blob: 30e477ab53edbcb5508c8200a837ad1feaf2902e [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkCanvas.h"
#include "SkData.h"
#include "SkDevice.h"
#include "SkImageEncoder.h"
#include "SkImage_Base.h"
#include "SkPicture.h"
#include "SkPictureRecorder.h"
#include "SkPixelSerializer.h"
#include "SkRRect.h"
#include "SkStream.h"
#include "SkSurface.h"
#include "SkUtils.h"
#include "Test.h"
#if SK_SUPPORT_GPU
#include "GrContextFactory.h"
#include "GrTest.h"
#include "gl/GrGLInterface.h"
#include "gl/GrGLUtil.h"
#else
class GrContextFactory;
class GrContext;
#endif
static void assert_equal(skiatest::Reporter* reporter, SkImage* a, const SkIRect* subsetA,
SkImage* b) {
const int widthA = subsetA ? subsetA->width() : a->width();
const int heightA = subsetA ? subsetA->height() : a->height();
REPORTER_ASSERT(reporter, widthA == b->width());
REPORTER_ASSERT(reporter, heightA == b->height());
#if 0
// see skbug.com/3965
bool AO = a->isOpaque();
bool BO = b->isOpaque();
REPORTER_ASSERT(reporter, AO == BO);
#endif
SkImageInfo info = SkImageInfo::MakeN32(widthA, heightA,
a->isOpaque() ? kOpaque_SkAlphaType : kPremul_SkAlphaType);
SkAutoPixmapStorage pmapA, pmapB;
pmapA.alloc(info);
pmapB.alloc(info);
const int srcX = subsetA ? subsetA->x() : 0;
const int srcY = subsetA ? subsetA->y() : 0;
REPORTER_ASSERT(reporter, a->readPixels(pmapA, srcX, srcY));
REPORTER_ASSERT(reporter, b->readPixels(pmapB, 0, 0));
const size_t widthBytes = widthA * info.bytesPerPixel();
for (int y = 0; y < heightA; ++y) {
REPORTER_ASSERT(reporter, !memcmp(pmapA.addr32(0, y), pmapB.addr32(0, y), widthBytes));
}
}
static SkImage* make_image(GrContext* ctx, int w, int h, const SkIRect& ir) {
const SkImageInfo info = SkImageInfo::MakeN32(w, h, kOpaque_SkAlphaType);
SkAutoTUnref<SkSurface> surface(ctx ?
SkSurface::NewRenderTarget(ctx, SkSurface::kNo_Budgeted, info) :
SkSurface::NewRaster(info));
SkCanvas* canvas = surface->getCanvas();
canvas->clear(SK_ColorWHITE);
SkPaint paint;
paint.setColor(SK_ColorBLACK);
canvas->drawRect(SkRect::Make(ir), paint);
return surface->newImageSnapshot();
}
static void test_encode(skiatest::Reporter* reporter, GrContext* ctx) {
const SkIRect ir = SkIRect::MakeXYWH(5, 5, 10, 10);
SkAutoTUnref<SkImage> orig(make_image(ctx, 20, 20, ir));
SkAutoTUnref<SkData> origEncoded(orig->encode());
REPORTER_ASSERT(reporter, origEncoded);
REPORTER_ASSERT(reporter, origEncoded->size() > 0);
SkAutoTUnref<SkImage> decoded(SkImage::NewFromEncoded(origEncoded));
REPORTER_ASSERT(reporter, decoded);
assert_equal(reporter, orig, nullptr, decoded);
// Now see if we can instantiate an image from a subset of the surface/origEncoded
decoded.reset(SkImage::NewFromEncoded(origEncoded, &ir));
REPORTER_ASSERT(reporter, decoded);
assert_equal(reporter, orig, &ir, decoded);
}
DEF_TEST(Image_Encode_Cpu, reporter) {
test_encode(reporter, nullptr);
}
#if SK_SUPPORT_GPU
DEF_GPUTEST(Image_Encode_Gpu, reporter, factory) {
GrContext* ctx = factory->get(GrContextFactory::kNative_GLContextType);
if (!ctx) {
REPORTER_ASSERT(reporter, false);
return;
}
test_encode(reporter, ctx);
}
#endif
namespace {
const char* kSerializedData = "serialized";
class MockSerializer : public SkPixelSerializer {
public:
MockSerializer(SkData* (*func)()) : fFunc(func), fDidEncode(false) { }
bool didEncode() const { return fDidEncode; }
protected:
bool onUseEncodedData(const void*, size_t) override {
return false;
}
SkData* onEncodePixels(const SkImageInfo&, const void*, size_t) override {
fDidEncode = true;
return fFunc();
}
private:
SkData* (*fFunc)();
bool fDidEncode;
typedef SkPixelSerializer INHERITED;
};
} // anonymous namespace
// Test that SkImage encoding observes custom pixel serializers.
