blob: 44b75059da737dc83eabb693f892257fc1ee2d70 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrGLGpu.h"
#include "GrGLGLSL.h"
#include "GrGLStencilAttachment.h"
#include "GrGLTextureRenderTarget.h"
#include "GrGpuResourcePriv.h"
#include "GrPipeline.h"
#include "GrRenderTargetPriv.h"
#include "GrSurfacePriv.h"
#include "GrTexturePriv.h"
#include "GrTypes.h"
#include "GrVertices.h"
#include "builders/GrGLShaderStringBuilder.h"
#include "glsl/GrGLSLCaps.h"
#include "SkStrokeRec.h"
#include "SkTemplates.h"
#define GL_CALL(X) GR_GL_CALL(this->glInterface(), X)
#define GL_CALL_RET(RET, X) GR_GL_CALL_RET(this->glInterface(), RET, X)
#define SKIP_CACHE_CHECK true
#if GR_GL_CHECK_ALLOC_WITH_GET_ERROR
#define CLEAR_ERROR_BEFORE_ALLOC(iface) GrGLClearErr(iface)
#define GL_ALLOC_CALL(iface, call) GR_GL_CALL_NOERRCHECK(iface, call)
#define CHECK_ALLOC_ERROR(iface) GR_GL_GET_ERROR(iface)
#else
#define CLEAR_ERROR_BEFORE_ALLOC(iface)
#define GL_ALLOC_CALL(iface, call) GR_GL_CALL(iface, call)
#define CHECK_ALLOC_ERROR(iface) GR_GL_NO_ERROR
#endif
///////////////////////////////////////////////////////////////////////////////
static const GrGLenum gXfermodeEquation2Blend[] = {
// Basic OpenGL blend equations.
GR_GL_FUNC_ADD,
GR_GL_FUNC_SUBTRACT,
GR_GL_FUNC_REVERSE_SUBTRACT,
// GL_KHR_blend_equation_advanced.
GR_GL_SCREEN,
GR_GL_OVERLAY,
GR_GL_DARKEN,
GR_GL_LIGHTEN,
GR_GL_COLORDODGE,
GR_GL_COLORBURN,
GR_GL_HARDLIGHT,
GR_GL_SOFTLIGHT,
GR_GL_DIFFERENCE,
GR_GL_EXCLUSION,
GR_GL_MULTIPLY,
GR_GL_HSL_HUE,
GR_GL_HSL_SATURATION,
GR_GL_HSL_COLOR,
GR_GL_HSL_LUMINOSITY
};
GR_STATIC_ASSERT(0 == kAdd_GrBlendEquation);
GR_STATIC_ASSERT(1 == kSubtract_GrBlendEquation);
GR_STATIC_ASSERT(2 == kReverseSubtract_GrBlendEquation);
GR_STATIC_ASSERT(3 == kScreen_GrBlendEquation);
GR_STATIC_ASSERT(4 == kOverlay_GrBlendEquation);
GR_STATIC_ASSERT(5 == kDarken_GrBlendEquation);
GR_STATIC_ASSERT(6 == kLighten_GrBlendEquation);
GR_STATIC_ASSERT(7 == kColorDodge_GrBlendEquation);
GR_STATIC_ASSERT(8 == kColorBurn_GrBlendEquation);
GR_STATIC_ASSERT(9 == kHardLight_GrBlendEquation);
GR_STATIC_ASSERT(10 == kSoftLight_GrBlendEquation);
GR_STATIC_ASSERT(11 == kDifference_GrBlendEquation);
GR_STATIC_ASSERT(12 == kExclusion_GrBlendEquation);
GR_STATIC_ASSERT(13 == kMultiply_GrBlendEquation);
GR_STATIC_ASSERT(14 == kHSLHue_GrBlendEquation);
GR_STATIC_ASSERT(15 == kHSLSaturation_GrBlendEquation);
GR_STATIC_ASSERT(16 == kHSLColor_GrBlendEquation);
GR_STATIC_ASSERT(17 == kHSLLuminosity_GrBlendEquation);
GR_STATIC_ASSERT(SK_ARRAY_COUNT(gXfermodeEquation2Blend) == kGrBlendEquationCnt);
static const GrGLenum gXfermodeCoeff2Blend[] = {
GR_GL_ZERO,
GR_GL_ONE,
GR_GL_SRC_COLOR,
GR_GL_ONE_MINUS_SRC_COLOR,
GR_GL_DST_COLOR,
GR_GL_ONE_MINUS_DST_COLOR,
GR_GL_SRC_ALPHA,
GR_GL_ONE_MINUS_SRC_ALPHA,
GR_GL_DST_ALPHA,
GR_GL_ONE_MINUS_DST_ALPHA,
GR_GL_CONSTANT_COLOR,
GR_GL_ONE_MINUS_CONSTANT_COLOR,
GR_GL_CONSTANT_ALPHA,
GR_GL_ONE_MINUS_CONSTANT_ALPHA,
// extended blend coeffs
GR_GL_SRC1_COLOR,
GR_GL_ONE_MINUS_SRC1_COLOR,
GR_GL_SRC1_ALPHA,
GR_GL_ONE_MINUS_SRC1_ALPHA,
};
