| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef GrDrawState_DEFINED |
| #define GrDrawState_DEFINED |
| |
| |
| #include "GrBlend.h" |
| #include "GrDrawTargetCaps.h" |
| #include "GrGpuResourceRef.h" |
| #include "GrProcessorStage.h" |
| #include "GrRenderTarget.h" |
| #include "GrStencil.h" |
| #include "SkMatrix.h" |
| #include "effects/GrSimpleTextureEffect.h" |
| |
| class GrDrawTargetCaps; |
| class GrOptDrawState; |
| class GrPaint; |
| class GrTexture; |
| |
| class GrDrawState : public SkRefCnt { |
| public: |
| SK_DECLARE_INST_COUNT(GrDrawState) |
| |
| GrDrawState() : fCachedOptState(NULL) { |
| SkDEBUGCODE(fBlockEffectRemovalCnt = 0;) |
| this->reset(); |
| } |
| |
| GrDrawState(const SkMatrix& initialViewMatrix) : fCachedOptState(NULL) { |
| SkDEBUGCODE(fBlockEffectRemovalCnt = 0;) |
| this->reset(initialViewMatrix); |
| } |
| |
| /** |
| * Copies another draw state. |
| **/ |
| GrDrawState(const GrDrawState& state) : INHERITED(), fCachedOptState(NULL) { |
| SkDEBUGCODE(fBlockEffectRemovalCnt = 0;) |
| *this = state; |
| } |
| |
| /** |
| * Copies another draw state with a preconcat to the view matrix. |
| **/ |
| GrDrawState(const GrDrawState& state, const SkMatrix& preConcatMatrix); |
| |
| virtual ~GrDrawState(); |
| |
| /** |
| * Resets to the default state. GrProcessors will be removed from all stages. |
| */ |
| void reset() { this->onReset(NULL); } |
| |
| void reset(const SkMatrix& initialViewMatrix) { this->onReset(&initialViewMatrix); } |
| |
| /** |
| * Initializes the GrDrawState based on a GrPaint, view matrix and render target. Note that |
| * GrDrawState encompasses more than GrPaint. Aspects of GrDrawState that have no GrPaint |
| * equivalents are set to default values with the exception of vertex attribute state which |
| * is unmodified by this function and clipping which will be enabled. |
| */ |
| void setFromPaint(const GrPaint& , const SkMatrix& viewMatrix, GrRenderTarget*); |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Vertex Attributes |
| //// |
| |
| enum { |
| kMaxVertexAttribCnt = kLast_GrVertexAttribBinding + 4, |
| }; |
| |
| const GrVertexAttrib* getVertexAttribs() const { return fVAPtr; } |
| int getVertexAttribCount() const { return fVACount; } |
| |
| size_t getVertexStride() const { return fVAStride; } |
| |
| bool hasLocalCoordAttribute() const { |
| return -1 != fFixedFunctionVertexAttribIndices[kLocalCoord_GrVertexAttribBinding]; |
| } |
| bool hasColorVertexAttribute() const { |
| return -1 != fFixedFunctionVertexAttribIndices[kColor_GrVertexAttribBinding]; |
| } |
| bool hasCoverageVertexAttribute() const { |
| return -1 != fFixedFunctionVertexAttribIndices[kCoverage_GrVertexAttribBinding]; |
| } |
| |
| const int* getFixedFunctionVertexAttribIndices() const { |
| return fFixedFunctionVertexAttribIndices; |
| } |
| |
| bool validateVertexAttribs() const; |
| |
| /** |
| * The format of vertices is represented as an array of GrVertexAttribs, with each representing |
| * the type of the attribute, its offset, and semantic binding (see GrVertexAttrib in |
| * GrTypesPriv.h). |
| * |
| * The mapping of attributes with kEffect bindings to GrProcessor inputs is specified when |
| * setEffect is called. |
| */ |
| |
| /** |
| * Sets vertex attributes for next draw. The object driving the templatization |
| * should be a global GrVertexAttrib array that is never changed. |
| * |
| * @param count the number of attributes being set, limited to kMaxVertexAttribCnt. |
| * @param stride the number of bytes between successive vertex data. |
| */ |
| template <const GrVertexAttrib A[]> void setVertexAttribs(int count, size_t stride) { |
| this->internalSetVertexAttribs(A, count, stride); |
| } |
| |
| /** |
| * Sets default vertex attributes for next draw. The default is a single attribute: |
| * {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribType} |
| */ |
| void setDefaultVertexAttribs(); |
| |
| /** |