DEF_TEST(Image_Encode_Serializer, reporter) {
MockSerializer serializer([]() -> SkData* { return SkData::NewWithCString(kSerializedData); });
const SkIRect ir = SkIRect::MakeXYWH(5, 5, 10, 10);
SkAutoTUnref<SkImage> image(make_image(nullptr, 20, 20, ir));
SkAutoTUnref<SkData> encoded(image->encode(&serializer));
SkAutoTUnref<SkData> reference(SkData::NewWithCString(kSerializedData));
REPORTER_ASSERT(reporter, serializer.didEncode());
REPORTER_ASSERT(reporter, encoded);
REPORTER_ASSERT(reporter, encoded->size() > 0);
REPORTER_ASSERT(reporter, encoded->equals(reference));
}
// Test that image encoding failures do not break picture serialization/deserialization.
DEF_TEST(Image_Serialize_Encoding_Failure, reporter) {
SkAutoTUnref<SkSurface> surface(SkSurface::NewRasterN32Premul(100, 100));
surface->getCanvas()->clear(SK_ColorGREEN);
SkAutoTUnref<SkImage> image(surface->newImageSnapshot());
REPORTER_ASSERT(reporter, image);
SkPictureRecorder recorder;
SkCanvas* canvas = recorder.beginRecording(100, 100);
canvas->drawImage(image, 0, 0);
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
REPORTER_ASSERT(reporter, picture);
REPORTER_ASSERT(reporter, picture->approximateOpCount() > 0);
MockSerializer emptySerializer([]() -> SkData* { return SkData::NewEmpty(); });
MockSerializer nullSerializer([]() -> SkData* { return nullptr; });
MockSerializer* serializers[] = { &emptySerializer, &nullSerializer };
for (size_t i = 0; i < SK_ARRAY_COUNT(serializers); ++i) {
SkDynamicMemoryWStream wstream;
REPORTER_ASSERT(reporter, !serializers[i]->didEncode());
picture->serialize(&wstream, serializers[i]);
REPORTER_ASSERT(reporter, serializers[i]->didEncode());
SkAutoTDelete<SkStream> rstream(wstream.detachAsStream());
SkAutoTUnref<SkPicture> deserialized(SkPicture::CreateFromStream(rstream));
REPORTER_ASSERT(reporter, deserialized);
REPORTER_ASSERT(reporter, deserialized->approximateOpCount() > 0);
}
}
DEF_TEST(Image_NewRasterCopy, reporter) {
const SkPMColor red = SkPackARGB32(0xFF, 0xFF, 0, 0);
const SkPMColor green = SkPackARGB32(0xFF, 0, 0xFF, 0);
const SkPMColor blue = SkPackARGB32(0xFF, 0, 0, 0xFF);
SkPMColor colors[] = { red, green, blue, 0 };
SkAutoTUnref<SkColorTable> ctable(new SkColorTable(colors, SK_ARRAY_COUNT(colors)));
// The colortable made a copy, so we can trash the original colors
memset(colors, 0xFF, sizeof(colors));
const SkImageInfo srcInfo = SkImageInfo::Make(2, 2, kIndex_8_SkColorType, kPremul_SkAlphaType);
const size_t srcRowBytes = 2 * sizeof(uint8_t);
uint8_t indices[] = { 0, 1, 2, 3 };
SkAutoTUnref<SkImage> image(SkImage::NewRasterCopy(srcInfo, indices, srcRowBytes, ctable));
// The image made a copy, so we can trash the original indices
memset(indices, 0xFF, sizeof(indices));
const SkImageInfo dstInfo = SkImageInfo::MakeN32Premul(2, 2);
const size_t dstRowBytes = 2 * sizeof(SkPMColor);
SkPMColor pixels[4];
memset(pixels, 0xFF, sizeof(pixels)); // init with values we don't expect
image->readPixels(dstInfo, pixels, dstRowBytes, 0, 0);
REPORTER_ASSERT(reporter, red == pixels[0]);
REPORTER_ASSERT(reporter, green == pixels[1]);
REPORTER_ASSERT(reporter, blue == pixels[2]);
REPORTER_ASSERT(reporter, 0 == pixels[3]);
}
// Test that a draw that only partially covers the drawing surface isn't
// interpreted as covering the entire drawing surface (i.e., exercise one of the
// conditions of SkCanvas::wouldOverwriteEntireSurface()).