bool GrGLGpu::BlendCoeffReferencesConstant(GrBlendCoeff coeff) {
static const bool gCoeffReferencesBlendConst[] = {
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
true,
true,
true,
true,
// extended blend coeffs
false,
false,
false,
false,
};
return gCoeffReferencesBlendConst[coeff];
GR_STATIC_ASSERT(kGrBlendCoeffCnt == SK_ARRAY_COUNT(gCoeffReferencesBlendConst));
GR_STATIC_ASSERT(0 == kZero_GrBlendCoeff);
GR_STATIC_ASSERT(1 == kOne_GrBlendCoeff);
GR_STATIC_ASSERT(2 == kSC_GrBlendCoeff);
GR_STATIC_ASSERT(3 == kISC_GrBlendCoeff);
GR_STATIC_ASSERT(4 == kDC_GrBlendCoeff);
GR_STATIC_ASSERT(5 == kIDC_GrBlendCoeff);
GR_STATIC_ASSERT(6 == kSA_GrBlendCoeff);
GR_STATIC_ASSERT(7 == kISA_GrBlendCoeff);
GR_STATIC_ASSERT(8 == kDA_GrBlendCoeff);
GR_STATIC_ASSERT(9 == kIDA_GrBlendCoeff);
GR_STATIC_ASSERT(10 == kConstC_GrBlendCoeff);
GR_STATIC_ASSERT(11 == kIConstC_GrBlendCoeff);
GR_STATIC_ASSERT(12 == kConstA_GrBlendCoeff);
GR_STATIC_ASSERT(13 == kIConstA_GrBlendCoeff);
GR_STATIC_ASSERT(14 == kS2C_GrBlendCoeff);
GR_STATIC_ASSERT(15 == kIS2C_GrBlendCoeff);
GR_STATIC_ASSERT(16 == kS2A_GrBlendCoeff);
GR_STATIC_ASSERT(17 == kIS2A_GrBlendCoeff);
// assertion for gXfermodeCoeff2Blend have to be in GrGpu scope
GR_STATIC_ASSERT(kGrBlendCoeffCnt == SK_ARRAY_COUNT(gXfermodeCoeff2Blend));
}
///////////////////////////////////////////////////////////////////////////////
GrGpu* GrGLGpu::Create(GrBackendContext backendContext, const GrContextOptions& options,
GrContext* context) {
SkAutoTUnref<const GrGLInterface> glInterface(
reinterpret_cast<const GrGLInterface*>(backendContext));
if (!glInterface) {
glInterface.reset(GrGLDefaultInterface());
} else {
glInterface->ref();
}
if (!glInterface) {
return nullptr;
}
GrGLContext* glContext = GrGLContext::Create(glInterface, options);
if (glContext) {
return new GrGLGpu(glContext, context);
}
return nullptr;
}
static bool gPrintStartupSpew;
GrGLGpu::GrGLGpu(GrGLContext* ctx, GrContext* context)
: GrGpu(context)
, fGLContext(ctx) {
SkASSERT(ctx);
fCaps.reset(SkRef(ctx->caps()));
fHWBoundTextureUniqueIDs.reset(this->glCaps().maxFragmentTextureUnits());
GrGLClearErr(this->glInterface());
if (gPrintStartupSpew) {
const GrGLubyte* vendor;
const GrGLubyte* renderer;
const GrGLubyte* version;
GL_CALL_RET(vendor, GetString(GR_GL_VENDOR));
GL_CALL_RET(renderer, GetString(GR_GL_RENDERER));
GL_CALL_RET(version, GetString(GR_GL_VERSION));
SkDebugf("------------------------- create GrGLGpu %p --------------\n",
this);
SkDebugf("------ VENDOR %s\n", vendor);
SkDebugf("------ RENDERER %s\n", renderer);
SkDebugf("------ VERSION %s\n", version);
SkDebugf("------ EXTENSIONS\n");
this->glContext().extensions().print();
SkDebugf("\n");
SkDebugf("%s", this->glCaps().dump().c_str());
}
fProgramCache = new ProgramCache(this);
SkASSERT(this->glCaps().maxVertexAttributes() >= GrGeometryProcessor::kMaxVertexAttribs);
fLastSuccessfulStencilFmtIdx = 0;
fHWProgramID = 0;
fTempSrcFBOID = 0;
fTempDstFBOID = 0;
fStencilClearFBOID = 0;
if (this->glCaps().shaderCaps()->pathRenderingSupport()) {
fPathRendering.reset(new GrGLPathRendering(this));
}
this->createCopyProgram();