| * Helper to save/restore vertex attribs |
| */ |
| class AutoVertexAttribRestore { |
| public: |
| AutoVertexAttribRestore(GrDrawState* drawState); |
| |
| ~AutoVertexAttribRestore() { fDrawState->internalSetVertexAttribs(fVAPtr, fVACount, |
| fVAStride); } |
| |
| private: |
| GrDrawState* fDrawState; |
| const GrVertexAttrib* fVAPtr; |
| int fVACount; |
| size_t fVAStride; |
| }; |
| |
| /// @} |
| |
| /** |
| * Depending on features available in the underlying 3D API and the color blend mode requested |
| * it may or may not be possible to correctly blend with fractional pixel coverage generated by |
| * the fragment shader. |
| * |
| * This function considers the current draw state and the draw target's capabilities to |
| * determine whether coverage can be handled correctly. This function assumes that the caller |
| * intends to specify fractional pixel coverage (via setCoverage(), through a coverage vertex |
| * attribute, or a coverage effect) but may not have specified it yet. |
| */ |
| bool couldApplyCoverage(const GrDrawTargetCaps& caps) const; |
| |
| /** |
| * Determines whether the output coverage is guaranteed to be one for all pixels hit by a draw. |
| */ |
| bool hasSolidCoverage() const; |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Color |
| //// |
| |
| GrColor getColor() const { return fColor; } |
| |
| /** |
| * Sets color for next draw to a premultiplied-alpha color. |
| * |
| * @param color the color to set. |
| */ |
| void setColor(GrColor color) { |
| if (color != fColor) { |
| fColor = color; |
| this->invalidateOptState(); |
| } |
| } |
| |
| /** |
| * Sets the color to be used for the next draw to be |
| * (r,g,b,a) = (alpha, alpha, alpha, alpha). |
| * |
| * @param alpha The alpha value to set as the color. |
| */ |
| void setAlpha(uint8_t a) { this->setColor((a << 24) | (a << 16) | (a << 8) | a); } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Coverage |
| //// |
| |
| uint8_t getCoverage() const { return fCoverage; } |
| |
| GrColor getCoverageColor() const { |
| return GrColorPackRGBA(fCoverage, fCoverage, fCoverage, fCoverage); |
| } |
| |
| /** |
| * Sets a constant fractional coverage to be applied to the draw. The |
| * initial value (after construction or reset()) is 0xff. The constant |
| * coverage is ignored when per-vertex coverage is provided. |
| */ |
| void setCoverage(uint8_t coverage) { |
| if (coverage != fCoverage) { |
| fCoverage = coverage; |
| this->invalidateOptState(); |
| } |
| } |
| |
| /// @} |
| |
| /** |
| * The geometry processor is the sole element of the skia pipeline which can use the vertex, |
| * geometry, and tesselation shaders. The GP may also compute a coverage in its fragment shader |
| * but is never put in the color processing pipeline. |
| */ |
| |
| const GrGeometryProcessor* setGeometryProcessor(const GrGeometryProcessor* geometryProcessor) { |
| SkASSERT(geometryProcessor); |
| SkASSERT(!this->hasGeometryProcessor()); |
| fGeometryProcessor.reset(new GrGeometryStage(geometryProcessor)); |
| this->invalidateOptState(); |
| return geometryProcessor; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Effect Stages |
| /// Each stage hosts a GrProcessor. The effect produces an output color or coverage in the |
| /// fragment shader. Its inputs are the output from the previous stage as well as some variables |
| /// available to it in the fragment and vertex shader (e.g. the vertex position, the dst color, |
| /// the fragment position, local coordinates). |
| /// |
| /// The stages are divided into two sets, color-computing and coverage-computing. The final |
| /// color stage produces the final pixel color. The coverage-computing stages function exactly |
| /// as the color-computing but the output of the final coverage stage is treated as a fractional |
| /// pixel coverage rather than as input to the src/dst color blend step. |
| /// |
