| /* |
| * Copyright 2013 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrOvalRenderer.h" |
| |
| #include "gl/builders/GrGLFullProgramBuilder.h" |
| #include "gl/GrGLProcessor.h" |
| #include "gl/GrGLSL.h" |
| #include "gl/GrGLGeometryProcessor.h" |
| #include "GrProcessor.h" |
| #include "GrTBackendProcessorFactory.h" |
| |
| #include "GrDrawState.h" |
| #include "GrDrawTarget.h" |
| #include "GrGpu.h" |
| |
| #include "SkRRect.h" |
| #include "SkStrokeRec.h" |
| #include "SkTLazy.h" |
| |
| #include "GrGeometryProcessor.h" |
| #include "effects/GrRRectEffect.h" |
| |
| namespace { |
| |
| struct CircleVertex { |
| SkPoint fPos; |
| SkPoint fOffset; |
| SkScalar fOuterRadius; |
| SkScalar fInnerRadius; |
| }; |
| |
| struct EllipseVertex { |
| SkPoint fPos; |
| SkPoint fOffset; |
| SkPoint fOuterRadii; |
| SkPoint fInnerRadii; |
| }; |
| |
| struct DIEllipseVertex { |
| SkPoint fPos; |
| SkPoint fOuterOffset; |
| SkPoint fInnerOffset; |
| }; |
| |
| inline bool circle_stays_circle(const SkMatrix& m) { |
| return m.isSimilarity(); |
| } |
| |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * The output of this effect is a modulation of the input color and coverage for a circle, |
| * specified as offset_x, offset_y (both from center point), outer radius and inner radius. |
| */ |
| |
| class CircleEdgeEffect : public GrGeometryProcessor { |
| public: |
| static GrGeometryProcessor* Create(bool stroke) { |
| GR_CREATE_STATIC_GEOMETRY_PROCESSOR(gCircleStrokeEdge, CircleEdgeEffect, (true)); |
| GR_CREATE_STATIC_GEOMETRY_PROCESSOR(gCircleFillEdge, CircleEdgeEffect, (false)); |
| |
| if (stroke) { |
| gCircleStrokeEdge->ref(); |
| return gCircleStrokeEdge; |
| } else { |
| gCircleFillEdge->ref(); |
| return gCircleFillEdge; |
| } |
| } |
| |
| virtual void getConstantColorComponents(GrColor* color, |
| uint32_t* validFlags) const SK_OVERRIDE { |
| *validFlags = 0; |
| } |
| |
| const GrShaderVar& inCircleEdge() const { return fInCircleEdge; } |
| |
| virtual const GrBackendGeometryProcessorFactory& getFactory() const SK_OVERRIDE { |
| return GrTBackendGeometryProcessorFactory<CircleEdgeEffect>::getInstance(); |
| } |
| |
| virtual ~CircleEdgeEffect() {} |
| |
| static const char* Name() { return "CircleEdge"; } |
| |
| inline bool isStroked() const { return fStroke; } |
| |
| class GLProcessor : public GrGLGeometryProcessor { |
| public: |
| GLProcessor(const GrBackendProcessorFactory& factory, const GrProcessor&) |
| : INHERITED (factory) {} |
| |
| virtual void emitCode(GrGLFullProgramBuilder* builder, |
| const GrGeometryProcessor& geometryProcessor, |
| const GrProcessorKey& key, |
| const char* outputColor, |
| const char* inputColor, |
| const TransformedCoordsArray&, |
| const TextureSamplerArray& samplers) SK_OVERRIDE { |
| const CircleEdgeEffect& circleEffect = geometryProcessor.cast<CircleEdgeEffect>(); |
| const char *vsName, *fsName; |
| builder->addVarying(kVec4f_GrSLType, "CircleEdge", &vsName, &fsName); |
| |
| GrGLVertexShaderBuilder* vsBuilder = builder->getVertexShaderBuilder();; |
| vsBuilder->codeAppendf("\t%s = %s;\n", vsName, circleEffect.inCircleEdge().c_str()); |
| |
| GrGLProcessorFragmentShaderBuilder* fsBuilder = builder->getFragmentShaderBuilder(); |
| fsBuilder->codeAppendf("\tfloat d = length(%s.xy);\n", fsName); |
| fsBuilder->codeAppendf("\tfloat edgeAlpha = clamp(%s.z - d, 0.0, 1.0);\n", fsName); |
| if (circleEffect.isStroked()) { |
| fsBuilder->codeAppendf("\tfloat innerAlpha = clamp(d - %s.w, 0.0, 1.0);\n", fsName); |
| fsBuilder->codeAppend("\tedgeAlpha *= innerAlpha;\n"); |
| } |
| |
| fsBuilder->codeAppendf("\t%s = %s;\n", outputColor, |
| (GrGLSLExpr4(inputColor) * GrGLSLExpr1("edgeAlpha")).c_str()); |
| } |
| |
| static void GenKey(const GrProcessor& processor, const GrGLCaps&, |
| GrProcessorKeyBuilder* b) { |
| const CircleEdgeEffect& circleEffect = processor.cast<CircleEdgeEffect>(); |
| b->add32(circleEffect.isStroked()); |
| } |
| |
| virtual void setData(const GrGLProgramDataManager&, const GrProcessor&) SK_OVERRIDE {} |
| |
| private: |
| typedef GrGLGeometryProcessor INHERITED; |
| }; |
| |
| |
| private: |
| CircleEdgeEffect(bool stroke) |
| : fInCircleEdge(this->addVertexAttrib( |
| GrShaderVar("inCircleEdge", |
| kVec4f_GrSLType, |
| GrShaderVar::kAttribute_TypeModifier))) { |
| fStroke = stroke; |
| } |
| |
| virtual bool onIsEqual(const GrProcessor& other) const SK_OVERRIDE { |
| const CircleEdgeEffect& cee = other.cast<CircleEdgeEffect>(); |
| return cee.fStroke == fStroke; |
| } |
| |
| const GrShaderVar& fInCircleEdge; |
| bool fStroke; |
| |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST; |
| |
| typedef GrGeometryProcessor INHERITED; |
| }; |
| |
| GR_DEFINE_GEOMETRY_PROCESSOR_TEST(CircleEdgeEffect); |
| |
| GrGeometryProcessor* CircleEdgeEffect::TestCreate(SkRandom* random, |
| GrContext* context, |
| const GrDrawTargetCaps&, |
| GrTexture* textures[]) { |
| return CircleEdgeEffect::Create(random->nextBool()); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * The output of this effect is a modulation of the input color and coverage for an axis-aligned |
| * ellipse, specified as a 2D offset from center, and the reciprocals of the outer and inner radii, |
| * in both x and y directions. |
| * |
| * We are using an implicit function of x^2/a^2 + y^2/b^2 - 1 = 0. |
| */ |
| |
| class EllipseEdgeEffect : public GrGeometryProcessor { |
| public: |
| static GrGeometryProcessor* Create(bool stroke) { |
| GR_CREATE_STATIC_GEOMETRY_PROCESSOR(gEllipseStrokeEdge, EllipseEdgeEffect, (true)); |