}
GrGLGpu::~GrGLGpu() {
if (0 != fHWProgramID) {
// detach the current program so there is no confusion on OpenGL's part
// that we want it to be deleted
GL_CALL(UseProgram(0));
}
if (0 != fTempSrcFBOID) {
GL_CALL(DeleteFramebuffers(1, &fTempSrcFBOID));
}
if (0 != fTempDstFBOID) {
GL_CALL(DeleteFramebuffers(1, &fTempDstFBOID));
}
if (0 != fStencilClearFBOID) {
GL_CALL(DeleteFramebuffers(1, &fStencilClearFBOID));
}
if (0 != fCopyProgram.fArrayBuffer) {
GL_CALL(DeleteBuffers(1, &fCopyProgram.fArrayBuffer));
}
if (0 != fCopyProgram.fProgram) {
GL_CALL(DeleteProgram(fCopyProgram.fProgram));
}
delete fProgramCache;
}
void GrGLGpu::contextAbandoned() {
INHERITED::contextAbandoned();
fProgramCache->abandon();
fHWProgramID = 0;
fTempSrcFBOID = 0;
fTempDstFBOID = 0;
fStencilClearFBOID = 0;
fCopyProgram.fArrayBuffer = 0;
fCopyProgram.fProgram = 0;
if (this->glCaps().shaderCaps()->pathRenderingSupport()) {
this->glPathRendering()->abandonGpuResources();
}
}
///////////////////////////////////////////////////////////////////////////////
void GrGLGpu::onResetContext(uint32_t resetBits) {
// we don't use the zb at all
if (resetBits & kMisc_GrGLBackendState) {
GL_CALL(Disable(GR_GL_DEPTH_TEST));
GL_CALL(DepthMask(GR_GL_FALSE));
fHWDrawFace = GrPipelineBuilder::kInvalid_DrawFace;
fHWDitherEnabled = kUnknown_TriState;
if (kGL_GrGLStandard == this->glStandard()) {
// Desktop-only state that we never change
if (!this->glCaps().isCoreProfile()) {
GL_CALL(Disable(GR_GL_POINT_SMOOTH));
GL_CALL(Disable(GR_GL_LINE_SMOOTH));
GL_CALL(Disable(GR_GL_POLYGON_SMOOTH));
GL_CALL(Disable(GR_GL_POLYGON_STIPPLE));
GL_CALL(Disable(GR_GL_COLOR_LOGIC_OP));
GL_CALL(Disable(GR_GL_INDEX_LOGIC_OP));
}
// The windows NVIDIA driver has GL_ARB_imaging in the extension string when using a
// core profile. This seems like a bug since the core spec removes any mention of
// GL_ARB_imaging.
if (this->glCaps().imagingSupport() && !this->glCaps().isCoreProfile()) {
GL_CALL(Disable(GR_GL_COLOR_TABLE));
}
GL_CALL(Disable(GR_GL_POLYGON_OFFSET_FILL));
// Since ES doesn't support glPointSize at all we always use the VS to
// set the point size
GL_CALL(Enable(GR_GL_VERTEX_PROGRAM_POINT_SIZE));
// We should set glPolygonMode(FRONT_AND_BACK,FILL) here, too. It isn't
// currently part of our gl interface. There are probably others as
// well.
}
if (kGLES_GrGLStandard == this->glStandard() &&
this->hasExtension("GL_ARM_shader_framebuffer_fetch")) {
// The arm extension requires specifically enabling MSAA fetching per sample.
// On some devices this may have a perf hit. Also multiple render targets are disabled
GL_CALL(Enable(GR_GL_FETCH_PER_SAMPLE_ARM));
}
fHWWriteToColor = kUnknown_TriState;
// we only ever use lines in hairline mode
GL_CALL(LineWidth(1));
}
if (resetBits & kMSAAEnable_GrGLBackendState) {
fMSAAEnabled = kUnknown_TriState;
// In mixed samples mode coverage modulation allows the coverage to be converted to
// "opacity", which can then be blended into the color buffer to accomplish antialiasing.
// Enable coverage modulation suitable for premultiplied alpha colors.
