUniformManager&,
const GrCustomStage&,
const GrRenderTarget*,
int stageNum) SK_OVERRIDE;
static StageKey GenKey(const GrCustomStage& s, const GrGLCaps& caps);
protected:
UniformHandle fVSParamUni;
UniformHandle fFSParamUni;
const char* fVSVaryingName;
const char* fFSVaryingName;
bool fIsDegenerate;
// @{
/// Values last uploaded as uniforms
GrScalar fCachedCenter;
GrScalar fCachedRadius;
bool fCachedPosRoot;
// @}
private:
typedef GrGLGradientStage INHERITED;
};
/////////////////////////////////////////////////////////////////////
class GrRadial2Gradient : public GrGradientEffect {
public:
GrRadial2Gradient(GrContext* ctx, const SkTwoPointRadialGradient& shader, SkShader::TileMode tm)
: INHERITED(ctx, shader, tm)
, fCenterX1(shader.getCenterX1())
, fRadius0(shader.getStartRadius())
, fPosRoot(shader.getDiffRadius() < 0) { }
virtual ~GrRadial2Gradient() { }
static const char* Name() { return "Two-Point Radial Gradient"; }
virtual const GrProgramStageFactory& getFactory() const SK_OVERRIDE {
return GrTProgramStageFactory<GrRadial2Gradient>::getInstance();
}
virtual bool isEqual(const GrCustomStage& sBase) const SK_OVERRIDE {
const GrRadial2Gradient& s = static_cast<const GrRadial2Gradient&>(sBase);
return (INHERITED::isEqual(sBase) &&
this->fCenterX1 == s.fCenterX1 &&
this->fRadius0 == s.fRadius0 &&
this->fPosRoot == s.fPosRoot);
}
// The radial gradient parameters can collapse to a linear (instead of quadratic) equation.
bool isDegenerate() const { return GR_Scalar1 == fCenterX1; }
GrScalar center() const { return fCenterX1; }
GrScalar radius() const { return fRadius0; }
bool isPosRoot() const { return SkToBool(fPosRoot); }
typedef GrGLRadial2Gradient GLProgramStage;
private:
GR_DECLARE_CUSTOM_STAGE_TEST;
// @{
// Cache of values - these can change arbitrarily, EXCEPT
// we shouldn't change between degenerate and non-degenerate?!
GrScalar fCenterX1;
GrScalar fRadius0;
SkBool8 fPosRoot;
// @}
typedef GrGradientEffect INHERITED;
};
/////////////////////////////////////////////////////////////////////
GR_DEFINE_CUSTOM_STAGE_TEST(GrRadial2Gradient);
GrCustomStage* GrRadial2Gradient::TestCreate(SkRandom* random,
GrContext* context,
GrTexture**) {
SkPoint center1 = {random->nextUScalar1(), random->nextUScalar1()};
SkScalar radius1 = random->nextUScalar1();
SkPoint center2;
SkScalar radius2;
do {
center1.set(random->nextUScalar1(), random->nextUScalar1());
radius2 = random->nextUScalar1 ();
// There is a bug in two point radial gradients with idenitical radii
} while (radius1 == radius2);
SkColor colors[kMaxRandomGradientColors];
SkScalar stopsArray[kMaxRandomGradientColors];
SkScalar* stops = stopsArray;
SkShader::TileMode tm;
int colorCount = RandomGradientParams(random, colors, &stops, &tm);
SkAutoTUnref<SkShader> shader(SkGradientShader::CreateTwoPointRadial(center1, radius1,
center2, radius2,
colors, stops, colorCount,
tm));
GrSamplerState sampler;
shader->asNewCustomStage(context, &sampler);
GrAssert(NULL != sampler.getCustomStage());
// const_cast and ref is a hack! Will remove when asNewCustomStage returns GrCustomStage*
sampler.getCustomStage()->ref();
return const_cast<GrCustomStage*>(sampler.getCustomStage());
}
/////////////////////////////////////////////////////////////////////
GrGLRadial2Gradient::GrGLRadial2Gradient(
const GrProgramStageFactory& factory,
const GrCustomStage& baseData)
: INHERITED(factory)
, fVSParamUni(kInvalidUniformHandle)
, fFSParamUni(kInvalidUniformHandle)
, fVSVaryingName(NULL)
, fFSVaryingName(NULL)
, fCachedCenter(GR_ScalarMax)
, fCachedRadius(-GR_ScalarMax)
, fCachedPosRoot(0) {
const GrRadial2Gradient& data =
static_cast<const GrRadial2Gradient&>(baseData);
fIsDegenerate = data.isDegenerate();
}
void GrGLRadial2Gradient::setupVariables(GrGLShaderBuilder* builder) {
INHERITED::setupVariables(builder);
// 2 copies of uniform array, 1 for each of vertex & fragment shader,
// to work around Xoom bug. Doesn't seem to cause performance decrease
// in test apps, but need to keep an eye on it.
fVSParamUni = builder->addUniformArray(GrGLShaderBuilder::kVertex_ShaderType,
kFloat_GrSLType, "Radial2VSParams", 6);
fFSParamUni = builder->addUniformArray(GrGLShaderBuilder::kFragment_ShaderType,
kFloat_GrSLType, "Radial2FSParams", 6);
// For radial gradients without perspective we can pass the linear
// part of the quadratic as a varying.
if (!builder->defaultTextureMatrixIsPerspective()) {
builder->addVarying(kFloat_GrSLType, "Radial2BCoeff",
&fVSVaryingName, &fFSVaryingName);
}
}
void GrGLRadial2Gradient::emitVS(GrGLShaderBuilder* builder,
const char* vertexCoords) {
SkString* code = &builder->fVSCode;
SkString p2;
SkString p3;
builder->getUniformVariable(fVSParamUni).appendArrayAccess(2, &p2);
builder->getUniformVariable(fVSParamUni).appendArrayAccess(3, &p3);
// For radial gradients without perspective we can pass the linear
// part of the quadratic as a varying.