| /// The input color to the first color-stage is either the constant color or interpolated |
| /// per-vertex colors. The input to the first coverage stage is either a constant coverage |
| /// (usually full-coverage) or interpolated per-vertex coverage. |
| /// |
| /// See the documentation of kCoverageDrawing_StateBit for information about disabling the |
| /// the color / coverage distinction. |
| //// |
| |
| int numColorStages() const { return fColorStages.count(); } |
| int numCoverageStages() const { return fCoverageStages.count(); } |
| int numTotalStages() const { |
| return this->numColorStages() + this->numCoverageStages() + |
| (this->hasGeometryProcessor() ? 1 : 0); |
| } |
| |
| bool hasGeometryProcessor() const { return SkToBool(fGeometryProcessor.get()); } |
| const GrGeometryStage* getGeometryProcessor() const { return fGeometryProcessor.get(); } |
| const GrFragmentStage& getColorStage(int idx) const { return fColorStages[idx]; } |
| const GrFragmentStage& getCoverageStage(int idx) const { return fCoverageStages[idx]; } |
| |
| /** |
| * Checks whether any of the effects will read the dst pixel color. |
| */ |
| bool willEffectReadDstColor() const; |
| |
| const GrFragmentProcessor* addColorProcessor(const GrFragmentProcessor* effect) { |
| SkASSERT(effect); |
| SkNEW_APPEND_TO_TARRAY(&fColorStages, GrFragmentStage, (effect)); |
| this->invalidateOptState(); |
| return effect; |
| } |
| |
| const GrFragmentProcessor* addCoverageProcessor(const GrFragmentProcessor* effect) { |
| SkASSERT(effect); |
| SkNEW_APPEND_TO_TARRAY(&fCoverageStages, GrFragmentStage, (effect)); |
| this->invalidateOptState(); |
| return effect; |
| } |
| |
| /** |
| * Creates a GrSimpleTextureEffect that uses local coords as texture coordinates. |
| */ |
| void addColorTextureProcessor(GrTexture* texture, const SkMatrix& matrix) { |
| this->addColorProcessor(GrSimpleTextureEffect::Create(texture, matrix))->unref(); |
| } |
| |
| void addCoverageTextureProcessor(GrTexture* texture, const SkMatrix& matrix) { |
| this->addCoverageProcessor(GrSimpleTextureEffect::Create(texture, matrix))->unref(); |
| } |
| |
| void addColorTextureProcessor(GrTexture* texture, |
| const SkMatrix& matrix, |
| const GrTextureParams& params) { |
| this->addColorProcessor(GrSimpleTextureEffect::Create(texture, matrix, params))->unref(); |
| } |
| |
| void addCoverageTextureProcessor(GrTexture* texture, |
| const SkMatrix& matrix, |
| const GrTextureParams& params) { |
| this->addCoverageProcessor(GrSimpleTextureEffect::Create(texture, matrix, params))->unref(); |
| } |
| |
| /** |
| * When this object is destroyed it will remove any color/coverage effects from the draw state |
| * that were added after its constructor. |
| * |
| * This class has strange behavior around geometry processor. If there is a GP on the draw state |
| * it will assert that the GP is not modified until after the destructor of the ARE. If the |
| * draw state has a NULL GP when the ARE is constructed then it will reset it to null in the |
| * destructor. |
| * |
| * TODO: We'd prefer for the ARE to just save and restore the GP. However, this would add |
| * significant complexity to the multi-ref architecture for deferred drawing. Once GrDrawState |
| * and GrOptDrawState are fully separated then GrDrawState will never be in the deferred |
| * execution state and GrOptDrawState always will be (and will be immutable and therefore |
| * unable to have an ARE). At this point we can restore sanity and have the ARE save and restore |
| * the GP. |
| */ |
| class AutoRestoreEffects : public ::SkNoncopyable { |
| public: |
| AutoRestoreEffects() |
| : fDrawState(NULL) |
| , fOriginalGPID(SK_InvalidUniqueID) |
| , fColorEffectCnt(0) |
| , fCoverageEffectCnt(0) {} |
| |
| AutoRestoreEffects(GrDrawState* ds) |
| : fDrawState(NULL) |
| , fOriginalGPID(SK_InvalidUniqueID) |
| , fColorEffectCnt(0) |
| , fCoverageEffectCnt(0) { |
| this->set(ds); |
| } |
| |