| GR_CREATE_STATIC_GEOMETRY_PROCESSOR(gEllipseFillEdge, EllipseEdgeEffect, (false)); |
| |
| if (stroke) { |
| gEllipseStrokeEdge->ref(); |
| return gEllipseStrokeEdge; |
| } else { |
| gEllipseFillEdge->ref(); |
| return gEllipseFillEdge; |
| } |
| } |
| |
| virtual void getConstantColorComponents(GrColor* color, |
| uint32_t* validFlags) const SK_OVERRIDE { |
| *validFlags = 0; |
| } |
| |
| virtual const GrBackendGeometryProcessorFactory& getFactory() const SK_OVERRIDE { |
| return GrTBackendGeometryProcessorFactory<EllipseEdgeEffect>::getInstance(); |
| } |
| |
| virtual ~EllipseEdgeEffect() {} |
| |
| static const char* Name() { return "EllipseEdge"; } |
| |
| const GrShaderVar& inEllipseOffset() const { return fInEllipseOffset; } |
| const GrShaderVar& inEllipseRadii() const { return fInEllipseRadii; } |
| |
| inline bool isStroked() const { return fStroke; } |
| |
| class GLProcessor : public GrGLGeometryProcessor { |
| public: |
| GLProcessor(const GrBackendProcessorFactory& factory, const GrProcessor&) |
| : INHERITED (factory) {} |
| |
| virtual void emitCode(GrGLFullProgramBuilder* builder, |
| const GrGeometryProcessor& geometryProcessor, |
| const GrProcessorKey& key, |
| const char* outputColor, |
| const char* inputColor, |
| const TransformedCoordsArray&, |
| const TextureSamplerArray& samplers) SK_OVERRIDE { |
| const EllipseEdgeEffect& ellipseEffect = geometryProcessor.cast<EllipseEdgeEffect>(); |
| |
| const char *vsOffsetName, *fsOffsetName; |
| const char *vsRadiiName, *fsRadiiName; |
| |
| builder->addVarying(kVec2f_GrSLType, "EllipseOffsets", &vsOffsetName, &fsOffsetName); |
| |
| GrGLVertexShaderBuilder* vsBuilder = builder->getVertexShaderBuilder(); |
| vsBuilder->codeAppendf("%s = %s;", vsOffsetName, |
| ellipseEffect.inEllipseOffset().c_str()); |
| |
| builder->addVarying(kVec4f_GrSLType, "EllipseRadii", &vsRadiiName, &fsRadiiName); |
| vsBuilder->codeAppendf("%s = %s;", vsRadiiName, ellipseEffect.inEllipseRadii().c_str()); |
| |
| // for outer curve |
| GrGLProcessorFragmentShaderBuilder* fsBuilder = builder->getFragmentShaderBuilder(); |
| fsBuilder->codeAppendf("\tvec2 scaledOffset = %s*%s.xy;\n", fsOffsetName, fsRadiiName); |
| fsBuilder->codeAppend("\tfloat test = dot(scaledOffset, scaledOffset) - 1.0;\n"); |
| fsBuilder->codeAppendf("\tvec2 grad = 2.0*scaledOffset*%s.xy;\n", fsRadiiName); |
| fsBuilder->codeAppend("\tfloat grad_dot = dot(grad, grad);\n"); |
| // avoid calling inversesqrt on zero. |
| fsBuilder->codeAppend("\tgrad_dot = max(grad_dot, 1.0e-4);\n"); |
| fsBuilder->codeAppend("\tfloat invlen = inversesqrt(grad_dot);\n"); |
| fsBuilder->codeAppend("\tfloat edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);\n"); |
| |
| // for inner curve |
| if (ellipseEffect.isStroked()) { |
| fsBuilder->codeAppendf("\tscaledOffset = %s*%s.zw;\n", fsOffsetName, fsRadiiName); |
| fsBuilder->codeAppend("\ttest = dot(scaledOffset, scaledOffset) - 1.0;\n"); |
| fsBuilder->codeAppendf("\tgrad = 2.0*scaledOffset*%s.zw;\n", fsRadiiName); |
| fsBuilder->codeAppend("\tinvlen = inversesqrt(dot(grad, grad));\n"); |
| fsBuilder->codeAppend("\tedgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);\n"); |
| } |
| |
| fsBuilder->codeAppendf("\t%s = %s;\n", outputColor, |
| (GrGLSLExpr4(inputColor) * GrGLSLExpr1("edgeAlpha")).c_str()); |
| } |
| |
| static void GenKey(const GrProcessor& processor, const GrGLCaps&, |
| GrProcessorKeyBuilder* b) { |
| const EllipseEdgeEffect& ellipseEffect = processor.cast<EllipseEdgeEffect>(); |
| b->add32(ellipseEffect.isStroked()); |
| } |
| |
| virtual void setData(const GrGLProgramDataManager&, const GrProcessor&) SK_OVERRIDE { |
| } |
| |
| private: |
| typedef GrGLGeometryProcessor INHERITED; |
| }; |
| |
| private: |
| EllipseEdgeEffect(bool stroke) |
| : fInEllipseOffset(this->addVertexAttrib( |
| GrShaderVar("inEllipseOffset", |
| kVec2f_GrSLType, |
| GrShaderVar::kAttribute_TypeModifier))) |
| , fInEllipseRadii(this->addVertexAttrib( |
| GrShaderVar("inEllipseRadii", |
| kVec4f_GrSLType, |
| GrShaderVar::kAttribute_TypeModifier))) { |
| fStroke = stroke; |
| } |
| |
| virtual bool onIsEqual(const GrProcessor& other) const SK_OVERRIDE { |
| const EllipseEdgeEffect& eee = other.cast<EllipseEdgeEffect>(); |
| return eee.fStroke == fStroke; |
| } |
| |
| const GrShaderVar& fInEllipseOffset; |
| const GrShaderVar& fInEllipseRadii; |
| bool fStroke; |
| |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST; |
| |
| typedef GrGeometryProcessor INHERITED; |
| }; |
| |
| GR_DEFINE_GEOMETRY_PROCESSOR_TEST(EllipseEdgeEffect); |
| |
| GrGeometryProcessor* EllipseEdgeEffect::TestCreate(SkRandom* random, |
| GrContext* context, |
| const GrDrawTargetCaps&, |
| GrTexture* textures[]) { |
| return EllipseEdgeEffect::Create(random->nextBool()); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * The output of this effect is a modulation of the input color and coverage for an ellipse, |
| * specified as a 2D offset from center for both the outer and inner paths (if stroked). The |
| * implict equation used is for a unit circle (x^2 + y^2 - 1 = 0) and the edge corrected by |
| * using differentials. |
| * |
| * The result is device-independent and can be used with any affine matrix. |
| */ |
| |
| class DIEllipseEdgeEffect : public GrGeometryProcessor { |
| public: |
| enum Mode { kStroke = 0, kHairline, kFill }; |
| |
| static GrGeometryProcessor* Create(Mode mode) { |
| GR_CREATE_STATIC_GEOMETRY_PROCESSOR(gEllipseStrokeEdge, DIEllipseEdgeEffect, (kStroke)); |
