| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef GrAAConvexTessellator_DEFINED |
| #define GrAAConvexTessellator_DEFINED |
| |
| #include "SkColor.h" |
| #include "SkPaint.h" |
| #include "SkPoint.h" |
| #include "SkScalar.h" |
| #include "SkStrokeRec.h" |
| #include "SkTDArray.h" |
| |
| class SkCanvas; |
| class SkMatrix; |
| class SkPath; |
| |
| //#define GR_AA_CONVEX_TESSELLATOR_VIZ 1 |
| |
| // device space distance which we inset / outset points in order to create the soft antialiased edge |
| static const SkScalar kAntialiasingRadius = 0.5f; |
| |
| class GrAAConvexTessellator; |
| |
| // The AAConvexTessellator holds the global pool of points and the triangulation |
| // that connects them. It also drives the tessellation process. |
| // The outward facing normals of the original polygon are stored (in 'fNorms') to service |
| // computeDepthFromEdge requests. |
| class GrAAConvexTessellator { |
| public: |
| GrAAConvexTessellator(SkStrokeRec::Style style = SkStrokeRec::kFill_Style, |
| SkScalar strokeWidth = -1.0f, |
| SkPaint::Join join = SkPaint::Join::kBevel_Join, |
| SkScalar miterLimit = 0.0f) |
| : fSide(SkPoint::kOn_Side) |
| , fStrokeWidth(strokeWidth) |
| , fStyle(style) |
| , fJoin(join) |
| , fMiterLimit(miterLimit) { |
| } |
| |
| SkPoint::Side side() const { return fSide; } |
| |
| bool tessellate(const SkMatrix& m, const SkPath& path); |
| |
| // The next five should only be called after tessellate to extract the result |
| int numPts() const { return fPts.count(); } |
| int numIndices() const { return fIndices.count(); } |
| |
| const SkPoint& lastPoint() const { return fPts.top(); } |
| const SkPoint& point(int index) const { return fPts[index]; } |
| int index(int index) const { return fIndices[index]; } |
| SkScalar coverage(int index) const { return fCoverages[index]; } |
| |
| #if GR_AA_CONVEX_TESSELLATOR_VIZ |
| void draw(SkCanvas* canvas) const; |
| #endif |
| |
| // The tessellator can be reused for multiple paths by rewinding in between |
| void rewind(); |
| |
| private: |
| // CandidateVerts holds the vertices for the next ring while they are |
| // being generated. Its main function is to de-dup the points. |
| class CandidateVerts { |
| public: |
| void setReserve(int numPts) { fPts.setReserve(numPts); } |
| void rewind() { fPts.rewind(); } |
| |
| int numPts() const { return fPts.count(); } |
| |
| const SkPoint& lastPoint() const { return fPts.top().fPt; } |
| const SkPoint& firstPoint() const { return fPts[0].fPt; } |
| const SkPoint& point(int index) const { return fPts[index].fPt; } |
| |
| int originatingIdx(int index) const { return fPts[index].fOriginatingIdx; } |
| int origEdge(int index) const { return fPts[index].fOrigEdgeId; } |
| bool needsToBeNew(int index) const { return fPts[index].fNeedsToBeNew; } |
| |
| int addNewPt(const SkPoint& newPt, int originatingIdx, int origEdge, bool needsToBeNew) { |
| struct PointData* pt = fPts.push(); |
| pt->fPt = newPt; |
| pt->fOrigEdgeId = origEdge; |
| pt->fOriginatingIdx = originatingIdx; |
| pt->fNeedsToBeNew = needsToBeNew; |
| return fPts.count() - 1; |
| } |
| |
| int fuseWithPrior(int origEdgeId) { |
| fPts.top().fOrigEdgeId = origEdgeId; |
| fPts.top().fOriginatingIdx = -1; |
| fPts.top().fNeedsToBeNew = true; |
| return fPts.count() - 1; |
| } |
| |
| int fuseWithNext() { |
| fPts[0].fOriginatingIdx = -1; |
| fPts[0].fNeedsToBeNew = true; |
| return 0; |
| } |
| |
| int fuseWithBoth() { |
| if (fPts.count() > 1) { |
| fPts.pop(); |
| } |
| |
| fPts[0].fOriginatingIdx = -1; |
| fPts[0].fNeedsToBeNew = true; |
| return 0; |
| } |
| |
| private: |
| struct PointData { |
| SkPoint fPt; |
| int fOriginatingIdx; |
| int fOrigEdgeId; |
| bool fNeedsToBeNew; |
| }; |
| |
| SkTDArray<struct PointData> fPts; |
| }; |
| |
| // The Ring holds a set of indices into the global pool that together define |
| // a single polygon inset. |
| class Ring { |
| public: |
| void setReserve(int numPts) { fPts.setReserve(numPts); } |
| void rewind() { fPts.rewind(); } |
| |
| int numPts() const { return fPts.count(); } |
| |
| void addIdx(int index, int origEdgeId) { |
| struct PointData* pt = fPts.push(); |
| pt->fIndex = index; |
| pt->fOrigEdgeId = origEdgeId; |
| } |
| |
| // Upgrade this ring so that it can behave like an originating ring |
| void makeOriginalRing() { |
| for (int i = 0; i < fPts.count(); ++i) { |
| fPts[i].fOrigEdgeId = fPts[i].fIndex; |
| } |
| } |
| |
| // init should be called after all the indices have been added (via addIdx) |
| void init(const GrAAConvexTessellator& tess); |
| void init(const SkTDArray<SkVector>& norms, const SkTDArray<SkVector>& bisectors); |
| |
| const SkPoint& norm(int index) const { return fPts[index].fNorm; } |
