blob: 74af4ae49d55235b214ad1473d311c40d51ed073 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkCanvas.h"
#include "include/core/SkColorPriv.h"
#include "include/core/SkFont.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPath.h"
#include "include/utils/SkRandom.h"
#include "samplecode/Sample.h"
#include "src/core/SkClipOpPriv.h"
#include "src/core/SkPathPriv.h"
#include "tools/Resources.h"
constexpr int W = 150;
constexpr int H = 200;
static void show_text(SkCanvas* canvas, bool doAA) {
SkRandom rand;
SkPaint paint;
SkFont font(nullptr, 20);
font.setEdging(doAA ? SkFont::Edging::kSubpixelAntiAlias : SkFont::Edging::kAlias);
for (int i = 0; i < 200; ++i) {
paint.setColor((SK_A32_MASK << SK_A32_SHIFT) | rand.nextU());
canvas->drawString("Hamburgefons", rand.nextSScalar1() * W, rand.nextSScalar1() * H + 20,
font, paint);
}
}
static void show_fill(SkCanvas* canvas, bool doAA) {
SkRandom rand;
SkPaint paint;
paint.setAntiAlias(doAA);
for (int i = 0; i < 50; ++i) {
SkRect r;
SkPath p;
r.setXYWH(rand.nextSScalar1() * W, rand.nextSScalar1() * H,
rand.nextUScalar1() * W, rand.nextUScalar1() * H);
paint.setColor(rand.nextU());
canvas->drawRect(r, paint);
r.setXYWH(rand.nextSScalar1() * W, rand.nextSScalar1() * H,
rand.nextUScalar1() * W, rand.nextUScalar1() * H);
paint.setColor(rand.nextU());
p.addOval(r);
canvas->drawPath(p, paint);
}
}
static SkScalar randRange(SkRandom& rand, SkScalar min, SkScalar max) {
SkASSERT(min <= max);
return min + rand.nextUScalar1() * (max - min);
}
static void show_stroke(SkCanvas* canvas, bool doAA, SkScalar strokeWidth, int n) {
SkRandom rand;
SkPaint paint;
paint.setAntiAlias(doAA);
paint.setStyle(SkPaint::kStroke_Style);
paint.setStrokeWidth(strokeWidth);
for (int i = 0; i < n; ++i) {
SkRect r;
SkPath p;
r.setXYWH(rand.nextSScalar1() * W, rand.nextSScalar1() * H,
rand.nextUScalar1() * W, rand.nextUScalar1() * H);
paint.setColor(rand.nextU());
canvas->drawRect(r, paint);
r.setXYWH(rand.nextSScalar1() * W, rand.nextSScalar1() * H,
rand.nextUScalar1() * W, rand.nextUScalar1() * H);
paint.setColor(rand.nextU());
p.addOval(r);
canvas->drawPath(p, paint);
const SkScalar minx = -SkIntToScalar(W)/4;
const SkScalar maxx = 5*SkIntToScalar(W)/4;
const SkScalar miny = -SkIntToScalar(H)/4;
const SkScalar maxy = 5*SkIntToScalar(H)/4;
paint.setColor(rand.nextU());
canvas->drawLine(randRange(rand, minx, maxx), randRange(rand, miny, maxy),
randRange(rand, minx, maxx), randRange(rand, miny, maxy),
paint);
}
}
static void show_hair(SkCanvas* canvas, bool doAA) {
show_stroke(canvas, doAA, 0, 150);
}
static void show_thick(SkCanvas* canvas, bool doAA) {
show_stroke(canvas, doAA, SkIntToScalar(5), 50);
}
typedef void (*CanvasProc)(SkCanvas*, bool);
class ClipView : public Sample {
SkString name() override { return SkString("Clip"); }
void onDrawContent(SkCanvas* canvas) override {
canvas->drawColor(SK_ColorWHITE);
canvas->translate(SkIntToScalar(20), SkIntToScalar(20));
static const CanvasProc gProc[] = {
show_text, show_thick, show_hair, show_fill
};
SkRect r = { 0, 0, SkIntToScalar(W), SkIntToScalar(H) };