| GR_CREATE_STATIC_GEOMETRY_PROCESSOR(gEllipseHairlineEdge, DIEllipseEdgeEffect, (kHairline)); |
| GR_CREATE_STATIC_GEOMETRY_PROCESSOR(gEllipseFillEdge, DIEllipseEdgeEffect, (kFill)); |
| |
| if (kStroke == mode) { |
| gEllipseStrokeEdge->ref(); |
| return gEllipseStrokeEdge; |
| } else if (kHairline == mode) { |
| gEllipseHairlineEdge->ref(); |
| return gEllipseHairlineEdge; |
| } else { |
| gEllipseFillEdge->ref(); |
| return gEllipseFillEdge; |
| } |
| } |
| |
| virtual void getConstantColorComponents(GrColor* color, |
| uint32_t* validFlags) const SK_OVERRIDE { |
| *validFlags = 0; |
| } |
| |
| virtual const GrBackendGeometryProcessorFactory& getFactory() const SK_OVERRIDE { |
| return GrTBackendGeometryProcessorFactory<DIEllipseEdgeEffect>::getInstance(); |
| } |
| |
| virtual ~DIEllipseEdgeEffect() {} |
| |
| static const char* Name() { return "DIEllipseEdge"; } |
| |
| const GrShaderVar& inEllipseOffsets0() const { return fInEllipseOffsets0; } |
| const GrShaderVar& inEllipseOffsets1() const { return fInEllipseOffsets1; } |
| |
| inline Mode getMode() const { return fMode; } |
| |
| class GLProcessor : public GrGLGeometryProcessor { |
| public: |
| GLProcessor(const GrBackendProcessorFactory& factory, const GrProcessor&) |
| : INHERITED (factory) {} |
| |
| virtual void emitCode(GrGLFullProgramBuilder* builder, |
| const GrGeometryProcessor& geometryProcessor, |
| const GrProcessorKey& key, |
| const char* outputColor, |
| const char* inputColor, |
| const TransformedCoordsArray&, |
| const TextureSamplerArray& samplers) SK_OVERRIDE { |
| const DIEllipseEdgeEffect& ellipseEffect = |
| geometryProcessor.cast<DIEllipseEdgeEffect>(); |
| |
| const char *vsOffsetName0, *fsOffsetName0; |
| builder->addVarying(kVec2f_GrSLType, "EllipseOffsets0", |
| &vsOffsetName0, &fsOffsetName0); |
| |
| GrGLVertexShaderBuilder* vsBuilder = builder->getVertexShaderBuilder(); |
| vsBuilder->codeAppendf("%s = %s;", vsOffsetName0, |
| ellipseEffect.inEllipseOffsets0().c_str()); |
| const char *vsOffsetName1, *fsOffsetName1; |
| builder->addVarying(kVec2f_GrSLType, "EllipseOffsets1", |
| &vsOffsetName1, &fsOffsetName1); |
| vsBuilder->codeAppendf("\t%s = %s;\n", vsOffsetName1, |
| ellipseEffect.inEllipseOffsets1().c_str()); |
| |
| GrGLProcessorFragmentShaderBuilder* fsBuilder = builder->getFragmentShaderBuilder(); |
| SkAssertResult(fsBuilder->enableFeature( |
| GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); |
| // for outer curve |
| fsBuilder->codeAppendf("\tvec2 scaledOffset = %s.xy;\n", fsOffsetName0); |
| fsBuilder->codeAppend("\tfloat test = dot(scaledOffset, scaledOffset) - 1.0;\n"); |
| fsBuilder->codeAppendf("\tvec2 duvdx = dFdx(%s);\n", fsOffsetName0); |
| fsBuilder->codeAppendf("\tvec2 duvdy = dFdy(%s);\n", fsOffsetName0); |
| fsBuilder->codeAppendf("\tvec2 grad = vec2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y,\n" |
| "\t 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);\n", |
| fsOffsetName0, fsOffsetName0, fsOffsetName0, fsOffsetName0); |
| |
| fsBuilder->codeAppend("\tfloat grad_dot = dot(grad, grad);\n"); |
| // avoid calling inversesqrt on zero. |
| fsBuilder->codeAppend("\tgrad_dot = max(grad_dot, 1.0e-4);\n"); |
| fsBuilder->codeAppend("\tfloat invlen = inversesqrt(grad_dot);\n"); |
| if (kHairline == ellipseEffect.getMode()) { |
| // can probably do this with one step |
| fsBuilder->codeAppend("\tfloat edgeAlpha = clamp(1.0-test*invlen, 0.0, 1.0);\n"); |
| fsBuilder->codeAppend("\tedgeAlpha *= clamp(1.0+test*invlen, 0.0, 1.0);\n"); |
| } else { |
| fsBuilder->codeAppend("\tfloat edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);\n"); |
| } |
| |
| // for inner curve |
| if (kStroke == ellipseEffect.getMode()) { |
| fsBuilder->codeAppendf("\tscaledOffset = %s.xy;\n", fsOffsetName1); |
| fsBuilder->codeAppend("\ttest = dot(scaledOffset, scaledOffset) - 1.0;\n"); |
| fsBuilder->codeAppendf("\tduvdx = dFdx(%s);\n", fsOffsetName1); |
| fsBuilder->codeAppendf("\tduvdy = dFdy(%s);\n", fsOffsetName1); |
| fsBuilder->codeAppendf("\tgrad = vec2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y,\n" |
| "\t 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);\n", |
| fsOffsetName1, fsOffsetName1, fsOffsetName1, fsOffsetName1); |
| fsBuilder->codeAppend("\tinvlen = inversesqrt(dot(grad, grad));\n"); |
| fsBuilder->codeAppend("\tedgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);\n"); |
| } |
| |
| fsBuilder->codeAppendf("\t%s = %s;\n", outputColor, |
| (GrGLSLExpr4(inputColor) * GrGLSLExpr1("edgeAlpha")).c_str()); |
| } |
| |
| static void GenKey(const GrProcessor& processor, const GrGLCaps&, |
| GrProcessorKeyBuilder* b) { |
| const DIEllipseEdgeEffect& ellipseEffect = processor.cast<DIEllipseEdgeEffect>(); |
| |
| b->add32(ellipseEffect.getMode()); |
| } |
| |
| virtual void setData(const GrGLProgramDataManager&, const GrProcessor&) SK_OVERRIDE { |
| } |
| |
| private: |
| typedef GrGLGeometryProcessor INHERITED; |
| }; |
| |
| private: |
| DIEllipseEdgeEffect(Mode mode) |
| : fInEllipseOffsets0(this->addVertexAttrib( |
| GrShaderVar("inEllipseOffsets0", |
| kVec2f_GrSLType, |
| GrShaderVar::kAttribute_TypeModifier))) |
| , fInEllipseOffsets1(this->addVertexAttrib( |
| GrShaderVar("inEllipseOffsets1", |
| kVec2f_GrSLType, |
| GrShaderVar::kAttribute_TypeModifier))) { |
| fMode = mode; |
| } |
| |
| virtual bool onIsEqual(const GrProcessor& other) const SK_OVERRIDE { |
| const DIEllipseEdgeEffect& eee = other.cast<DIEllipseEdgeEffect>(); |
| return eee.fMode == fMode; |
| } |
| |
| const GrShaderVar& fInEllipseOffsets0; |