// This state has no effect when not rendering to a mixed sampled target.
if (this->glCaps().shaderCaps()->mixedSamplesSupport()) {
GL_CALL(CoverageModulation(GR_GL_RGBA));
}
}
fHWActiveTextureUnitIdx = -1; // invalid
if (resetBits & kTextureBinding_GrGLBackendState) {
for (int s = 0; s < fHWBoundTextureUniqueIDs.count(); ++s) {
fHWBoundTextureUniqueIDs[s] = SK_InvalidUniqueID;
}
}
if (resetBits & kBlend_GrGLBackendState) {
fHWBlendState.invalidate();
}
if (resetBits & kView_GrGLBackendState) {
fHWScissorSettings.invalidate();
fHWViewport.invalidate();
}
if (resetBits & kStencil_GrGLBackendState) {
fHWStencilSettings.invalidate();
fHWStencilTestEnabled = kUnknown_TriState;
}
// Vertex
if (resetBits & kVertex_GrGLBackendState) {
fHWGeometryState.invalidate();
}
if (resetBits & kRenderTarget_GrGLBackendState) {
fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID;
fHWSRGBFramebuffer = kUnknown_TriState;
}
if (resetBits & kPathRendering_GrGLBackendState) {
if (this->caps()->shaderCaps()->pathRenderingSupport()) {
this->glPathRendering()->resetContext();
}
}
// we assume these values
if (resetBits & kPixelStore_GrGLBackendState) {
if (this->glCaps().unpackRowLengthSupport()) {
GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0));
}
if (this->glCaps().packRowLengthSupport()) {
GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0));
}
if (this->glCaps().unpackFlipYSupport()) {
GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE));
}
if (this->glCaps().packFlipYSupport()) {
GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, GR_GL_FALSE));
}
}
if (resetBits & kProgram_GrGLBackendState) {
fHWProgramID = 0;
}
}
static GrSurfaceOrigin resolve_origin(GrSurfaceOrigin origin, bool renderTarget) {
// By default, GrRenderTargets are GL's normal orientation so that they
// can be drawn to by the outside world without the client having
// to render upside down.
if (kDefault_GrSurfaceOrigin == origin) {
return renderTarget ? kBottomLeft_GrSurfaceOrigin : kTopLeft_GrSurfaceOrigin;
} else {
return origin;
}
}
GrTexture* GrGLGpu::onWrapBackendTexture(const GrBackendTextureDesc& desc,
GrWrapOwnership ownership) {
if (!this->configToGLFormats(desc.fConfig, false, nullptr, nullptr, nullptr)) {
return nullptr;
}
if (0 == desc.fTextureHandle) {
return nullptr;
}
int maxSize = this->caps()->maxTextureSize();
if (desc.fWidth > maxSize || desc.fHeight > maxSize) {
return nullptr;
}
GrGLTexture::IDDesc idDesc;
GrSurfaceDesc surfDesc;
idDesc.fTextureID = static_cast<GrGLuint>(desc.fTextureHandle);
switch (ownership) {
case kAdopt_GrWrapOwnership:
idDesc.fLifeCycle = GrGpuResource::kAdopted_LifeCycle;
break;
case kBorrow_GrWrapOwnership:
idDesc.fLifeCycle = GrGpuResource::kBorrowed_LifeCycle;
break;
}
// next line relies on GrBackendTextureDesc's flags matching GrTexture's
surfDesc.fFlags = (GrSurfaceFlags) desc.fFlags;
surfDesc.fWidth = desc.fWidth;
surfDesc.fHeight = desc.fHeight;
surfDesc.fConfig = desc.fConfig;
surfDesc.fSampleCnt = SkTMin(desc.fSampleCnt, this->caps()->maxSampleCount());
bool renderTarget = SkToBool(desc.fFlags & kRenderTarget_GrBackendTextureFlag);
// FIXME: this should be calling resolve_origin(), but Chrome code is currently
// assuming the old behaviour, which is that backend textures are always
// BottomLeft, even for non-RT's. Once Chrome is fixed, change this to:
// glTexDesc.fOrigin = resolve_origin(desc.fOrigin, renderTarget);
if (kDefault_GrSurfaceOrigin == desc.fOrigin) {
surfDesc.fOrigin = kBottomLeft_GrSurfaceOrigin;
} else {
surfDesc.fOrigin = desc.fOrigin;
}
GrGLTexture* texture = nullptr;
if (renderTarget) {
GrGLRenderTarget::IDDesc rtIDDesc;
if (!this->createRenderTargetObjects(surfDesc, GrGpuResource::kUncached_LifeCycle,
idDesc.fTextureID, &rtIDDesc)) {
return nullptr;
}