| const SkPoint& bisector(int index) const { return fPts[index].fBisector; } |
| int index(int index) const { return fPts[index].fIndex; } |
| int origEdgeID(int index) const { return fPts[index].fOrigEdgeId; } |
| void setOrigEdgeId(int index, int id) { fPts[index].fOrigEdgeId = id; } |
| |
| #if GR_AA_CONVEX_TESSELLATOR_VIZ |
| void draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const; |
| #endif |
| |
| private: |
| void computeNormals(const GrAAConvexTessellator& result); |
| void computeBisectors(const GrAAConvexTessellator& tess); |
| |
| SkDEBUGCODE(bool isConvex(const GrAAConvexTessellator& tess) const;) |
| |
| struct PointData { |
| SkPoint fNorm; |
| SkPoint fBisector; |
| int fIndex; |
| int fOrigEdgeId; |
| }; |
| |
| SkTDArray<PointData> fPts; |
| }; |
| |
| // Represents whether a given point is within a curve. A point is inside a curve only if it is |
| // an interior point within a quad, cubic, or conic, or if it is the endpoint of a quad, cubic, |
| // or conic with another curve meeting it at (more or less) the same angle. |
| enum CurveState { |
| // point is a sharp vertex |
| kSharp_CurveState, |
| // endpoint of a curve with the other side's curvature not yet determined |
| kIndeterminate_CurveState, |
| // point is in the interior of a curve |
| kCurve_CurveState |
| }; |
| |
| bool movable(int index) const { return fMovable[index]; } |
| |
| // Movable points are those that can be slid along their bisector. |
| // Basically, a point is immovable if it is part of the original |
| // polygon or it results from the fusing of two bisectors. |
| int addPt(const SkPoint& pt, SkScalar depth, SkScalar coverage, bool movable, CurveState curve); |
| void popLastPt(); |
| void popFirstPtShuffle(); |
| |
| void updatePt(int index, const SkPoint& pt, SkScalar depth, SkScalar coverage); |
| |
| void addTri(int i0, int i1, int i2); |
| |
| void reservePts(int count) { |
| fPts.setReserve(count); |
| fCoverages.setReserve(count); |
| fMovable.setReserve(count); |
| } |
| |
| SkScalar computeDepthFromEdge(int edgeIdx, const SkPoint& p) const; |
| |
| bool computePtAlongBisector(int startIdx, const SkPoint& bisector, |
| int edgeIdx, SkScalar desiredDepth, |
| SkPoint* result) const; |
| |
| void lineTo(const SkPoint& p, CurveState curve); |
| |
| void lineTo(const SkMatrix& m, SkPoint p, CurveState curve); |
| |
| void quadTo(const SkPoint pts[3]); |
| |
| void quadTo(const SkMatrix& m, SkPoint pts[3]); |
| |
| void cubicTo(const SkMatrix& m, SkPoint pts[4]); |
| |
| void conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar w); |
| |
| void terminate(const Ring& lastRing); |
| |
| // return false on failure/degenerate path |
| bool extractFromPath(const SkMatrix& m, const SkPath& path); |
| void computeBisectors(); |
| |
| void fanRing(const Ring& ring); |
| |
| Ring* getNextRing(Ring* lastRing); |
| |
| void createOuterRing(const Ring& previousRing, SkScalar outset, SkScalar coverage, |
| Ring* nextRing); |
| |
| bool createInsetRings(Ring& previousRing, SkScalar initialDepth, SkScalar initialCoverage, |
| SkScalar targetDepth, SkScalar targetCoverage, Ring** finalRing); |
| |
| bool createInsetRing(const Ring& lastRing, Ring* nextRing, |
| SkScalar initialDepth, SkScalar initialCoverage, SkScalar targetDepth, |
| SkScalar targetCoverage, bool forceNew); |
| |
| void validate() const; |
| |
| // fPts, fCoverages, fMovable & fCurveState should always have the same # of elements |
| SkTDArray<SkPoint> fPts; |
| SkTDArray<SkScalar> fCoverages; |
| // movable points are those that can be slid further along their bisector |
| SkTDArray<bool> fMovable; |
| // Tracks whether a given point is interior to a curve. Such points are |
| // assumed to have shallow curvature. |
| SkTDArray<CurveState> fCurveState; |
| |
| // The outward facing normals for the original polygon |
| SkTDArray<SkVector> fNorms; |
| // The inward facing bisector at each point in the original polygon. Only |
| // needed for exterior ring creation and then handed off to the initial ring. |
| SkTDArray<SkVector> fBisectors; |
| |
| SkPoint::Side fSide; // winding of the original polygon |
| |
| // The triangulation of the points |
| SkTDArray<int> fIndices; |
| |
| Ring fInitialRing; |
| #if GR_AA_CONVEX_TESSELLATOR_VIZ |
| // When visualizing save all the rings |
| SkTDArray<Ring*> fRings; |
| #else |
| Ring fRings[2]; |
| #endif |
| CandidateVerts fCandidateVerts; |
| |
| // the stroke width is only used for stroke or stroke-and-fill styles |
| SkScalar fStrokeWidth; |
| SkStrokeRec::Style fStyle; |
| |
| SkPaint::Join fJoin; |
| |
| SkScalar fMiterLimit; |
| |
| SkTDArray<SkPoint> fPointBuffer; |
| }; |
| |
| |
| #endif |