| const GrShaderVar& fInEllipseOffsets1; |
| Mode fMode; |
| |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST; |
| |
| typedef GrGeometryProcessor INHERITED; |
| }; |
| |
| GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DIEllipseEdgeEffect); |
| |
| GrGeometryProcessor* DIEllipseEdgeEffect::TestCreate(SkRandom* random, |
| GrContext* context, |
| const GrDrawTargetCaps&, |
| GrTexture* textures[]) { |
| return DIEllipseEdgeEffect::Create((Mode)(random->nextRangeU(0,2))); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void GrOvalRenderer::reset() { |
| SkSafeSetNull(fRRectIndexBuffer); |
| } |
| |
| bool GrOvalRenderer::drawOval(GrDrawTarget* target, const GrContext* context, bool useAA, |
| const SkRect& oval, const SkStrokeRec& stroke) |
| { |
| bool useCoverageAA = useAA && |
| !target->getDrawState().getRenderTarget()->isMultisampled() && |
| !target->shouldDisableCoverageAAForBlend(); |
| |
| if (!useCoverageAA) { |
| return false; |
| } |
| |
| const SkMatrix& vm = context->getMatrix(); |
| |
| // we can draw circles |
| if (SkScalarNearlyEqual(oval.width(), oval.height()) |
| && circle_stays_circle(vm)) { |
| this->drawCircle(target, useCoverageAA, oval, stroke); |
| // if we have shader derivative support, render as device-independent |
| } else if (target->caps()->shaderDerivativeSupport()) { |
| return this->drawDIEllipse(target, useCoverageAA, oval, stroke); |
| // otherwise axis-aligned ellipses only |
| } else if (vm.rectStaysRect()) { |
| return this->drawEllipse(target, useCoverageAA, oval, stroke); |
| } else { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // position + edge |
| extern const GrVertexAttrib gCircleVertexAttribs[] = { |
| {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, |
| {kVec4f_GrVertexAttribType, sizeof(SkPoint), kGeometryProcessor_GrVertexAttribBinding} |
| }; |
| |
| void GrOvalRenderer::drawCircle(GrDrawTarget* target, |
| bool useCoverageAA, |
| const SkRect& circle, |
| const SkStrokeRec& stroke) |
| { |
| GrDrawState* drawState = target->drawState(); |
| |
| const SkMatrix& vm = drawState->getViewMatrix(); |
| SkPoint center = SkPoint::Make(circle.centerX(), circle.centerY()); |
| vm.mapPoints(¢er, 1); |
| SkScalar radius = vm.mapRadius(SkScalarHalf(circle.width())); |
| SkScalar strokeWidth = vm.mapRadius(stroke.getWidth()); |
| |
| GrDrawState::AutoViewMatrixRestore avmr; |
| if (!avmr.setIdentity(drawState)) { |
| return; |
| } |
| |
| drawState->setVertexAttribs<gCircleVertexAttribs>(SK_ARRAY_COUNT(gCircleVertexAttribs), |
| sizeof(CircleVertex)); |
| |
| GrDrawTarget::AutoReleaseGeometry geo(target, 4, 0); |
| if (!geo.succeeded()) { |
| GrPrintf("Failed to get space for vertices!\n"); |
| return; |
| } |
| |
| CircleVertex* verts = reinterpret_cast<CircleVertex*>(geo.vertices()); |
| |
| SkStrokeRec::Style style = stroke.getStyle(); |
| bool isStrokeOnly = SkStrokeRec::kStroke_Style == style || |
| SkStrokeRec::kHairline_Style == style; |
| bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; |
| |
| SkScalar innerRadius = 0.0f; |
| SkScalar outerRadius = radius; |
| SkScalar halfWidth = 0; |
| if (hasStroke) { |
| if (SkScalarNearlyZero(strokeWidth)) { |
| halfWidth = SK_ScalarHalf; |
| } else { |
| halfWidth = SkScalarHalf(strokeWidth); |
| } |
| |
| outerRadius += halfWidth; |
| if (isStrokeOnly) { |
| innerRadius = radius - halfWidth; |
| } |
| } |
| |
| GrGeometryProcessor* gp = CircleEdgeEffect::Create(isStrokeOnly && innerRadius > 0); |
| drawState->setGeometryProcessor(gp)->unref(); |
| |
| // The radii are outset for two reasons. First, it allows the shader to simply perform |
| // clamp(distance-to-center - radius, 0, 1). Second, the outer radius is used to compute the |
| // verts of the bounding box that is rendered and the outset ensures the box will cover all |
| // pixels partially covered by the circle. |
| outerRadius += SK_ScalarHalf; |
| innerRadius -= SK_ScalarHalf; |
| |
| SkRect bounds = SkRect::MakeLTRB( |
| center.fX - outerRadius, |
| center.fY - outerRadius, |
| center.fX + outerRadius, |
| center.fY + outerRadius |
| ); |
| |
| verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); |
| verts[0].fOffset = SkPoint::Make(-outerRadius, -outerRadius); |
| verts[0].fOuterRadius = outerRadius; |
| verts[0].fInnerRadius = innerRadius; |
| |
| verts[1].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); |
| verts[1].fOffset = SkPoint::Make(outerRadius, -outerRadius); |
| verts[1].fOuterRadius = outerRadius; |
| verts[1].fInnerRadius = innerRadius; |
| |
| verts[2].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); |
| verts[2].fOffset = SkPoint::Make(-outerRadius, outerRadius); |
| verts[2].fOuterRadius = outerRadius; |
| verts[2].fInnerRadius = innerRadius; |
| |
| verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); |
| verts[3].fOffset = SkPoint::Make(outerRadius, outerRadius); |
| verts[3].fOuterRadius = outerRadius; |
| verts[3].fInnerRadius = innerRadius; |
| |
| target->drawNonIndexed(kTriangleStrip_GrPrimitiveType, 0, 4, &bounds); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // position + offset + 1/radii |
| extern const GrVertexAttrib gEllipseVertexAttribs[] = { |
| {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, |
| {kVec2f_GrVertexAttribType, sizeof(SkPoint), kGeometryProcessor_GrVertexAttribBinding}, |
| {kVec4f_GrVertexAttribType, 2*sizeof(SkPoint), kGeometryProcessor_GrVertexAttribBinding} |
| }; |
| |
| // position + offsets |
| extern const GrVertexAttrib gDIEllipseVertexAttribs[] = { |