texture = new GrGLTextureRenderTarget(this, surfDesc, idDesc, rtIDDesc);
} else {
texture = new GrGLTexture(this, surfDesc, idDesc);
}
if (nullptr == texture) {
return nullptr;
}
return texture;
}
GrRenderTarget* GrGLGpu::onWrapBackendRenderTarget(const GrBackendRenderTargetDesc& wrapDesc,
GrWrapOwnership ownership) {
GrGLRenderTarget::IDDesc idDesc;
idDesc.fRTFBOID = static_cast<GrGLuint>(wrapDesc.fRenderTargetHandle);
idDesc.fMSColorRenderbufferID = 0;
idDesc.fTexFBOID = GrGLRenderTarget::kUnresolvableFBOID;
switch (ownership) {
case kAdopt_GrWrapOwnership:
idDesc.fLifeCycle = GrGpuResource::kAdopted_LifeCycle;
break;
case kBorrow_GrWrapOwnership:
idDesc.fLifeCycle = GrGpuResource::kBorrowed_LifeCycle;
break;
}
idDesc.fSampleConfig = GrRenderTarget::kUnified_SampleConfig;
GrSurfaceDesc desc;
desc.fConfig = wrapDesc.fConfig;
desc.fFlags = kCheckAllocation_GrSurfaceFlag | kRenderTarget_GrSurfaceFlag;
desc.fWidth = wrapDesc.fWidth;
desc.fHeight = wrapDesc.fHeight;
desc.fSampleCnt = SkTMin(wrapDesc.fSampleCnt, this->caps()->maxSampleCount());
desc.fOrigin = resolve_origin(wrapDesc.fOrigin, true);
GrRenderTarget* tgt = new GrGLRenderTarget(this, desc, idDesc);
if (wrapDesc.fStencilBits) {
GrGLStencilAttachment::IDDesc sbDesc;
GrGLStencilAttachment::Format format;
format.fInternalFormat = GrGLStencilAttachment::kUnknownInternalFormat;
format.fPacked = false;
format.fStencilBits = wrapDesc.fStencilBits;
format.fTotalBits = wrapDesc.fStencilBits;
GrGLStencilAttachment* sb = new GrGLStencilAttachment(
this, sbDesc, desc.fWidth, desc.fHeight, desc.fSampleCnt, format);
tgt->renderTargetPriv().didAttachStencilAttachment(sb);
sb->unref();
}
return tgt;
}
////////////////////////////////////////////////////////////////////////////////
bool GrGLGpu::onGetWritePixelsInfo(GrSurface* dstSurface, int width, int height,
size_t rowBytes, GrPixelConfig srcConfig,
DrawPreference* drawPreference,
WritePixelTempDrawInfo* tempDrawInfo) {
if (kIndex_8_GrPixelConfig == srcConfig || GrPixelConfigIsCompressed(dstSurface->config())) {
return false;
}
// This subclass only allows writes to textures. If the dst is not a texture we have to draw
// into it. We could use glDrawPixels on GLs that have it, but we don't today.
if (!dstSurface->asTexture()) {
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
}
if (GrPixelConfigIsSRGB(dstSurface->config()) != GrPixelConfigIsSRGB(srcConfig)) {
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
}
tempDrawInfo->fSwapRAndB = false;
// These settings we will always want if a temp draw is performed. Initially set the config
// to srcConfig, though that may be modified if we decide to do a R/G swap.
tempDrawInfo->fTempSurfaceDesc.fFlags = kNone_GrSurfaceFlags;
tempDrawInfo->fTempSurfaceDesc.fConfig = srcConfig;
tempDrawInfo->fTempSurfaceDesc.fWidth = width;
tempDrawInfo->fTempSurfaceDesc.fHeight = height;
tempDrawInfo->fTempSurfaceDesc.fSampleCnt = 0;
tempDrawInfo->fTempSurfaceDesc.fOrigin = kTopLeft_GrSurfaceOrigin; // no CPU y-flip for TL.
bool configsAreRBSwaps = GrPixelConfigSwapRAndB(srcConfig) == dstSurface->config();
if (configsAreRBSwaps) {
if (!this->caps()->isConfigTexturable(srcConfig)) {
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
tempDrawInfo->fTempSurfaceDesc.fConfig = dstSurface->config();
tempDrawInfo->fSwapRAndB = true;
} else if (this->glCaps().rgba8888PixelsOpsAreSlow() &&
kRGBA_8888_GrPixelConfig == srcConfig) {
ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference);
tempDrawInfo->fTempSurfaceDesc.fConfig = dstSurface->config();
tempDrawInfo->fSwapRAndB = true;
} else if (kGLES_GrGLStandard == this->glStandard() &&
this->glCaps().bgraIsInternalFormat()) {
// The internal format and external formats must match texture uploads so we can't
// swizzle while uploading when BGRA is a distinct internal format.