SkPath clipPath;
r.inset(SK_Scalar1 / 4, SK_Scalar1 / 4);
clipPath.addRoundRect(r, SkIntToScalar(20), SkIntToScalar(20));
// clipPath.toggleInverseFillType();
for (int aa = 0; aa <= 1; ++aa) {
canvas->save();
for (size_t i = 0; i < SK_ARRAY_COUNT(gProc); ++i) {
canvas->save();
canvas->clipPath(clipPath, kIntersect_SkClipOp, SkToBool(aa));
// canvas->drawColor(SK_ColorWHITE);
gProc[i](canvas, SkToBool(aa));
canvas->restore();
canvas->translate(W * SK_Scalar1 * 8 / 7, 0);
}
canvas->restore();
canvas->translate(0, H * SK_Scalar1 * 8 / 7);
}
}
};
DEF_SAMPLE( return new ClipView(); )
///////////////////////////////////////////////////////////////////////////////
struct SkHalfPlane {
SkScalar fA, fB, fC;
SkScalar eval(SkScalar x, SkScalar y) const {
return fA * x + fB * y + fC;
}
SkScalar operator()(SkScalar x, SkScalar y) const { return this->eval(x, y); }
bool twoPts(SkPoint pts[2]) const {
// normalize plane to help with the perpendicular step, below
SkScalar len = SkScalarSqrt(fA*fA + fB*fB);
if (!len) {
return false;
}
SkScalar denom = SkScalarInvert(len);
SkScalar a = fA * denom;
SkScalar b = fB * denom;
SkScalar c = fC * denom;
// We compute p0 on the half-plane by setting one of the components to 0
// We compute p1 by stepping from p0 along a perpendicular to the normal
if (b) {
pts[0] = { 0, -c / b };
pts[1] = { b, pts[0].fY - a};
} else if (a) {
pts[0] = { -c / a, 0 };
pts[1] = { pts[0].fX + b, -a };
} else {
return false;
}
SkASSERT(SkScalarNearlyZero(this->operator()(pts[0].fX, pts[0].fY)));
SkASSERT(SkScalarNearlyZero(this->operator()(pts[1].fX, pts[1].fY)));
return true;
}
enum Result {
kAllNegative,
kAllPositive,
kMixed
};
Result test(const SkRect& bounds) const {
SkPoint diagMin, diagMax;
if (fA >= 0) {
diagMin.fX = bounds.fLeft;
diagMax.fX = bounds.fRight;
} else {
diagMin.fX = bounds.fRight;
diagMax.fX = bounds.fLeft;
}
if (fB >= 0) {
diagMin.fY = bounds.fTop;
diagMax.fY = bounds.fBottom;
} else {
diagMin.fY = bounds.fBottom;
diagMax.fY = bounds.fTop;
}
SkScalar test = this->eval(diagMin.fX, diagMin.fY);
SkScalar sign = test*this->eval(diagMax.fX, diagMin.fY);
if (sign > 0) {
// the path is either all on one side of the half-plane or the other
if (test < 0) {
return kAllNegative;
} else {
return kAllPositive;
}
}
return kMixed;
}
};
#include "src/core/SkEdgeClipper.h"
static void clip(const SkPath& path, SkPoint p0, SkPoint p1, SkPath* clippedPath) {
SkMatrix mx, inv;
SkVector v = p1 - p0;
mx.setAll(v.fX, -v.fY, p0.fX,
v.fY, v.fX, p0.fY,
0, 0, 1);
SkAssertResult(mx.invert(&inv));
SkPath rotated;
path.transform(inv, &rotated);
SkScalar big = 1e28f;
SkRect clip = {-big, 0, big, big };
struct Rec {
SkPath* fResult;
SkPoint fPrev;
} rec = { clippedPath, {0, 0} };
SkEdgeClipper::ClipPath(rotated, clip, false,
[](SkEdgeClipper* clipper, bool newCtr, void* ctx) {
Rec* rec = (Rec*)ctx;
bool addLineTo = false;
SkPoint pts[4];
SkPath::Verb verb;
while ((verb = clipper->next(pts)) != SkPath::kDone_Verb) {
if (newCtr) {
rec->fResult->moveTo(pts[0]);
rec->fPrev = pts[0];