| {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, |
| {kVec2f_GrVertexAttribType, sizeof(SkPoint), kGeometryProcessor_GrVertexAttribBinding}, |
| {kVec2f_GrVertexAttribType, 2*sizeof(SkPoint), kGeometryProcessor_GrVertexAttribBinding}, |
| }; |
| |
| bool GrOvalRenderer::drawEllipse(GrDrawTarget* target, |
| bool useCoverageAA, |
| const SkRect& ellipse, |
| const SkStrokeRec& stroke) |
| { |
| GrDrawState* drawState = target->drawState(); |
| #ifdef SK_DEBUG |
| { |
| // we should have checked for this previously |
| bool isAxisAlignedEllipse = drawState->getViewMatrix().rectStaysRect(); |
| SkASSERT(useCoverageAA && isAxisAlignedEllipse); |
| } |
| #endif |
| |
| // do any matrix crunching before we reset the draw state for device coords |
| const SkMatrix& vm = drawState->getViewMatrix(); |
| SkPoint center = SkPoint::Make(ellipse.centerX(), ellipse.centerY()); |
| vm.mapPoints(¢er, 1); |
| SkScalar ellipseXRadius = SkScalarHalf(ellipse.width()); |
| SkScalar ellipseYRadius = SkScalarHalf(ellipse.height()); |
| SkScalar xRadius = SkScalarAbs(vm[SkMatrix::kMScaleX]*ellipseXRadius + |
| vm[SkMatrix::kMSkewY]*ellipseYRadius); |
| SkScalar yRadius = SkScalarAbs(vm[SkMatrix::kMSkewX]*ellipseXRadius + |
| vm[SkMatrix::kMScaleY]*ellipseYRadius); |
| |
| // do (potentially) anisotropic mapping of stroke |
| SkVector scaledStroke; |
| SkScalar strokeWidth = stroke.getWidth(); |
| scaledStroke.fX = SkScalarAbs(strokeWidth*(vm[SkMatrix::kMScaleX] + vm[SkMatrix::kMSkewY])); |
| scaledStroke.fY = SkScalarAbs(strokeWidth*(vm[SkMatrix::kMSkewX] + vm[SkMatrix::kMScaleY])); |
| |
| SkStrokeRec::Style style = stroke.getStyle(); |
| bool isStrokeOnly = SkStrokeRec::kStroke_Style == style || |
| SkStrokeRec::kHairline_Style == style; |
| bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; |
| |
| SkScalar innerXRadius = 0; |
| SkScalar innerYRadius = 0; |
| if (hasStroke) { |
| if (SkScalarNearlyZero(scaledStroke.length())) { |
| scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf); |
| } else { |
| scaledStroke.scale(SK_ScalarHalf); |
| } |
| |
| // we only handle thick strokes for near-circular ellipses |
| if (scaledStroke.length() > SK_ScalarHalf && |
| (SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) { |
| return false; |
| } |
| |
| // we don't handle it if curvature of the stroke is less than curvature of the ellipse |
| if (scaledStroke.fX*(yRadius*yRadius) < (scaledStroke.fY*scaledStroke.fY)*xRadius || |
| scaledStroke.fY*(xRadius*xRadius) < (scaledStroke.fX*scaledStroke.fX)*yRadius) { |
| return false; |
| } |
| |
| // this is legit only if scale & translation (which should be the case at the moment) |
| if (isStrokeOnly) { |
| innerXRadius = xRadius - scaledStroke.fX; |
| innerYRadius = yRadius - scaledStroke.fY; |
| } |
| |
| xRadius += scaledStroke.fX; |
| yRadius += scaledStroke.fY; |
| } |
| |
| GrDrawState::AutoViewMatrixRestore avmr; |
| if (!avmr.setIdentity(drawState)) { |
| return false; |
| } |
| |
| drawState->setVertexAttribs<gEllipseVertexAttribs>(SK_ARRAY_COUNT(gEllipseVertexAttribs), |
| sizeof(EllipseVertex)); |
| |
| GrDrawTarget::AutoReleaseGeometry geo(target, 4, 0); |
| if (!geo.succeeded()) { |
| GrPrintf("Failed to get space for vertices!\n"); |
| return false; |
| } |
| |
| EllipseVertex* verts = reinterpret_cast<EllipseVertex*>(geo.vertices()); |
| |
| GrGeometryProcessor* gp = EllipseEdgeEffect::Create(isStrokeOnly && |
| innerXRadius > 0 && innerYRadius > 0); |
| |
| drawState->setGeometryProcessor(gp)->unref(); |
| |
| // Compute the reciprocals of the radii here to save time in the shader |
| SkScalar xRadRecip = SkScalarInvert(xRadius); |
| SkScalar yRadRecip = SkScalarInvert(yRadius); |
| SkScalar xInnerRadRecip = SkScalarInvert(innerXRadius); |
| SkScalar yInnerRadRecip = SkScalarInvert(innerYRadius); |
| |
| // We've extended the outer x radius out half a pixel to antialias. |
| // This will also expand the rect so all the pixels will be captured. |
| // TODO: Consider if we should use sqrt(2)/2 instead |
| xRadius += SK_ScalarHalf; |
| yRadius += SK_ScalarHalf; |
| |
| SkRect bounds = SkRect::MakeLTRB( |
| center.fX - xRadius, |
| center.fY - yRadius, |
| center.fX + xRadius, |
| center.fY + yRadius |
| ); |
| |
| verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); |
| verts[0].fOffset = SkPoint::Make(-xRadius, -yRadius); |
| verts[0].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts[0].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| |
| verts[1].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); |
| verts[1].fOffset = SkPoint::Make(xRadius, -yRadius); |
| verts[1].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts[1].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| |
| verts[2].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); |
| verts[2].fOffset = SkPoint::Make(-xRadius, yRadius); |
| verts[2].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts[2].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| |
| verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); |
| verts[3].fOffset = SkPoint::Make(xRadius, yRadius); |
| verts[3].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts[3].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| |
| target->drawNonIndexed(kTriangleStrip_GrPrimitiveType, 0, 4, &bounds); |
| |
| return true; |
| } |
| |
| bool GrOvalRenderer::drawDIEllipse(GrDrawTarget* target, |
| bool useCoverageAA, |
| const SkRect& ellipse, |
| const SkStrokeRec& stroke) |
| { |
| GrDrawState* drawState = target->drawState(); |
| const SkMatrix& vm = drawState->getViewMatrix(); |