| ~AutoRestoreEffects() { this->set(NULL); } |
| |
| void set(GrDrawState* ds); |
| |
| bool isSet() const { return SkToBool(fDrawState); } |
| |
| private: |
| GrDrawState* fDrawState; |
| uint32_t fOriginalGPID; |
| int fColorEffectCnt; |
| int fCoverageEffectCnt; |
| }; |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Blending |
| //// |
| |
| GrBlendCoeff getSrcBlendCoeff() const { return fSrcBlend; } |
| GrBlendCoeff getDstBlendCoeff() const { return fDstBlend; } |
| |
| /** |
| * Retrieves the last value set by setBlendConstant() |
| * @return the blending constant value |
| */ |
| GrColor getBlendConstant() const { return fBlendConstant; } |
| |
| /** |
| * Determines whether multiplying the computed per-pixel color by the pixel's fractional |
| * coverage before the blend will give the correct final destination color. In general it |
| * will not as coverage is applied after blending. |
| */ |
| bool canTweakAlphaForCoverage() const; |
| |
| /** |
| * Sets the blending function coefficients. |
| * |
| * The blend function will be: |
| * D' = sat(S*srcCoef + D*dstCoef) |
| * |
| * where D is the existing destination color, S is the incoming source |
| * color, and D' is the new destination color that will be written. sat() |
| * is the saturation function. |
| * |
| * @param srcCoef coefficient applied to the src color. |
| * @param dstCoef coefficient applied to the dst color. |
| */ |
| void setBlendFunc(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) { |
| if (srcCoeff != fSrcBlend || dstCoeff != fDstBlend) { |
| fSrcBlend = srcCoeff; |
| fDstBlend = dstCoeff; |
| this->invalidateOptState(); |
| } |
| #ifdef SK_DEBUG |
| if (GrBlendCoeffRefsDst(dstCoeff)) { |
| GrPrintf("Unexpected dst blend coeff. Won't work correctly with coverage stages.\n"); |
| } |
| if (GrBlendCoeffRefsSrc(srcCoeff)) { |
| GrPrintf("Unexpected src blend coeff. Won't work correctly with coverage stages.\n"); |
| } |
| #endif |
| } |
| |
| /** |
| * Sets the blending function constant referenced by the following blending |
| * coefficients: |
| * kConstC_GrBlendCoeff |
| * kIConstC_GrBlendCoeff |
| * kConstA_GrBlendCoeff |
| * kIConstA_GrBlendCoeff |
| * |
| * @param constant the constant to set |
| */ |
| void setBlendConstant(GrColor constant) { |
| if (constant != fBlendConstant) { |
| fBlendConstant = constant; |
| this->invalidateOptState(); |
| } |
| } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name View Matrix |
| //// |
| |
| /** |
| * Retrieves the current view matrix |
| * @return the current view matrix. |
| */ |
| const SkMatrix& getViewMatrix() const { return fViewMatrix; } |
| |
| /** |
| * Retrieves the inverse of the current view matrix. |
| * |
| * If the current view matrix is invertible, return true, and if matrix |
| * is non-null, copy the inverse into it. If the current view matrix is |
| * non-invertible, return false and ignore the matrix parameter. |
| * |
| * @param matrix if not null, will receive a copy of the current inverse. |
| */ |
| bool getViewInverse(SkMatrix* matrix) const { |
| SkMatrix inverse; |
| if (fViewMatrix.invert(&inverse)) { |
| if (matrix) { |
| *matrix = inverse; |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| /** |
| * Sets the view matrix to identity and updates any installed effects to compensate for the |
| * coord system change. |
| */ |
| bool setIdentityViewMatrix(); |
| |
| //////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * Preconcats the current view matrix and restores the previous view matrix in the destructor. |
| * Effect matrices are automatically adjusted to compensate and adjusted back in the destructor. |
| */ |
| class AutoViewMatrixRestore : public ::SkNoncopyable { |
| public: |
| AutoViewMatrixRestore() : fDrawState(NULL) {} |
| |
| AutoViewMatrixRestore(GrDrawState* ds, const SkMatrix& preconcatMatrix) { |
| fDrawState = NULL; |
| this->set(ds, preconcatMatrix); |
| } |
| |
| ~AutoViewMatrixRestore() { this->restore(); } |