DEF_TEST(Image_RetainSnapshot, reporter) {
const SkPMColor red = SkPackARGB32(0xFF, 0xFF, 0, 0);
const SkPMColor green = SkPackARGB32(0xFF, 0, 0xFF, 0);
SkImageInfo info = SkImageInfo::MakeN32Premul(2, 2);
SkAutoTUnref<SkSurface> surface(SkSurface::NewRaster(info));
surface->getCanvas()->clear(0xFF00FF00);
SkPMColor pixels[4];
memset(pixels, 0xFF, sizeof(pixels)); // init with values we don't expect
const SkImageInfo dstInfo = SkImageInfo::MakeN32Premul(2, 2);
const size_t dstRowBytes = 2 * sizeof(SkPMColor);
SkAutoTUnref<SkImage> image1(surface->newImageSnapshot());
REPORTER_ASSERT(reporter, image1->readPixels(dstInfo, pixels, dstRowBytes, 0, 0));
for (size_t i = 0; i < SK_ARRAY_COUNT(pixels); ++i) {
REPORTER_ASSERT(reporter, pixels[i] == green);
}
SkPaint paint;
paint.setXfermodeMode(SkXfermode::kSrc_Mode);
paint.setColor(SK_ColorRED);
surface->getCanvas()->drawRect(SkRect::MakeXYWH(1, 1, 1, 1), paint);
SkAutoTUnref<SkImage> image2(surface->newImageSnapshot());
REPORTER_ASSERT(reporter, image2->readPixels(dstInfo, pixels, dstRowBytes, 0, 0));
REPORTER_ASSERT(reporter, pixels[0] == green);
REPORTER_ASSERT(reporter, pixels[1] == green);
REPORTER_ASSERT(reporter, pixels[2] == green);
REPORTER_ASSERT(reporter, pixels[3] == red);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
#include "SkImageGenerator.h"
#include "SkData.h"
const uint8_t tiny_png[] = {
0x89, 0x50, 0x4e, 0x47, 0x0d, 0x0a, 0x1a, 0x0a, 0x00, 0x00, 0x00, 0x0d,
0x49, 0x48, 0x44, 0x52, 0x00, 0x00, 0x00, 0x64, 0x00, 0x00, 0x00, 0x64,
0x08, 0x06, 0x00, 0x00, 0x00, 0x70, 0xe2, 0x95, 0x54, 0x00, 0x00, 0x00,
0x01, 0x73, 0x52, 0x47, 0x42, 0x00, 0xae, 0xce, 0x1c, 0xe9, 0x00, 0x00,
0x01, 0x6b, 0x49, 0x44, 0x41, 0x54, 0x78, 0x01, 0xed, 0xd3, 0x41, 0x11,
0x00, 0x20, 0x0c, 0xc4, 0x40, 0xc0, 0xbf, 0xe7, 0xc2, 0xa0, 0x22, 0x8f,
0xad, 0x82, 0x4c, 0xd2, 0xdb, 0xf3, 0x6e, 0xb9, 0x8c, 0x81, 0x93, 0x21,
0x01, 0xf2, 0x0d, 0x08, 0x12, 0x7b, 0x04, 0x41, 0x04, 0x89, 0x19, 0x88,
0xe1, 0x58, 0x88, 0x20, 0x31, 0x03, 0x31, 0x1c, 0x0b, 0x11, 0x24, 0x66,
0x20, 0x86, 0x63, 0x21, 0x82, 0xc4, 0x0c, 0xc4, 0x70, 0x2c, 0x44, 0x90,
0x98, 0x81, 0x18, 0x8e, 0x85, 0x08, 0x12, 0x33, 0x10, 0xc3, 0xb1, 0x10,
0x41, 0x62, 0x06, 0x62, 0x38, 0x16, 0x22, 0x48, 0xcc, 0x40, 0x0c, 0xc7,
0x42, 0x04, 0x89, 0x19, 0x88, 0xe1, 0x58, 0x88, 0x20, 0x31, 0x03, 0x31,
0x1c, 0x0b, 0x11, 0x24, 0x66, 0x20, 0x86, 0x63, 0x21, 0x82, 0xc4, 0x0c,