| |
| SkPoint center = SkPoint::Make(ellipse.centerX(), ellipse.centerY()); |
| SkScalar xRadius = SkScalarHalf(ellipse.width()); |
| SkScalar yRadius = SkScalarHalf(ellipse.height()); |
| |
| SkStrokeRec::Style style = stroke.getStyle(); |
| DIEllipseEdgeEffect::Mode mode = (SkStrokeRec::kStroke_Style == style) ? |
| DIEllipseEdgeEffect::kStroke : |
| (SkStrokeRec::kHairline_Style == style) ? |
| DIEllipseEdgeEffect::kHairline : DIEllipseEdgeEffect::kFill; |
| |
| SkScalar innerXRadius = 0; |
| SkScalar innerYRadius = 0; |
| if (SkStrokeRec::kFill_Style != style && SkStrokeRec::kHairline_Style != style) { |
| SkScalar strokeWidth = stroke.getWidth(); |
| |
| if (SkScalarNearlyZero(strokeWidth)) { |
| strokeWidth = SK_ScalarHalf; |
| } else { |
| strokeWidth *= SK_ScalarHalf; |
| } |
| |
| // we only handle thick strokes for near-circular ellipses |
| if (strokeWidth > SK_ScalarHalf && |
| (SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) { |
| return false; |
| } |
| |
| // we don't handle it if curvature of the stroke is less than curvature of the ellipse |
| if (strokeWidth*(yRadius*yRadius) < (strokeWidth*strokeWidth)*xRadius || |
| strokeWidth*(xRadius*xRadius) < (strokeWidth*strokeWidth)*yRadius) { |
| return false; |
| } |
| |
| // set inner radius (if needed) |
| if (SkStrokeRec::kStroke_Style == style) { |
| innerXRadius = xRadius - strokeWidth; |
| innerYRadius = yRadius - strokeWidth; |
| } |
| |
| xRadius += strokeWidth; |
| yRadius += strokeWidth; |
| } |
| if (DIEllipseEdgeEffect::kStroke == mode) { |
| mode = (innerXRadius > 0 && innerYRadius > 0) ? DIEllipseEdgeEffect::kStroke : |
| DIEllipseEdgeEffect::kFill; |
| } |
| SkScalar innerRatioX = SkScalarDiv(xRadius, innerXRadius); |
| SkScalar innerRatioY = SkScalarDiv(yRadius, innerYRadius); |
| |
| drawState->setVertexAttribs<gDIEllipseVertexAttribs>(SK_ARRAY_COUNT(gDIEllipseVertexAttribs), |
| sizeof(DIEllipseVertex)); |
| |
| GrDrawTarget::AutoReleaseGeometry geo(target, 4, 0); |
| if (!geo.succeeded()) { |
| GrPrintf("Failed to get space for vertices!\n"); |
| return false; |
| } |
| |
| DIEllipseVertex* verts = reinterpret_cast<DIEllipseVertex*>(geo.vertices()); |
| |
| GrGeometryProcessor* gp = DIEllipseEdgeEffect::Create(mode); |
| |
| drawState->setGeometryProcessor(gp)->unref(); |
| |
| // This expands the outer rect so that after CTM we end up with a half-pixel border |
| SkScalar a = vm[SkMatrix::kMScaleX]; |
| SkScalar b = vm[SkMatrix::kMSkewX]; |
| SkScalar c = vm[SkMatrix::kMSkewY]; |
| SkScalar d = vm[SkMatrix::kMScaleY]; |
| SkScalar geoDx = SkScalarDiv(SK_ScalarHalf, SkScalarSqrt(a*a + c*c)); |
| SkScalar geoDy = SkScalarDiv(SK_ScalarHalf, SkScalarSqrt(b*b + d*d)); |
| // This adjusts the "radius" to include the half-pixel border |
| SkScalar offsetDx = SkScalarDiv(geoDx, xRadius); |
| SkScalar offsetDy = SkScalarDiv(geoDy, yRadius); |
| |
| SkRect bounds = SkRect::MakeLTRB( |
| center.fX - xRadius - geoDx, |
| center.fY - yRadius - geoDy, |
| center.fX + xRadius + geoDx, |
| center.fY + yRadius + geoDy |
| ); |
| |
| verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); |
| verts[0].fOuterOffset = SkPoint::Make(-1.0f - offsetDx, -1.0f - offsetDy); |
| verts[0].fInnerOffset = SkPoint::Make(-innerRatioX - offsetDx, -innerRatioY - offsetDy); |
| |
| verts[1].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); |
| verts[1].fOuterOffset = SkPoint::Make(1.0f + offsetDx, -1.0f - offsetDy); |
| verts[1].fInnerOffset = SkPoint::Make(innerRatioX + offsetDx, -innerRatioY - offsetDy); |
| |
| verts[2].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); |
| verts[2].fOuterOffset = SkPoint::Make(-1.0f - offsetDx, 1.0f + offsetDy); |
| verts[2].fInnerOffset = SkPoint::Make(-innerRatioX - offsetDx, innerRatioY + offsetDy); |
| |
| verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); |
| verts[3].fOuterOffset = SkPoint::Make(1.0f + offsetDx, 1.0f + offsetDy); |
| verts[3].fInnerOffset = SkPoint::Make(innerRatioX + offsetDx, innerRatioY + offsetDy); |
| |
| target->drawNonIndexed(kTriangleStrip_GrPrimitiveType, 0, 4, &bounds); |
| |
| return true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static const uint16_t gRRectIndices[] = { |
| // corners |
| 0, 1, 5, 0, 5, 4, |
| 2, 3, 7, 2, 7, 6, |
| 8, 9, 13, 8, 13, 12, |
| 10, 11, 15, 10, 15, 14, |
| |
| // edges |
| 1, 2, 6, 1, 6, 5, |
| 4, 5, 9, 4, 9, 8, |
| 6, 7, 11, 6, 11, 10, |
| 9, 10, 14, 9, 14, 13, |
| |
| // center |
| // we place this at the end so that we can ignore these indices when rendering stroke-only |
| 5, 6, 10, 5, 10, 9 |
| }; |
| |
| |
| GrIndexBuffer* GrOvalRenderer::rRectIndexBuffer(GrGpu* gpu) { |
| if (NULL == fRRectIndexBuffer) { |
| fRRectIndexBuffer = |
| gpu->createIndexBuffer(sizeof(gRRectIndices), false); |
| if (fRRectIndexBuffer) { |
| #ifdef SK_DEBUG |
| bool updated = |
| #endif |
| fRRectIndexBuffer->updateData(gRRectIndices, |
| sizeof(gRRectIndices)); |
| GR_DEBUGASSERT(updated); |
| } |
| } |
| return fRRectIndexBuffer; |
| } |
| |
| bool GrOvalRenderer::drawDRRect(GrDrawTarget* target, GrContext* context, bool useAA, |
| const SkRRect& origOuter, const SkRRect& origInner) { |
| bool applyAA = useAA && |
| !target->getDrawState().getRenderTarget()->isMultisampled() && |
| !target->shouldDisableCoverageAAForBlend(); |
| GrDrawState::AutoRestoreEffects are; |
| if (!origInner.isEmpty()) { |
| SkTCopyOnFirstWrite<SkRRect> inner(origInner); |
| if (!context->getMatrix().isIdentity()) { |
| if (!origInner.transform(context->getMatrix(), inner.writable())) { |