newCtr = false;
}
if (addLineTo || pts[0] != rec->fPrev) {
rec->fResult->lineTo(pts[0]);
}
switch (verb) {
case SkPath::kLine_Verb:
rec->fResult->lineTo(pts[1]);
rec->fPrev = pts[1];
break;
case SkPath::kQuad_Verb:
rec->fResult->quadTo(pts[1], pts[2]);
rec->fPrev = pts[2];
break;
case SkPath::kCubic_Verb:
rec->fResult->cubicTo(pts[1], pts[2], pts[3]);
rec->fPrev = pts[3];
break;
default: break;
}
addLineTo = true;
}
}, &rec);
rec.fResult->transform(mx);
}
static void draw_halfplane(SkCanvas* canvas, SkPoint p0, SkPoint p1, SkColor c) {
SkVector v = p1 - p0;
p0 = p0 - v * 1000;
p1 = p1 + v * 1000;
SkPaint paint;
paint.setColor(c);
canvas->drawLine(p0, p1, paint);
}
static SkPath make_path() {
SkRandom rand;
auto rand_pt = [&rand]() {
auto x = rand.nextF();
auto y = rand.nextF();
return SkPoint{x * 400, y * 400};
};
SkPath path;
for (int i = 0; i < 4; ++i) {
SkPoint pts[6];
for (auto& p : pts) {
p = rand_pt();
}
path.moveTo(pts[0]).quadTo(pts[1], pts[2]).quadTo(pts[3], pts[4]).lineTo(pts[5]);
}
return path;
}
class HalfPlaneView : public Sample {
SkPoint fPts[2];
SkPath fPath;
SkString name() override { return SkString("halfplane"); }
void onOnceBeforeDraw() override {
fPts[0] = {0, 0};
fPts[1] = {3, 2};
fPath = make_path();
}
void onDrawContent(SkCanvas* canvas) override {
SkPaint paint;
paint.setColor({0.5f, 0.5f, 0.5f, 1.0f}, nullptr);
canvas->drawPath(fPath, paint);
paint.setColor({0, 0, 0, 1}, nullptr);
SkPath clippedPath;
clip(fPath, fPts[0], fPts[1], &clippedPath);
canvas->drawPath(clippedPath, paint);
draw_halfplane(canvas, fPts[0], fPts[1], SK_ColorRED);
}
Click* onFindClickHandler(SkScalar x, SkScalar y, skui::ModifierKey modi) override {
return new Click;
}
bool onClick(Click* click) override {
fPts[0] = click->fCurr;
fPts[1] = fPts[0] + SkPoint{3, 2};
return true;
}
};
DEF_SAMPLE( return new HalfPlaneView(); )
static void draw_halfplane(SkCanvas* canvas, const SkHalfPlane& p, SkColor c) {
SkPoint pts[2];
p.twoPts(pts);
draw_halfplane(canvas, pts[0], pts[1], c);
}
static void compute_half_planes(const SkMatrix& mx, SkScalar W, SkScalar H,
SkHalfPlane planes[4]) {
SkScalar a = mx[0], b = mx[1], c = mx[2],
d = mx[3], e = mx[4], f = mx[5],
g = mx[6], h = mx[7], i = mx[8];
planes[0] = { 2*g - 2*a/W, 2*h - 2*b/W, 2*i - 2*c/W };
planes[1] = { 2*a/W, 2*b/W, 2*c/W };
planes[2] = { 2*g - 2*d/H, 2*h - 2*e/H, 2*i - 2*f/H };
planes[3] = { 2*d/H, 2*e/H, 2*f/H };
}
class HalfPlaneView2 : public Sample {
SkPoint fPts[4];
SkPath fPath;
SkString name() override { return SkString("halfplane2"); }
void onOnceBeforeDraw() override {
fPath = make_path();
SkRect r = fPath.getBounds();
r.toQuad(fPts);
}
void onDrawContent(SkCanvas* canvas) override {
SkMatrix mx;
{
SkRect r = fPath.getBounds();
SkPoint src[4];
r.toQuad(src);
mx.setPolyToPoly(src, fPts, 4);
}
SkPaint paint;
canvas->drawPath(fPath, paint);
canvas->save();
canvas->concat(mx);
paint.setColor(0x40FF0000);
canvas->drawPath(fPath, paint);
canvas->restore();
// draw the frame
paint.setStrokeWidth(10);
paint.setColor(SK_ColorGREEN);