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
tempDrawInfo->fTempSurfaceDesc.fConfig = dstSurface->config();
tempDrawInfo->fSwapRAndB = true;
}
}
if (!this->glCaps().unpackFlipYSupport() &&
kBottomLeft_GrSurfaceOrigin == dstSurface->origin()) {
ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference);
}
return true;
}
bool GrGLGpu::onWritePixels(GrSurface* surface,
int left, int top, int width, int height,
GrPixelConfig config, const void* buffer,
size_t rowBytes) {
GrGLTexture* glTex = static_cast<GrGLTexture*>(surface->asTexture());
if (!glTex) {
return false;
}
// OpenGL doesn't do sRGB <-> linear conversions when reading and writing pixels.
if (GrPixelConfigIsSRGB(surface->config()) != GrPixelConfigIsSRGB(config)) {
return false;
}
this->setScratchTextureUnit();
GL_CALL(BindTexture(GR_GL_TEXTURE_2D, glTex->textureID()));
bool success = false;
if (GrPixelConfigIsCompressed(glTex->desc().fConfig)) {
// We check that config == desc.fConfig in GrGLGpu::canWriteTexturePixels()
SkASSERT(config == glTex->desc().fConfig);
success = this->uploadCompressedTexData(glTex->desc(), buffer, false, left, top, width,
height);
} else {
success = this->uploadTexData(glTex->desc(), false, left, top, width, height, config,
buffer, rowBytes);
}
if (success) {
glTex->texturePriv().dirtyMipMaps(true);
return true;
}
return false;
}
static inline GrGLenum check_alloc_error(const GrSurfaceDesc& desc,
const GrGLInterface* interface) {
if (SkToBool(desc.fFlags & kCheckAllocation_GrSurfaceFlag)) {
return GR_GL_GET_ERROR(interface);
} else {
return CHECK_ALLOC_ERROR(interface);
}
}
bool GrGLGpu::uploadTexData(const GrSurfaceDesc& desc,
bool isNewTexture,
int left, int top, int width, int height,
GrPixelConfig dataConfig,
const void* data,
size_t rowBytes) {
SkASSERT(data || isNewTexture);
// If we're uploading compressed data then we should be using uploadCompressedTexData
SkASSERT(!GrPixelConfigIsCompressed(dataConfig));
size_t bpp = GrBytesPerPixel(dataConfig);
if (!GrSurfacePriv::AdjustWritePixelParams(desc.fWidth, desc.fHeight, bpp, &left, &top,
&width, &height, &data, &rowBytes)) {
return false;
}
size_t trimRowBytes = width * bpp;
// in case we need a temporary, trimmed copy of the src pixels
SkAutoSMalloc<128 * 128> tempStorage;
// We currently lazily create MIPMAPs when the we see a draw with
// GrTextureParams::kMipMap_FilterMode. Using texture storage requires that the
// MIP levels are all created when the texture is created. So for now we don't use
// texture storage.
bool useTexStorage = false &&
isNewTexture &&
this->glCaps().texStorageSupport();
if (useTexStorage && kGL_GrGLStandard == this->glStandard()) {
// 565 is not a sized internal format on desktop GL. So on desktop with
// 565 we always use an unsized internal format to let the system pick
// the best sized format to convert the 565 data to. Since TexStorage
// only allows sized internal formats we will instead use TexImage2D.
useTexStorage = desc.fConfig != kRGB_565_GrPixelConfig;
}
GrGLenum internalFormat = 0x0; // suppress warning
GrGLenum externalFormat = 0x0; // suppress warning
GrGLenum externalType = 0x0; // suppress warning
// glTexStorage requires sized internal formats on both desktop and ES. ES2 requires an unsized
// format for glTexImage, unlike ES3 and desktop.
bool useSizedFormat = useTexStorage;
if (kGL_GrGLStandard == this->glStandard() ||
(this->glVersion() >= GR_GL_VER(3, 0) &&
// ES3 only works with sized BGRA8 format if "GL_APPLE_texture_format_BGRA8888" enabled
(kBGRA_8888_GrPixelConfig != dataConfig || !this->glCaps().bgraIsInternalFormat()))) {
useSizedFormat = true;
}
if (!this->configToGLFormats(dataConfig, useSizedFormat, &internalFormat,
&externalFormat, &externalType)) {
return false;
}
/*
* check whether to allocate a temporary buffer for flipping y or
* because our srcData has extra bytes past each row. If so, we need
* to trim those off here, since GL ES may not let us specify
* GL_UNPACK_ROW_LENGTH.
