| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "Benchmark.h" |
| #include "SkPMFloat.h" |
| |
| // Used to prevent the compiler from optimizing away the whole loop. |
| volatile uint32_t blackhole = 0; |
| |
| // Not a great random number generator, but it's very fast. |
| // The code we're measuring is quite fast, so low overhead is essential. |
| static uint32_t lcg_rand(uint32_t* seed) { |
| *seed *= 1664525; |
| *seed += 1013904223; |
| return *seed; |
| } |
| |
| // I'm having better luck getting these to constant-propagate away as template parameters. |
| struct PMFloatRoundtripBench : public Benchmark { |
| PMFloatRoundtripBench() {} |
| |
| const char* onGetName() override { return "SkPMFloat_roundtrip"; } |
| bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; } |
| |
| void onDraw(const int loops, SkCanvas* canvas) override { |
| // Unlike blackhole, junk can and probably will be a register. |
| uint32_t junk = 0; |
| uint32_t seed = 0; |
| for (int i = 0; i < loops; i++) { |
| SkPMColor color; |
| #ifdef SK_DEBUG |
| // Our SkASSERTs will remind us that it's technically required that we premultiply. |
| color = SkPreMultiplyColor(lcg_rand(&seed)); |
| #else |
| // But it's a lot faster not to, and this code won't really mind the non-PM colors. |
| color = lcg_rand(&seed); |
| #endif |
| |
| auto f = SkPMFloat::FromPMColor(color); |
| SkPMColor back = f.round(); |
| junk ^= back; |
| } |
| blackhole ^= junk; |
| } |
| }; |
| DEF_BENCH(return new PMFloatRoundtripBench;) |
| |
| struct PMFloatGradientBench : public Benchmark { |
| const char* onGetName() override { return "PMFloat_gradient"; } |
| bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; } |
| |
| SkPMColor fDevice[100]; |
| void onDraw(const int loops, SkCanvas*) override { |
| Sk4f c0 = SkPMFloat::FromARGB(1, 1, 0, 0), |
| c1 = SkPMFloat::FromARGB(1, 0, 0, 1), |
| dc = c1 - c0, |
| fx(0.1f), |
| dx(0.002f), |
| dcdx(dc*dx), |
| dcdx4(dcdx+dcdx+dcdx+dcdx); |
| |
| for (int n = 0; n < loops; n++) { |
| Sk4f a = c0 + dc*fx, |
| b = a + dcdx, |
| c = b + dcdx, |
| d = c + dcdx; |
| for (size_t i = 0; i < SK_ARRAY_COUNT(fDevice); i += 4) { |
| fDevice[i+0] = SkPMFloat(a).round(); |
| fDevice[i+1] = SkPMFloat(b).round(); |
| fDevice[i+2] = SkPMFloat(c).round(); |
| fDevice[i+3] = SkPMFloat(d).round(); |
| a = a + dcdx4; |
| b = b + dcdx4; |
| c = c + dcdx4; |
| d = d + dcdx4; |
| } |
| } |
| } |
| }; |
| |
| DEF_BENCH(return new PMFloatGradientBench;) |