0xc4, 0x70, 0x2c, 0x44, 0x90, 0x98, 0x81, 0x18, 0x8e, 0x85, 0x08, 0x12,
0x33, 0x10, 0xc3, 0xb1, 0x10, 0x41, 0x62, 0x06, 0x62, 0x38, 0x16, 0x22,
0x48, 0xcc, 0x40, 0x0c, 0xc7, 0x42, 0x04, 0x89, 0x19, 0x88, 0xe1, 0x58,
0x88, 0x20, 0x31, 0x03, 0x31, 0x1c, 0x0b, 0x11, 0x24, 0x66, 0x20, 0x86,
0x63, 0x21, 0x82, 0xc4, 0x0c, 0xc4, 0x70, 0x2c, 0x44, 0x90, 0x98, 0x81,
0x18, 0x8e, 0x85, 0x08, 0x12, 0x33, 0x10, 0xc3, 0xb1, 0x10, 0x41, 0x62,
0x06, 0x62, 0x38, 0x16, 0x22, 0x48, 0xcc, 0x40, 0x0c, 0xc7, 0x42, 0x04,
0x89, 0x19, 0x88, 0xe1, 0x58, 0x88, 0x20, 0x31, 0x03, 0x31, 0x1c, 0x0b,
0x11, 0x24, 0x66, 0x20, 0x86, 0x63, 0x21, 0x82, 0xc4, 0x0c, 0xc4, 0x70,
0x2c, 0x44, 0x90, 0x98, 0x81, 0x18, 0x8e, 0x85, 0x08, 0x12, 0x33, 0x10,
0xc3, 0xb1, 0x10, 0x41, 0x62, 0x06, 0x62, 0x38, 0x16, 0x22, 0x48, 0xcc,
0x40, 0x0c, 0xc7, 0x42, 0x04, 0x89, 0x19, 0x88, 0xe1, 0x58, 0x88, 0x20,
0x31, 0x03, 0x31, 0x1c, 0x0b, 0x11, 0x24, 0x66, 0x20, 0x86, 0x63, 0x21,
0x82, 0xc4, 0x0c, 0xc4, 0x70, 0x2c, 0x44, 0x90, 0x98, 0x81, 0x18, 0x8e,
0x85, 0x08, 0x12, 0x33, 0x10, 0xc3, 0xb1, 0x10, 0x41, 0x62, 0x06, 0x62,
0x38, 0x16, 0x22, 0x48, 0xcc, 0x40, 0x0c, 0xc7, 0x42, 0x04, 0x89, 0x19,
0x88, 0xe1, 0x58, 0x88, 0x20, 0x31, 0x03, 0x31, 0x1c, 0x0b, 0x11, 0x24,
0x66, 0x20, 0x86, 0x63, 0x21, 0x82, 0xc4, 0x0c, 0xc4, 0x70, 0x2c, 0x44,
0x90, 0x98, 0x81, 0x18, 0x8e, 0x85, 0x08, 0x12, 0x33, 0x10, 0xc3, 0xb1,
0x10, 0x41, 0x62, 0x06, 0x62, 0x38, 0x16, 0x22, 0x48, 0xcc, 0x40, 0x0c,
0xc7, 0x42, 0x62, 0x41, 0x2e, 0x08, 0x60, 0x04, 0xc4, 0x4c, 0x5d, 0x6e,
0xf2, 0x00, 0x00, 0x00, 0x00, 0x49, 0x45, 0x4e, 0x44, 0xae, 0x42, 0x60,
0x82
};
static void make_bitmap_lazy(SkBitmap* bm) {
SkAutoTUnref<SkData> data(SkData::NewWithoutCopy(tiny_png, sizeof(tiny_png)));
SkInstallDiscardablePixelRef(data, bm);
}
static void make_bitmap_mutable(SkBitmap* bm) {
bm->allocN32Pixels(10, 10);
}
static void make_bitmap_immutable(SkBitmap* bm) {
bm->allocN32Pixels(10, 10);
bm->setImmutable();
}
DEF_TEST(image_newfrombitmap, reporter) {
const struct {
void (*fMakeProc)(SkBitmap*);
bool fExpectPeekSuccess;
bool fExpectSharedID;
bool fExpectLazy;
} rec[] = {
{ make_bitmap_lazy, false, true, true },
{ make_bitmap_mutable, true, false, false },
{ make_bitmap_immutable, true, true, false },
};
for (size_t i = 0; i < SK_ARRAY_COUNT(rec); ++i) {
SkBitmap bm;
rec[i].fMakeProc(&bm);
SkAutoTUnref<SkImage> image(SkImage::NewFromBitmap(bm));