| return false; |
| } |
| } |
| GrPrimitiveEdgeType edgeType = applyAA ? |
| kInverseFillAA_GrProcessorEdgeType : |
| kInverseFillBW_GrProcessorEdgeType; |
| GrFragmentProcessor* fp = GrRRectEffect::Create(edgeType, *inner); |
| if (NULL == fp) { |
| return false; |
| } |
| are.set(target->drawState()); |
| target->drawState()->addCoverageProcessor(fp)->unref(); |
| } |
| |
| SkStrokeRec fillRec(SkStrokeRec::kFill_InitStyle); |
| if (this->drawRRect(target, context, useAA, origOuter, fillRec)) { |
| return true; |
| } |
| |
| SkASSERT(!origOuter.isEmpty()); |
| SkTCopyOnFirstWrite<SkRRect> outer(origOuter); |
| if (!context->getMatrix().isIdentity()) { |
| if (!origOuter.transform(context->getMatrix(), outer.writable())) { |
| return false; |
| } |
| } |
| GrPrimitiveEdgeType edgeType = applyAA ? kFillAA_GrProcessorEdgeType : |
| kFillBW_GrProcessorEdgeType; |
| GrFragmentProcessor* effect = GrRRectEffect::Create(edgeType, *outer); |
| if (NULL == effect) { |
| return false; |
| } |
| if (!are.isSet()) { |
| are.set(target->drawState()); |
| } |
| GrDrawState::AutoViewMatrixRestore avmr; |
| if (!avmr.setIdentity(target->drawState())) { |
| return false; |
| } |
| target->drawState()->addCoverageProcessor(effect)->unref(); |
| SkRect bounds = outer->getBounds(); |
| if (applyAA) { |
| bounds.outset(SK_ScalarHalf, SK_ScalarHalf); |
| } |
| target->drawRect(bounds, NULL, NULL); |
| return true; |
| } |
| |
| bool GrOvalRenderer::drawRRect(GrDrawTarget* target, GrContext* context, bool useAA, |
| const SkRRect& rrect, const SkStrokeRec& stroke) { |
| if (rrect.isOval()) { |
| return this->drawOval(target, context, useAA, rrect.getBounds(), stroke); |
| } |
| |
| bool useCoverageAA = useAA && |
| !target->getDrawState().getRenderTarget()->isMultisampled() && |
| !target->shouldDisableCoverageAAForBlend(); |
| |
| // only anti-aliased rrects for now |
| if (!useCoverageAA) { |
| return false; |
| } |
| |
| const SkMatrix& vm = context->getMatrix(); |
| |
| if (!vm.rectStaysRect() || !rrect.isSimple()) { |
| return false; |
| } |
| |
| // do any matrix crunching before we reset the draw state for device coords |
| const SkRect& rrectBounds = rrect.getBounds(); |
| SkRect bounds; |
| vm.mapRect(&bounds, rrectBounds); |
| |
| SkVector radii = rrect.getSimpleRadii(); |
| SkScalar xRadius = SkScalarAbs(vm[SkMatrix::kMScaleX]*radii.fX + |
| vm[SkMatrix::kMSkewY]*radii.fY); |
| SkScalar yRadius = SkScalarAbs(vm[SkMatrix::kMSkewX]*radii.fX + |
| vm[SkMatrix::kMScaleY]*radii.fY); |
| |
| SkStrokeRec::Style style = stroke.getStyle(); |
| |
| // do (potentially) anisotropic mapping of stroke |
| SkVector scaledStroke; |
| SkScalar strokeWidth = stroke.getWidth(); |
| |
| bool isStrokeOnly = SkStrokeRec::kStroke_Style == style || |
| SkStrokeRec::kHairline_Style == style; |
| bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; |
| |
| if (hasStroke) { |
| if (SkStrokeRec::kHairline_Style == style) { |
| scaledStroke.set(1, 1); |
| } else { |
| scaledStroke.fX = SkScalarAbs(strokeWidth*(vm[SkMatrix::kMScaleX] + |
| vm[SkMatrix::kMSkewY])); |
| scaledStroke.fY = SkScalarAbs(strokeWidth*(vm[SkMatrix::kMSkewX] + |
| vm[SkMatrix::kMScaleY])); |
| } |
| |
| // if half of strokewidth is greater than radius, we don't handle that right now |
| if (SK_ScalarHalf*scaledStroke.fX > xRadius || SK_ScalarHalf*scaledStroke.fY > yRadius) { |
| return false; |
| } |
| } |
| |
| // The way the effect interpolates the offset-to-ellipse/circle-center attribute only works on |
| // the interior of the rrect if the radii are >= 0.5. Otherwise, the inner rect of the nine- |
| // patch will have fractional coverage. This only matters when the interior is actually filled. |
| // We could consider falling back to rect rendering here, since a tiny radius is |
| // indistinguishable from a square corner. |
| if (!isStrokeOnly && (SK_ScalarHalf > xRadius || SK_ScalarHalf > yRadius)) { |
| return false; |
| } |
| |
| // reset to device coordinates |
| GrDrawState* drawState = target->drawState(); |
| GrDrawState::AutoViewMatrixRestore avmr; |
| if (!avmr.setIdentity(drawState)) { |
| return false; |
| } |
| |
| GrIndexBuffer* indexBuffer = this->rRectIndexBuffer(context->getGpu()); |
| if (NULL == indexBuffer) { |
| GrPrintf("Failed to create index buffer!\n"); |
| return false; |
| } |
| |
| // if the corners are circles, use the circle renderer |
| if ((!hasStroke || scaledStroke.fX == scaledStroke.fY) && xRadius == yRadius) { |
| drawState->setVertexAttribs<gCircleVertexAttribs>(SK_ARRAY_COUNT(gCircleVertexAttribs), |
| sizeof(CircleVertex)); |
| |
| GrDrawTarget::AutoReleaseGeometry geo(target, 16, 0); |
| if (!geo.succeeded()) { |
| GrPrintf("Failed to get space for vertices!\n"); |
| return false; |
| } |
| CircleVertex* verts = reinterpret_cast<CircleVertex*>(geo.vertices()); |
| |
| SkScalar innerRadius = 0.0f; |
| SkScalar outerRadius = xRadius; |
| SkScalar halfWidth = 0; |
| if (hasStroke) { |
| if (SkScalarNearlyZero(scaledStroke.fX)) { |
| halfWidth = SK_ScalarHalf; |
| } else { |
| halfWidth = SkScalarHalf(scaledStroke.fX); |
| } |
| |
| if (isStrokeOnly) { |
| innerRadius = xRadius - halfWidth; |
| } |
| outerRadius += halfWidth; |
| bounds.outset(halfWidth, halfWidth); |
| } |
| |
| isStrokeOnly = (isStrokeOnly && innerRadius >= 0); |
| |
| GrGeometryProcessor* effect = CircleEdgeEffect::Create(isStrokeOnly); |
| drawState->setGeometryProcessor(effect)->unref(); |
| |
| // The radii are outset for two reasons. First, it allows the shader to simply perform |