*/
bool restoreGLRowLength = false;
bool swFlipY = false;
bool glFlipY = false;
if (data) {
if (kBottomLeft_GrSurfaceOrigin == desc.fOrigin) {
if (this->glCaps().unpackFlipYSupport()) {
glFlipY = true;
} else {
swFlipY = true;
}
}
if (this->glCaps().unpackRowLengthSupport() && !swFlipY) {
// can't use this for flipping, only non-neg values allowed. :(
if (rowBytes != trimRowBytes) {
GrGLint rowLength = static_cast<GrGLint>(rowBytes / bpp);
GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowLength));
restoreGLRowLength = true;
}
} else {
if (trimRowBytes != rowBytes || swFlipY) {
// copy data into our new storage, skipping the trailing bytes
size_t trimSize = height * trimRowBytes;
const char* src = (const char*)data;
if (swFlipY) {
src += (height - 1) * rowBytes;
}
char* dst = (char*)tempStorage.reset(trimSize);
for (int y = 0; y < height; y++) {
memcpy(dst, src, trimRowBytes);
if (swFlipY) {
src -= rowBytes;
} else {
src += rowBytes;
}
dst += trimRowBytes;
}
// now point data to our copied version
data = tempStorage.get();
}
}
if (glFlipY) {
GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_TRUE));
}
GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT,
static_cast<GrGLint>(GrUnpackAlignment(dataConfig))));
}
bool succeeded = true;
if (isNewTexture &&
0 == left && 0 == top &&
desc.fWidth == width && desc.fHeight == height) {
CLEAR_ERROR_BEFORE_ALLOC(this->glInterface());
if (useTexStorage) {
// We never resize or change formats of textures.
GL_ALLOC_CALL(this->glInterface(),
TexStorage2D(GR_GL_TEXTURE_2D,
1, // levels
internalFormat,
desc.fWidth, desc.fHeight));
} else {
GL_ALLOC_CALL(this->glInterface(),
TexImage2D(GR_GL_TEXTURE_2D,
0, // level
internalFormat,
desc.fWidth, desc.fHeight,
0, // border
externalFormat, externalType,
data));
}
GrGLenum error = check_alloc_error(desc, this->glInterface());
if (error != GR_GL_NO_ERROR) {
succeeded = false;
} else {
// if we have data and we used TexStorage to create the texture, we
// now upload with TexSubImage.
if (data && useTexStorage) {
GL_CALL(TexSubImage2D(GR_GL_TEXTURE_2D,
0, // level
left, top,
width, height,
externalFormat, externalType,
data));
}
}
} else {
if (swFlipY || glFlipY) {
top = desc.fHeight - (top + height);
}
GL_CALL(TexSubImage2D(GR_GL_TEXTURE_2D,
0, // level
left, top,
width, height,
externalFormat, externalType, data));
}
if (restoreGLRowLength) {
SkASSERT(this->glCaps().unpackRowLengthSupport());
GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0));
}
if (glFlipY) {
GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE));
}
return succeeded;
}
// TODO: This function is using a lot of wonky semantics like, if width == -1
// then set width = desc.fWdith ... blah. A better way to do it might be to
// create a CompressedTexData struct that takes a desc/ptr and figures out
// the proper upload semantics. Then users can construct this function how they
// see fit if they want to go against the "standard" way to do it.
bool GrGLGpu::uploadCompressedTexData(const GrSurfaceDesc& desc,
const void* data,
bool isNewTexture,
int left, int top, int width, int height) {
SkASSERT(data || isNewTexture);
// No support for software flip y, yet...
SkASSERT(kBottomLeft_GrSurfaceOrigin != desc.fOrigin);
if (-1 == width) {
width = desc.fWidth;
}
#ifdef SK_DEBUG
else {
SkASSERT(width <= desc.fWidth);
}
#endif
if (-1 == height) {
height = desc.fHeight;
}
#ifdef SK_DEBUG
else {
SkASSERT(height <= desc.fHeight);
}
#endif
// Make sure that the width and height that we pass to OpenGL
// is a multiple of the block size.
size_t dataSize = GrCompressedFormatDataSize(desc.fConfig, width, height);
// We only need the internal format for compressed 2D textures.