| |
| /** |
| * Can be called prior to destructor to restore the original matrix. |
| */ |
| void restore(); |
| |
| void set(GrDrawState* drawState, const SkMatrix& preconcatMatrix); |
| |
| /** Sets the draw state's matrix to identity. This can fail because the current view matrix |
| is not invertible. */ |
| bool setIdentity(GrDrawState* drawState); |
| |
| private: |
| void doEffectCoordChanges(const SkMatrix& coordChangeMatrix); |
| |
| GrDrawState* fDrawState; |
| SkMatrix fViewMatrix; |
| int fNumColorStages; |
| bool fHasGeometryProcessor; |
| SkAutoSTArray<8, GrProcessorStage::SavedCoordChange> fSavedCoordChanges; |
| }; |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Render Target |
| //// |
| |
| /** |
| * Retrieves the currently set render-target. |
| * |
| * @return The currently set render target. |
| */ |
| GrRenderTarget* getRenderTarget() const { |
| return static_cast<GrRenderTarget*>(fRenderTarget.getResource()); |
| } |
| |
| /** |
| * Sets the render-target used at the next drawing call |
| * |
| * @param target The render target to set. |
| */ |
| void setRenderTarget(GrRenderTarget* target) { |
| fRenderTarget.set(SkSafeRef(target), GrIORef::kWrite_IOType); |
| this->invalidateOptState(); |
| } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Stencil |
| //// |
| |
| const GrStencilSettings& getStencil() const { return fStencilSettings; } |
| |
| /** |
| * Sets the stencil settings to use for the next draw. |
| * Changing the clip has the side-effect of possibly zeroing |
| * out the client settable stencil bits. So multipass algorithms |
| * using stencil should not change the clip between passes. |
| * @param settings the stencil settings to use. |
| */ |
| void setStencil(const GrStencilSettings& settings) { |
| if (settings != fStencilSettings) { |
| fStencilSettings = settings; |
| this->invalidateOptState(); |
| } |
| } |
| |
| /** |
| * Shortcut to disable stencil testing and ops. |
| */ |
| void disableStencil() { |
| if (!fStencilSettings.isDisabled()) { |
| fStencilSettings.setDisabled(); |
| this->invalidateOptState(); |
| } |
| } |
| |
| GrStencilSettings* stencil() { return &fStencilSettings; } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name State Flags |
| //// |
| |
| /** |
| * Flags that affect rendering. Controlled using enable/disableState(). All |
| * default to disabled. |
| */ |
| enum StateBits { |
| /** |
| * Perform dithering. TODO: Re-evaluate whether we need this bit |
| */ |
| kDither_StateBit = 0x01, |
| /** |
| * Perform HW anti-aliasing. This means either HW FSAA, if supported by the render target, |
| * or smooth-line rendering if a line primitive is drawn and line smoothing is supported by |
| * the 3D API. |
| */ |
| kHWAntialias_StateBit = 0x02, |
| /** |
| * Draws will respect the clip, otherwise the clip is ignored. |
| */ |
| kClip_StateBit = 0x04, |
| /** |
| * Disables writing to the color buffer. Useful when performing stencil |
| * operations. |
| */ |
| kNoColorWrites_StateBit = 0x08, |
| |
| /** |
| * Usually coverage is applied after color blending. The color is blended using the coeffs |
| * specified by setBlendFunc(). The blended color is then combined with dst using coeffs |
| * of src_coverage, 1-src_coverage. Sometimes we are explicitly drawing a coverage mask. In |
| * this case there is no distinction between coverage and color and the caller needs direct |
| * control over the blend coeffs. When set, there will be a single blend step controlled by |
| * setBlendFunc() which will use coverage*color as the src color. |
| */ |
| kCoverageDrawing_StateBit = 0x10, |
| |
| // Users of the class may add additional bits to the vector |
| kDummyStateBit, |
| kLastPublicStateBit = kDummyStateBit-1, |
| }; |
| |
| uint32_t getFlagBits() const { return fFlagBits; } |
| |
| bool isStateFlagEnabled(uint32_t stateBit) const { return 0 != (stateBit & fFlagBits); } |