| // clamp(distance-to-center - radius, 0, 1). Second, the outer radius is used to compute the |
| // verts of the bounding box that is rendered and the outset ensures the box will cover all |
| // pixels partially covered by the circle. |
| outerRadius += SK_ScalarHalf; |
| innerRadius -= SK_ScalarHalf; |
| |
| // Expand the rect so all the pixels will be captured. |
| bounds.outset(SK_ScalarHalf, SK_ScalarHalf); |
| |
| SkScalar yCoords[4] = { |
| bounds.fTop, |
| bounds.fTop + outerRadius, |
| bounds.fBottom - outerRadius, |
| bounds.fBottom |
| }; |
| SkScalar yOuterRadii[4] = { |
| -outerRadius, |
| 0, |
| 0, |
| outerRadius |
| }; |
| for (int i = 0; i < 4; ++i) { |
| verts->fPos = SkPoint::Make(bounds.fLeft, yCoords[i]); |
| verts->fOffset = SkPoint::Make(-outerRadius, yOuterRadii[i]); |
| verts->fOuterRadius = outerRadius; |
| verts->fInnerRadius = innerRadius; |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fLeft + outerRadius, yCoords[i]); |
| verts->fOffset = SkPoint::Make(0, yOuterRadii[i]); |
| verts->fOuterRadius = outerRadius; |
| verts->fInnerRadius = innerRadius; |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fRight - outerRadius, yCoords[i]); |
| verts->fOffset = SkPoint::Make(0, yOuterRadii[i]); |
| verts->fOuterRadius = outerRadius; |
| verts->fInnerRadius = innerRadius; |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fRight, yCoords[i]); |
| verts->fOffset = SkPoint::Make(outerRadius, yOuterRadii[i]); |
| verts->fOuterRadius = outerRadius; |
| verts->fInnerRadius = innerRadius; |
| verts++; |
| } |
| |
| // drop out the middle quad if we're stroked |
| int indexCnt = isStrokeOnly ? SK_ARRAY_COUNT(gRRectIndices) - 6 : |
| SK_ARRAY_COUNT(gRRectIndices); |
| target->setIndexSourceToBuffer(indexBuffer); |
| target->drawIndexed(kTriangles_GrPrimitiveType, 0, 0, 16, indexCnt, &bounds); |
| |
| // otherwise we use the ellipse renderer |
| } else { |
| drawState->setVertexAttribs<gEllipseVertexAttribs>(SK_ARRAY_COUNT(gEllipseVertexAttribs), |
| sizeof(EllipseVertex)); |
| |
| SkScalar innerXRadius = 0.0f; |
| SkScalar innerYRadius = 0.0f; |
| if (hasStroke) { |
| if (SkScalarNearlyZero(scaledStroke.length())) { |
| scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf); |
| } else { |
| scaledStroke.scale(SK_ScalarHalf); |
| } |
| |
| // we only handle thick strokes for near-circular ellipses |
| if (scaledStroke.length() > SK_ScalarHalf && |
| (SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) { |
| return false; |
| } |
| |
| // we don't handle it if curvature of the stroke is less than curvature of the ellipse |
| if (scaledStroke.fX*(yRadius*yRadius) < (scaledStroke.fY*scaledStroke.fY)*xRadius || |
| scaledStroke.fY*(xRadius*xRadius) < (scaledStroke.fX*scaledStroke.fX)*yRadius) { |
| return false; |
| } |
| |
| // this is legit only if scale & translation (which should be the case at the moment) |
| if (isStrokeOnly) { |
| innerXRadius = xRadius - scaledStroke.fX; |
| innerYRadius = yRadius - scaledStroke.fY; |
| } |
| |
| xRadius += scaledStroke.fX; |
| yRadius += scaledStroke.fY; |
| bounds.outset(scaledStroke.fX, scaledStroke.fY); |
| } |
| |
| isStrokeOnly = (isStrokeOnly && innerXRadius >= 0 && innerYRadius >= 0); |
| |
| GrDrawTarget::AutoReleaseGeometry geo(target, 16, 0); |
| if (!geo.succeeded()) { |
| GrPrintf("Failed to get space for vertices!\n"); |
| return false; |
| } |
| EllipseVertex* verts = reinterpret_cast<EllipseVertex*>(geo.vertices()); |
| |
| GrGeometryProcessor* effect = EllipseEdgeEffect::Create(isStrokeOnly); |
| drawState->setGeometryProcessor(effect)->unref(); |
| |
| // Compute the reciprocals of the radii here to save time in the shader |
| SkScalar xRadRecip = SkScalarInvert(xRadius); |
| SkScalar yRadRecip = SkScalarInvert(yRadius); |
| SkScalar xInnerRadRecip = SkScalarInvert(innerXRadius); |
| SkScalar yInnerRadRecip = SkScalarInvert(innerYRadius); |
| |
| // Extend the radii out half a pixel to antialias. |
| SkScalar xOuterRadius = xRadius + SK_ScalarHalf; |
| SkScalar yOuterRadius = yRadius + SK_ScalarHalf; |
| |
| // Expand the rect so all the pixels will be captured. |
| bounds.outset(SK_ScalarHalf, SK_ScalarHalf); |
| |
| SkScalar yCoords[4] = { |
| bounds.fTop, |
| bounds.fTop + yOuterRadius, |
| bounds.fBottom - yOuterRadius, |
| bounds.fBottom |
| }; |
| SkScalar yOuterOffsets[4] = { |
| yOuterRadius, |
| SK_ScalarNearlyZero, // we're using inversesqrt() in the shader, so can't be exactly 0 |
| SK_ScalarNearlyZero, |
| yOuterRadius |
| }; |
| |
| for (int i = 0; i < 4; ++i) { |
| verts->fPos = SkPoint::Make(bounds.fLeft, yCoords[i]); |
| verts->fOffset = SkPoint::Make(xOuterRadius, yOuterOffsets[i]); |
| verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fLeft + xOuterRadius, yCoords[i]); |
| verts->fOffset = SkPoint::Make(SK_ScalarNearlyZero, yOuterOffsets[i]); |
| verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fRight - xOuterRadius, yCoords[i]); |
| verts->fOffset = SkPoint::Make(SK_ScalarNearlyZero, yOuterOffsets[i]); |
| verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fRight, yCoords[i]); |
| verts->fOffset = SkPoint::Make(xOuterRadius, yOuterOffsets[i]); |
| verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| verts++; |
| } |
| |
| // drop out the middle quad if we're stroked |
| int indexCnt = isStrokeOnly ? SK_ARRAY_COUNT(gRRectIndices) - 6 : |
| SK_ARRAY_COUNT(gRRectIndices); |
| target->setIndexSourceToBuffer(indexBuffer); |
| target->drawIndexed(kTriangles_GrPrimitiveType, 0, 0, 16, indexCnt, &bounds); |
| } |
| |
| return true; |
| } |