SkPixmap pmap;
const bool sharedID = (image->uniqueID() == bm.getGenerationID());
REPORTER_ASSERT(reporter, sharedID == rec[i].fExpectSharedID);
const bool peekSuccess = image->peekPixels(&pmap);
REPORTER_ASSERT(reporter, peekSuccess == rec[i].fExpectPeekSuccess);
const bool lazy = image->isLazyGenerated();
REPORTER_ASSERT(reporter, lazy == rec[i].fExpectLazy);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
static SkImage* make_gpu_image(GrContext* ctx, const SkImageInfo& info, SkColor color) {
const SkSurface::Budgeted budgeted = SkSurface::kNo_Budgeted;
SkAutoTUnref<SkSurface> surface(SkSurface::NewRenderTarget(ctx, budgeted, info, 0));
surface->getCanvas()->drawColor(color);
return surface->newImageSnapshot();
}
#include "SkBitmapCache.h"
/*
* This tests the caching (and preemptive purge) of the raster equivalent of a gpu-image.
* We cache it for performance when drawing into a raster surface.
*
* A cleaner test would know if each drawImage call triggered a read-back from the gpu,
* but we don't have that facility (at the moment) so we use a little internal knowledge
* of *how* the raster version is cached, and look for that.
*/
DEF_GPUTEST(SkImage_Gpu2Cpu, reporter, factory) {
GrContext* ctx = factory->get(GrContextFactory::kNative_GLContextType);
if (!ctx) {
REPORTER_ASSERT(reporter, false);
return;
}
const SkImageInfo info = SkImageInfo::MakeN32Premul(10, 10);
SkAutoTUnref<SkImage> image(make_gpu_image(ctx, info, SK_ColorRED));
const uint32_t uniqueID = image->uniqueID();
SkAutoTUnref<SkSurface> surface(SkSurface::NewRaster(info));
// now we can test drawing a gpu-backed image into a cpu-backed surface
{
SkBitmap cachedBitmap;
REPORTER_ASSERT(reporter, !SkBitmapCache::Find(uniqueID, &cachedBitmap));
}
surface->getCanvas()->drawImage(image, 0, 0);
{
SkBitmap cachedBitmap;
if (SkBitmapCache::Find(uniqueID, &cachedBitmap)) {
REPORTER_ASSERT(reporter, cachedBitmap.getGenerationID() == uniqueID);
REPORTER_ASSERT(reporter, cachedBitmap.isImmutable());
REPORTER_ASSERT(reporter, cachedBitmap.getPixels());
} else {
// unexpected, but not really a bug, since the cache is global and this test may be
// run w/ other threads competing for its budget.
SkDebugf("SkImage_Gpu2Cpu : cachedBitmap was already purged\n");
}
}
image.reset(nullptr);
{
SkBitmap cachedBitmap;
REPORTER_ASSERT(reporter, !SkBitmapCache::Find(uniqueID, &cachedBitmap));
}
}
#endif