| |
| bool isClipState() const { return 0 != (fFlagBits & kClip_StateBit); } |
| bool isColorWriteDisabled() const { return 0 != (fFlagBits & kNoColorWrites_StateBit); } |
| bool isCoverageDrawing() const { return 0 != (fFlagBits & kCoverageDrawing_StateBit); } |
| |
| void resetStateFlags() { |
| if (0 != fFlagBits) { |
| fFlagBits = 0; |
| this->invalidateOptState(); |
| } |
| } |
| |
| /** |
| * Enable render state settings. |
| * |
| * @param stateBits bitfield of StateBits specifying the states to enable |
| */ |
| void enableState(uint32_t stateBits) { |
| if (stateBits & ~fFlagBits) { |
| fFlagBits |= stateBits; |
| this->invalidateOptState(); |
| } |
| } |
| |
| /** |
| * Disable render state settings. |
| * |
| * @param stateBits bitfield of StateBits specifying the states to disable |
| */ |
| void disableState(uint32_t stateBits) { |
| if (stateBits & fFlagBits) { |
| fFlagBits &= ~(stateBits); |
| this->invalidateOptState(); |
| } |
| } |
| |
| /** |
| * Enable or disable stateBits based on a boolean. |
| * |
| * @param stateBits bitfield of StateBits to enable or disable |
| * @param enable if true enable stateBits, otherwise disable |
| */ |
| void setState(uint32_t stateBits, bool enable) { |
| if (enable) { |
| this->enableState(stateBits); |
| } else { |
| this->disableState(stateBits); |
| } |
| } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Face Culling |
| //// |
| |
| enum DrawFace { |
| kInvalid_DrawFace = -1, |
| |
| kBoth_DrawFace, |
| kCCW_DrawFace, |
| kCW_DrawFace, |
| }; |
| |
| /** |
| * Gets whether the target is drawing clockwise, counterclockwise, |
| * or both faces. |
| * @return the current draw face(s). |
| */ |
| DrawFace getDrawFace() const { return fDrawFace; } |
| |
| /** |
| * Controls whether clockwise, counterclockwise, or both faces are drawn. |
| * @param face the face(s) to draw. |
| */ |
| void setDrawFace(DrawFace face) { |
| SkASSERT(kInvalid_DrawFace != face); |
| fDrawFace = face; |
| } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Hints |
| /// Hints that when provided can enable optimizations. |
| //// |
| |
| enum Hints { kVertexColorsAreOpaque_Hint = 0x1, }; |
| |
| void setHint(Hints hint, bool value) { fHints = value ? (fHints | hint) : (fHints & ~hint); } |
| |
| bool vertexColorsAreOpaque() const { return kVertexColorsAreOpaque_Hint & fHints; } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| |
| /** Return type for CombineIfPossible. */ |
| enum CombinedState { |
| /** The GrDrawStates cannot be combined. */ |
| kIncompatible_CombinedState, |
| /** Either draw state can be used in place of the other. */ |
| kAOrB_CombinedState, |
| /** Use the first draw state. */ |
| kA_CombinedState, |
| /** Use the second draw state. */ |
| kB_CombinedState, |
| }; |
| |
| /** This function determines whether the GrDrawStates used for two draws can be combined into |
| a single GrDrawState. This is used to avoid storing redundant GrDrawStates and to determine |
| if draws can be batched. The return value indicates whether combining is possible and, if |
| so, which of the two inputs should be used. */ |
| static CombinedState CombineIfPossible(const GrDrawState& a, const GrDrawState& b, |
| const GrDrawTargetCaps& caps); |
| |
| GrDrawState& operator= (const GrDrawState& that); |
| |
| /** |
| * Returns a snapshot of the current optimized state. If the current drawState has a valid |
| * cached optimiezed state it will simply return a pointer to it otherwise it will create a new |
| * GrOptDrawState. In all cases the GrOptDrawState is reffed and ownership is given to the |
| * caller. |
| */ |
| GrOptDrawState* createOptState(const GrDrawTargetCaps&) const; |
| |
| private: |
| /** |
| * Converts refs on GrGpuResources owned directly or indirectly by this GrDrawState into |
| * pending reads and writes. This should be called when a GrDrawState is recorded into |