canvas->drawPoints(SkCanvas::kPoints_PointMode, 4, fPts, paint);
// draw the half-planes
SkHalfPlane planes[4];
compute_half_planes(mx, 400, 400, planes);
for (auto& p : planes) {
draw_halfplane(canvas, p, SK_ColorRED);
}
}
Click* onFindClickHandler(SkScalar x, SkScalar y, skui::ModifierKey modi) override {
SkScalar r = 8;
SkRect rect = SkRect::MakeXYWH(x - r, y - r, 2*r, 2*r);
for (int i = 0; i < 4; ++i) {
if (rect.contains(fPts[i].fX, fPts[i].fY)) {
Click* c = new Click;
c->fMeta.setS32("index", i);
return c;
}
}
return nullptr;
}
bool onClick(Click* click) override {
int32_t index;
SkAssertResult(click->fMeta.findS32("index", &index));
SkASSERT(index >= 0 && index < 4);
fPts[index] = click->fCurr;
return true;
}
};
DEF_SAMPLE( return new HalfPlaneView2(); )
static SkM44 inv(const SkM44& m) {
SkM44 inverse;
SkAssertResult(m.invert(&inverse));
return inverse;
}
static SkHalfPlane half_plane_w0(const SkMatrix& m) {
return { m[SkMatrix::kMPersp0], m[SkMatrix::kMPersp1], m[SkMatrix::kMPersp2] - 0.05f };
}
class SampleCameraView : public Sample {
float fNear = 0.05f;
float fFar = 4;
float fAngle = SK_ScalarPI / 4;
SkV3 fEye { 0, 0, 1.0f/tan(fAngle/2) - 1 };
SkV3 fCOA { 0, 0, 0 };
SkV3 fUp { 0, 1, 0 };
SkM44 fRot;
SkV3 fTrans;
void rotate(float x, float y, float z) {
SkM44 r;
if (x) {
r.setRotateUnit({1, 0, 0}, x);
} else if (y) {
r.setRotateUnit({0, 1, 0}, y);
} else {
r.setRotateUnit({0, 0, 1}, z);
}
fRot = r * fRot;
}
public:
SkM44 get44(const SkRect& r) const {
SkScalar w = r.width();
SkScalar h = r.height();
SkM44 camera = Sk3LookAt(fEye, fCOA, fUp),
perspective = Sk3Perspective(fNear, fFar, fAngle),
translate = SkM44::Translate(fTrans.x, fTrans.y, fTrans.z),
viewport = SkM44::Translate(r.centerX(), r.centerY(), 0) *
SkM44::Scale(w*0.5f, h*0.5f, 1);
return viewport * perspective * camera * translate * fRot * inv(viewport);
}
bool onChar(SkUnichar uni) override {
float delta = SK_ScalarPI / 30;
switch (uni) {
case '8': this->rotate( delta, 0, 0); return true;
case '2': this->rotate(-delta, 0, 0); return true;
case '4': this->rotate(0, delta, 0); return true;
case '6': this->rotate(0, -delta, 0); return true;
case '-': this->rotate(0, 0, delta); return true;
case '+': this->rotate(0, 0, -delta); return true;
case 'i': fTrans.z += 0.1f; SkDebugf("z %g\n", fTrans.z); return true;
case 'k': fTrans.z -= 0.1f; SkDebugf("z %g\n", fTrans.z); return true;
case 'n': fNear += 0.1f; SkDebugf("near %g\n", fNear); return true;
case 'N': fNear -= 0.1f; SkDebugf("near %g\n", fNear); return true;
case 'f': fFar += 0.1f; SkDebugf("far %g\n", fFar); return true;
case 'F': fFar -= 0.1f; SkDebugf("far %g\n", fFar); return true;
default: break;
}
return false;
}
};
class HalfPlaneView3 : public SampleCameraView {
SkPath fPath;
sk_sp<SkShader> fShader;
bool fShowUnclipped = false;
SkString name() override { return SkString("halfplane3"); }
void onOnceBeforeDraw() override {
fPath = make_path();
fShader = GetResourceAsImage("images/mandrill_128.png")
->makeShader(SkMatrix::MakeScale(3, 3));
}
bool onChar(SkUnichar uni) override {
