| /* |
| * Copyright 2017 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrCCPRQuadraticProcessor.h" |
| |
| #include "glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "glsl/GrGLSLGeometryShaderBuilder.h" |
| #include "glsl/GrGLSLVertexShaderBuilder.h" |
| |
| void GrCCPRQuadraticProcessor::onEmitVertexShader(const GrCCPRCoverageProcessor& proc, |
| GrGLSLVertexBuilder* v, |
| const TexelBufferHandle& pointsBuffer, |
| const char* atlasOffset, const char* rtAdjust, |
| GrGPArgs* gpArgs) const { |
| v->codeAppend ("float2 self = "); |
| v->appendTexelFetch(pointsBuffer, |
| SkStringPrintf("%s.x + sk_VertexID", proc.instanceAttrib()).c_str()); |
| v->codeAppendf(".xy + %s;", atlasOffset); |
| gpArgs->fPositionVar.set(kFloat2_GrSLType, "self"); |
| } |
| |
| void GrCCPRQuadraticProcessor::emitWind(GrGLSLGeometryBuilder* g, const char* rtAdjust, |
| const char* outputWind) const { |
| // We will define bezierpts in onEmitGeometryShader. |
| g->codeAppend ("float area_times_2 = determinant(float2x2(bezierpts[1] - bezierpts[0], " |
| "bezierpts[2] - bezierpts[0]));"); |
| // Drop curves that are nearly flat, in favor of the higher quality triangle antialiasing. |
| g->codeAppendf("if (2 * abs(area_times_2) < length((bezierpts[2] - bezierpts[0]) * %s.zx)) {", |
| rtAdjust); |
| #ifndef SK_BUILD_FOR_MAC |
| g->codeAppend ( "return;"); |
| #else |
| // Returning from this geometry shader makes Mac very unhappy. Instead we make wind 0. |
| g->codeAppend ( "area_times_2 = 0;"); |
| #endif |
| g->codeAppend ("}"); |
| g->codeAppendf("%s = sign(area_times_2);", outputWind); |
| } |
| |
| void GrCCPRQuadraticProcessor::onEmitGeometryShader(GrGLSLGeometryBuilder* g, |
| const char* emitVertexFn, const char* wind, |
| const char* rtAdjust) const { |
| // Prepend bezierpts at the start of the shader. |
| g->codePrependf("float3x2 bezierpts = float3x2(sk_in[0].sk_Position.xy, " |
| "sk_in[1].sk_Position.xy, " |
| "sk_in[2].sk_Position.xy);"); |
| |
| g->declareGlobal(fCanonicalMatrix); |
| g->codeAppendf("%s = float3x3(0.0, 0, 1, " |
| "0.5, 0, 1, " |
| "1.0, 1, 1) * " |
| "inverse(float3x3(bezierpts[0], 1, " |
| "bezierpts[1], 1, " |
| "bezierpts[2], 1));", |
| fCanonicalMatrix.c_str()); |
| |
| g->declareGlobal(fCanonicalDerivatives); |
| g->codeAppendf("%s = float2x2(%s) * float2x2(%s.x, 0, 0, %s.z);", |
| fCanonicalDerivatives.c_str(), fCanonicalMatrix.c_str(), rtAdjust, rtAdjust); |
| |
| g->declareGlobal(fEdgeDistanceEquation); |
| g->codeAppendf("float2 edgept0 = bezierpts[%s > 0 ? 2 : 0];", wind); |
| g->codeAppendf("float2 edgept1 = bezierpts[%s > 0 ? 0 : 2];", wind); |
| this->emitEdgeDistanceEquation(g, "edgept0", "edgept1", fEdgeDistanceEquation.c_str()); |
| |
| this->emitQuadraticGeometry(g, emitVertexFn, rtAdjust); |
| } |
| |
| void GrCCPRQuadraticProcessor::emitPerVertexGeometryCode(SkString* fnBody, const char* position, |
| const char* /*coverage*/, |
| const char* /*wind*/) const { |
| fnBody->appendf("%s.xy = (%s * float3(%s, 1)).xy;", |
| fXYD.gsOut(), fCanonicalMatrix.c_str(), position); |
| fnBody->appendf("%s.z = dot(%s.xy, %s) + %s.z;", |
| fXYD.gsOut(), fEdgeDistanceEquation.c_str(), position, |
| fEdgeDistanceEquation.c_str()); |
| this->onEmitPerVertexGeometryCode(fnBody); |
| } |
| |
| void GrCCPRQuadraticHullProcessor::emitQuadraticGeometry(GrGLSLGeometryBuilder* g, |
| const char* emitVertexFn, |
| const char* /*rtAdjust*/) const { |
| // Find the t value whose tangent is halfway between the tangents at the endpionts. |
| // (We defined bezierpts in onEmitGeometryShader.) |
| g->codeAppend ("float2 tan0 = bezierpts[1] - bezierpts[0];"); |
| g->codeAppend ("float2 tan1 = bezierpts[2] - bezierpts[1];"); |
| g->codeAppend ("float2 midnorm = normalize(tan0) - normalize(tan1);"); |
| g->codeAppend ("float2 T = midnorm * float2x2(tan0 - tan1, tan0);"); |