| * a GrDrawTarget for later execution. Subclasses of GrDrawState may add setters. However, |
| * once this call has been made the GrDrawState is immutable. It is also no longer copyable. |
| * In the future this conversion will automatically happen when converting a GrDrawState into |
| * an optimized draw state. |
| */ |
| void convertToPendingExec(); |
| |
| friend class GrDrawTarget; |
| |
| bool isEqual(const GrDrawState& that) const; |
| |
| /** |
| * Optimizations for blending / coverage to that can be applied based on the current state. |
| */ |
| enum BlendOptFlags { |
| /** |
| * No optimization |
| */ |
| kNone_BlendOpt = 0, |
| /** |
| * Don't draw at all |
| */ |
| kSkipDraw_BlendOptFlag = 0x1, |
| /** |
| * The coverage value does not have to be computed separately from alpha, the the output |
| * color can be the modulation of the two. |
| */ |
| kCoverageAsAlpha_BlendOptFlag = 0x2, |
| /** |
| * Instead of emitting a src color, emit coverage in the alpha channel and r,g,b are |
| * "don't cares". |
| */ |
| kEmitCoverage_BlendOptFlag = 0x4, |
| /** |
| * Emit transparent black instead of the src color, no need to compute coverage. |
| */ |
| kEmitTransBlack_BlendOptFlag = 0x8, |
| }; |
| GR_DECL_BITFIELD_OPS_FRIENDS(BlendOptFlags); |
| |
| /** |
| * Determines what optimizations can be applied based on the blend. The coefficients may have |
| * to be tweaked in order for the optimization to work. srcCoeff and dstCoeff are optional |
| * params that receive the tweaked coefficients. Normally the function looks at the current |
| * state to see if coverage is enabled. By setting forceCoverage the caller can speculatively |
| * determine the blend optimizations that would be used if there was partial pixel coverage. |
| * |
| * Subclasses of GrDrawTarget that actually draw (as opposed to those that just buffer for |
| * playback) must call this function and respect the flags that replace the output color. |
| * |
| * If the cached BlendOptFlags does not have the invalidate bit set, then getBlendOpts will |
| * simply returned the cached flags and coefficients. Otherwise it will calculate the values. |
| */ |
| BlendOptFlags getBlendOpts(bool forceCoverage = false, |
| GrBlendCoeff* srcCoeff = NULL, |
| GrBlendCoeff* dstCoeff = NULL) const; |
| |
| /** |
| * Determines whether src alpha is guaranteed to be one for all src pixels |
| */ |
| bool srcAlphaWillBeOne() const; |
| |
| void invalidateOptState() const; |
| |
| void onReset(const SkMatrix* initialViewMatrix); |
| |
| // Some of the auto restore objects assume that no effects are removed during their lifetime. |
| // This is used to assert that this condition holds. |
| SkDEBUGCODE(int fBlockEffectRemovalCnt;) |
| |
| void internalSetVertexAttribs(const GrVertexAttrib attribs[], int count, size_t stride); |
| |
| typedef GrTGpuResourceRef<GrRenderTarget> ProgramRenderTarget; |
| // These fields are roughly sorted by decreasing likelihood of being different in op== |
| ProgramRenderTarget fRenderTarget; |
| GrColor fColor; |
| SkMatrix fViewMatrix; |
| GrColor fBlendConstant; |
| uint32_t fFlagBits; |
| const GrVertexAttrib* fVAPtr; |
| int fVACount; |
| size_t fVAStride; |
| GrStencilSettings fStencilSettings; |
| uint8_t fCoverage; |
| DrawFace fDrawFace; |
| GrBlendCoeff fSrcBlend; |
| GrBlendCoeff fDstBlend; |
| |
| typedef SkSTArray<4, GrFragmentStage> FragmentStageArray; |
| SkAutoTDelete<GrGeometryStage> fGeometryProcessor; |
| FragmentStageArray fColorStages; |
| FragmentStageArray fCoverageStages; |
| |
| uint32_t fHints; |
| |
| // This is simply a different representation of info in fVertexAttribs and thus does |
| // not need to be compared in op==. |
| int fFixedFunctionVertexAttribIndices[kGrFixedFunctionVertexAttribBindingCnt]; |
| |
| mutable GrOptDrawState* fCachedOptState; |
| mutable uint32_t fCachedCapsID; |
| |
| typedef SkRefCnt INHERITED; |
| }; |
| |
| //GR_MAKE_BITFIELD_OPS(GrDrawState::BlendOptFlags); |
| |
| #endif |