switch (uni) {
case 'u': fShowUnclipped = !fShowUnclipped; return true;
default: break;
}
return this->SampleCameraView::onChar(uni);
}
void onDrawContent(SkCanvas* canvas) override {
SkM44 mx = this->get44({0, 0, 400, 400});
SkPaint paint;
paint.setColor({0.75, 0.75, 0.75, 1});
canvas->drawPath(fPath, paint);
paint.setShader(fShader);
if (fShowUnclipped) {
canvas->save();
canvas->concat(mx);
paint.setAlphaf(0.33f);
canvas->drawPath(fPath, paint);
paint.setAlphaf(1.f);
canvas->restore();
}
SkColor planeColor = SK_ColorBLUE;
SkPath clippedPath, *path = &fPath;
if (SkPathPriv::PerspectiveClip(fPath, mx.asM33(), &clippedPath)) {
path = &clippedPath;
planeColor = SK_ColorRED;
}
canvas->save();
canvas->concat(mx);
canvas->drawPath(*path, paint);
canvas->restore();
SkHalfPlane hpw = half_plane_w0(mx.asM33());
draw_halfplane(canvas, hpw, planeColor);
}
};
DEF_SAMPLE( return new HalfPlaneView3(); )
class HalfPlaneCoons : public SampleCameraView {
SkPoint fPatch[12];
SkColor fColors[4] = { SK_ColorRED, SK_ColorGREEN, SK_ColorBLUE, SK_ColorBLACK };
SkPoint fTex[4] = {{0, 0}, {256, 0}, {256, 256}, {0, 256}};
sk_sp<SkShader> fShader;
bool fShowHandles = false;
bool fShowSkeleton = false;
bool fShowTex = false;
SkString name() override { return SkString("halfplane-coons"); }
void onOnceBeforeDraw() override {
fPatch[0] = { 0, 0 };
fPatch[1] = { 100, 0 };
fPatch[2] = { 200, 0 };
fPatch[3] = { 300, 0 };
fPatch[4] = { 300, 100 };
fPatch[5] = { 300, 200 };
fPatch[6] = { 300, 300 };
fPatch[7] = { 200, 300 };
fPatch[8] = { 100, 300 };
fPatch[9] = { 0, 300 };
fPatch[10] = { 0, 200 };
fPatch[11] = { 0, 100 };
fShader = GetResourceAsImage("images/mandrill_256.png")->makeShader();
}
void onDrawContent(SkCanvas* canvas) override {
SkPaint paint;
canvas->save();
canvas->concat(this->get44({0, 0, 300, 300}));
const SkPoint* tex = nullptr;
const SkColor* col = nullptr;
if (!fShowSkeleton) {
if (fShowTex) {
paint.setShader(fShader);
tex = fTex;
} else {
col = fColors;
}
}
canvas->drawPatch(fPatch, col, tex, SkBlendMode::kSrc, paint);
paint.setShader(nullptr);
if (fShowHandles) {
paint.setAntiAlias(true);
paint.setStrokeCap(SkPaint::kRound_Cap);
paint.setStrokeWidth(8);
canvas->drawPoints(SkCanvas::kPoints_PointMode, 12, fPatch, paint);
paint.setColor(SK_ColorWHITE);
paint.setStrokeWidth(6);
canvas->drawPoints(SkCanvas::kPoints_PointMode, 12, fPatch, paint);
}
canvas->restore();
}
Click* onFindClickHandler(SkScalar x, SkScalar y, skui::ModifierKey modi) override {
auto dist = [](SkPoint a, SkPoint b) { return (b - a).length(); };
const float tol = 15;
for (int i = 0; i < 12; ++i) {
if (dist({x,y}, fPatch[i]) <= tol) {
return new Click([this, i](Click* c) {
fPatch[i] = c->fCurr;
return true;
});
}
}
return nullptr;
}
bool onChar(SkUnichar uni) override {
switch (uni) {
case 'h': fShowHandles = !fShowHandles; return true;
case 'k': fShowSkeleton = !fShowSkeleton; return true;
case 't': fShowTex = !fShowTex; return true;
default: break;
}
return this->SampleCameraView::onChar(uni);
}
};
DEF_SAMPLE( return new HalfPlaneCoons(); )