| g->codeAppend ("float t = clamp(T.t / T.s, 0, 1);"); // T.s=0 is weeded out by this point. |
| |
| // Clip the bezier triangle by the tangent at our new t value. This is a simple application for |
| // De Casteljau's algorithm. |
| g->codeAppendf("float4x2 quadratic_hull = float4x2(bezierpts[0], " |
| "bezierpts[0] + tan0 * t, " |
| "bezierpts[1] + tan1 * t, " |
| "bezierpts[2]);"); |
| |
| int maxVerts = this->emitHullGeometry(g, emitVertexFn, "quadratic_hull", 4, "sk_InvocationID"); |
| |
| g->configure(GrGLSLGeometryBuilder::InputType::kTriangles, |
| GrGLSLGeometryBuilder::OutputType::kTriangleStrip, |
| maxVerts, 4); |
| } |
| |
| void GrCCPRQuadraticHullProcessor::onEmitPerVertexGeometryCode(SkString* fnBody) const { |
| fnBody->appendf("%s = float2(2 * %s.x, -1) * %s;", |
| fGradXY.gsOut(), fXYD.gsOut(), fCanonicalDerivatives.c_str()); |
| } |
| |
| void GrCCPRQuadraticHullProcessor::emitShaderCoverage(GrGLSLFragmentBuilder* f, |
| const char* outputCoverage) const { |
| f->codeAppendf("float d = (%s.x * %s.x - %s.y) * inversesqrt(dot(%s, %s));", |
| fXYD.fsIn(), fXYD.fsIn(), fXYD.fsIn(), fGradXY.fsIn(), fGradXY.fsIn()); |
| f->codeAppendf("%s = clamp(0.5 - d, 0, 1);", outputCoverage); |
| f->codeAppendf("%s += min(%s.z, 0);", outputCoverage, fXYD.fsIn()); // Flat closing edge. |
| } |
| |
| void GrCCPRQuadraticCornerProcessor::emitQuadraticGeometry(GrGLSLGeometryBuilder* g, |
| const char* emitVertexFn, |
| const char* rtAdjust) const { |
| g->declareGlobal(fEdgeDistanceDerivatives); |
| g->codeAppendf("%s = %s.xy * %s.xz;", |
| fEdgeDistanceDerivatives.c_str(), fEdgeDistanceEquation.c_str(), rtAdjust); |
| |
| g->codeAppendf("float2 corner = bezierpts[sk_InvocationID * 2];"); |
| int numVertices = this->emitCornerGeometry(g, emitVertexFn, "corner"); |
| |
| g->configure(GrGLSLGeometryBuilder::InputType::kTriangles, |
| GrGLSLGeometryBuilder::OutputType::kTriangleStrip, numVertices, 2); |
| } |
| |
| void GrCCPRQuadraticCornerProcessor::onEmitPerVertexGeometryCode(SkString* fnBody) const { |
| fnBody->appendf("%s = float3(%s[0].x, %s[0].y, %s.x);", |
| fdXYDdx.gsOut(), fCanonicalDerivatives.c_str(), fCanonicalDerivatives.c_str(), |
| fEdgeDistanceDerivatives.c_str()); |
| fnBody->appendf("%s = float3(%s[1].x, %s[1].y, %s.y);", |
| fdXYDdy.gsOut(), fCanonicalDerivatives.c_str(), fCanonicalDerivatives.c_str(), |
| fEdgeDistanceDerivatives.c_str()); |
| } |
| |
| void GrCCPRQuadraticCornerProcessor::emitShaderCoverage(GrGLSLFragmentBuilder* f, |
| const char* outputCoverage) const { |
| f->codeAppendf("float x = %s.x, y = %s.y, d = %s.z;", |
| fXYD.fsIn(), fXYD.fsIn(), fXYD.fsIn()); |
| f->codeAppendf("float2x3 grad_xyd = float2x3(%s, %s);", fdXYDdx.fsIn(), fdXYDdy.fsIn()); |
| |
| // Erase what the previous hull shader wrote. We don't worry about the two corners falling on |
| // the same pixel because those cases should have been weeded out by this point. |
| f->codeAppend ("float f = x*x - y;"); |
| f->codeAppend ("float2 grad_f = float2(2*x, -1) * float2x2(grad_xyd);"); |
| f->codeAppendf("%s = -(0.5 - f * inversesqrt(dot(grad_f, grad_f)));", outputCoverage); |
| f->codeAppendf("%s -= d;", outputCoverage); |
| |
| // Use software msaa to approximate coverage at the corner pixels. |
| int sampleCount = this->defineSoftSampleLocations(f, "samples"); |
| f->codeAppendf("float3 xyd_center = float3(%s.xy, %s.z + 0.5);", |
| fXYD.fsIn(), fXYD.fsIn()); |
| f->codeAppendf("for (int i = 0; i < %i; ++i) {", sampleCount); |
| f->codeAppend ( "float3 xyd = grad_xyd * samples[i] + xyd_center;"); |
| f->codeAppend ( "half f = xyd.y - xyd.x * xyd.x;"); // f > 0 -> inside curve. |
| f->codeAppendf( "%s += all(greaterThan(float2(f,xyd.z), float2(0))) ? %f : 0;", |
| outputCoverage, 1.0 / sampleCount); |
| f->codeAppendf("}"); |
| } |