if (!builder->defaultTextureMatrixIsPerspective()) {
// r2Var = 2 * (r2Parm[2] * varCoord.x - r2Param[3])
code->appendf("\t%s = 2.0 *(%s * %s.x - %s);\n",
fVSVaryingName, p2.c_str(),
vertexCoords, p3.c_str());
}
}
void GrGLRadial2Gradient::emitFS(GrGLShaderBuilder* builder,
const char* outputColor,
const char* inputColor,
const TextureSamplerArray& samplers) {
SkString* code = &builder->fFSCode;
SkString cName("c");
SkString ac4Name("ac4");
SkString rootName("root");
SkString t;
SkString p0;
SkString p1;
SkString p2;
SkString p3;
SkString p4;
SkString p5;
builder->getUniformVariable(fFSParamUni).appendArrayAccess(0, &p0);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(1, &p1);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(2, &p2);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(3, &p3);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(4, &p4);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(5, &p5);
// If we we're able to interpolate the linear component,
// bVar is the varying; otherwise compute it
SkString bVar;
if (!builder->defaultTextureMatrixIsPerspective()) {
bVar = fFSVaryingName;
} else {
bVar = "b";
//bVar.appendS32(stageNum);
code->appendf("\tfloat %s = 2.0 * (%s * %s.x - %s);\n",
bVar.c_str(), p2.c_str(),
builder->defaultTexCoordsName(), p3.c_str());
}
// c = (x^2)+(y^2) - params[4]
code->appendf("\tfloat %s = dot(%s, %s) - %s;\n",
cName.c_str(),
builder->defaultTexCoordsName(),
builder->defaultTexCoordsName(),
p4.c_str());
// If we aren't degenerate, emit some extra code, and accept a slightly
// more complex coord.
if (!fIsDegenerate) {
// ac4 = 4.0 * params[0] * c
code->appendf("\tfloat %s = %s * 4.0 * %s;\n",
ac4Name.c_str(), p0.c_str(),
cName.c_str());
// root = sqrt(b^2-4ac)
// (abs to avoid exception due to fp precision)
code->appendf("\tfloat %s = sqrt(abs(%s*%s - %s));\n",
rootName.c_str(), bVar.c_str(), bVar.c_str(),
ac4Name.c_str());
// t is: (-b + params[5] * sqrt(b^2-4ac)) * params[1]
t.printf("(-%s + %s * %s) * %s", bVar.c_str(), p5.c_str(),
rootName.c_str(), p1.c_str());
} else {
// t is: -c/b
t.printf("-%s / %s", cName.c_str(), bVar.c_str());
}
this->emitColorLookup(builder, t.c_str(), outputColor, inputColor, samplers[0]);
}
void GrGLRadial2Gradient::setData(const GrGLUniformManager& uman,
const GrCustomStage& baseData,
const GrRenderTarget* target,
int stageNum) {
INHERITED::setData(uman, baseData, target, stageNum);
const GrRadial2Gradient& data =
static_cast<const GrRadial2Gradient&>(baseData);
GrAssert(data.isDegenerate() == fIsDegenerate);
GrScalar centerX1 = data.center();
GrScalar radius0 = data.radius();
if (fCachedCenter != centerX1 ||
fCachedRadius != radius0 ||
fCachedPosRoot != data.isPosRoot()) {
GrScalar a = GrMul(centerX1, centerX1) - GR_Scalar1;
// When we're in the degenerate (linear) case, the second
// value will be INF but the program doesn't read it. (We
// use the same 6 uniforms even though we don't need them
// all in the linear case just to keep the code complexity
// down).
float values[6] = {
GrScalarToFloat(a),
1 / (2.f * GrScalarToFloat(a)),
GrScalarToFloat(centerX1),
GrScalarToFloat(radius0),
GrScalarToFloat(GrMul(radius0, radius0)),
data.isPosRoot() ? 1.f : -1.f
};
uman.set1fv(fVSParamUni, 0, 6, values);
uman.set1fv(fFSParamUni, 0, 6, values);
fCachedCenter = centerX1;
fCachedRadius = radius0;
fCachedPosRoot = data.isPosRoot();
}
}
GrCustomStage::StageKey GrGLRadial2Gradient::GenKey(const GrCustomStage& s, const GrGLCaps& caps) {
return (static_cast<const GrRadial2Gradient&>(s).isDegenerate());
}
/////////////////////////////////////////////////////////////////////
bool SkTwoPointRadialGradient::asNewCustomStage(GrContext* context,
GrSamplerState* sampler) const {
SkASSERT(NULL != context && NULL != sampler);
SkScalar diffLen = fDiff.length();
SkMatrix matrix;
if (0 != diffLen) {
SkScalar invDiffLen = SkScalarInvert(diffLen);
matrix.setSinCos(-SkScalarMul(invDiffLen, fDiff.fY),
SkScalarMul(invDiffLen, fDiff.fX));
} else {
matrix.reset();
}
matrix.preConcat(fPtsToUnit);
SkMatrix localM;
if (this->getLocalMatrix(&localM)) {
if (!localM.invert(&localM)) {
return false;
}
matrix.preConcat(localM);
}
sampler->setCustomStage(SkNEW_ARGS(GrRadial2Gradient, (context, *this, fTileMode)), matrix)->unref();
return true;
}
#else
bool SkTwoPointRadialGradient::asNewCustomStage(GrContext*, GrSamplerState*) const {
SkDEBUGFAIL("Should not call in GPU-less build");
return false;
}
#endif