GrGLenum internalFormat = 0;
if (!this->configToGLFormats(desc.fConfig, false, &internalFormat, nullptr, nullptr)) {
return false;
}
if (isNewTexture) {
CLEAR_ERROR_BEFORE_ALLOC(this->glInterface());
GL_ALLOC_CALL(this->glInterface(),
CompressedTexImage2D(GR_GL_TEXTURE_2D,
0, // level
internalFormat,
width, height,
0, // border
SkToInt(dataSize),
data));
GrGLenum error = check_alloc_error(desc, this->glInterface());
if (error != GR_GL_NO_ERROR) {
return false;
}
} else {
// Paletted textures can't be updated.
if (GR_GL_PALETTE8_RGBA8 == internalFormat) {
return false;
}
GL_CALL(CompressedTexSubImage2D(GR_GL_TEXTURE_2D,
0, // level
left, top,
width, height,
internalFormat,
SkToInt(dataSize),
data));
}
return true;
}
static bool renderbuffer_storage_msaa(const GrGLContext& ctx,
int sampleCount,
GrGLenum format,
int width, int height) {
CLEAR_ERROR_BEFORE_ALLOC(ctx.interface());
SkASSERT(GrGLCaps::kNone_MSFBOType != ctx.caps()->msFBOType());
switch (ctx.caps()->msFBOType()) {
case GrGLCaps::kDesktop_ARB_MSFBOType:
case GrGLCaps::kDesktop_EXT_MSFBOType:
case GrGLCaps::kMixedSamples_MSFBOType:
case GrGLCaps::kES_3_0_MSFBOType:
GL_ALLOC_CALL(ctx.interface(),
RenderbufferStorageMultisample(GR_GL_RENDERBUFFER,
sampleCount,
format,
width, height));
break;
case GrGLCaps::kES_Apple_MSFBOType:
GL_ALLOC_CALL(ctx.interface(),
RenderbufferStorageMultisampleES2APPLE(GR_GL_RENDERBUFFER,
sampleCount,
format,
width, height));
break;
case GrGLCaps::kES_EXT_MsToTexture_MSFBOType:
case GrGLCaps::kES_IMG_MsToTexture_MSFBOType:
GL_ALLOC_CALL(ctx.interface(),
RenderbufferStorageMultisampleES2EXT(GR_GL_RENDERBUFFER,
sampleCount,
format,
width, height));
break;
case GrGLCaps::kNone_MSFBOType:
SkFAIL("Shouldn't be here if we don't support multisampled renderbuffers.");
break;
}
return (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(ctx.interface()));
}
bool GrGLGpu::createRenderTargetObjects(const GrSurfaceDesc& desc,
GrGpuResource::LifeCycle lifeCycle,
GrGLuint texID,
GrGLRenderTarget::IDDesc* idDesc) {
idDesc->fMSColorRenderbufferID = 0;
idDesc->fRTFBOID = 0;
idDesc->fTexFBOID = 0;
idDesc->fLifeCycle = lifeCycle;
idDesc->fSampleConfig = (GrGLCaps::kMixedSamples_MSFBOType == this->glCaps().msFBOType() &&
desc.fSampleCnt > 0) ? GrRenderTarget::kStencil_SampleConfig :
GrRenderTarget::kUnified_SampleConfig;
GrGLenum status;
GrGLenum msColorFormat = 0; // suppress warning
if (desc.fSampleCnt > 0 && GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType()) {
goto FAILED;
}
GL_CALL(GenFramebuffers(1, &idDesc->fTexFBOID));
if (!idDesc->fTexFBOID) {
goto FAILED;
}
// If we are using multisampling we will create two FBOS. We render to one and then resolve to
// the texture bound to the other. The exception is the IMG multisample extension. With this
// extension the texture is multisampled when rendered to and then auto-resolves it when it is
// rendered from.
if (desc.fSampleCnt > 0 && this->glCaps().usesMSAARenderBuffers()) {
GL_CALL(GenFramebuffers(1, &idDesc->fRTFBOID));
GL_CALL(GenRenderbuffers(1, &idDesc->fMSColorRenderbufferID));
if (!idDesc->fRTFBOID ||
!idDesc->fMSColorRenderbufferID ||
!this->configToGLFormats(desc.fConfig,
// ES2 and ES3 require sized internal formats for rb storage.
kGLES_GrGLStandard == this->glStandard(),
&msColorFormat,
nullptr,
nullptr)) {
goto FAILED;
}
} else {
idDesc->fRTFBOID = idDesc->fTexFBOID;
}
// below here we may bind the FBO
fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID;
if (idDesc->fRTFBOID != idDesc->fTexFBOID) {
SkASSERT(desc.fSampleCnt > 0);
GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, idDesc->fMSColorRenderbufferID));
if (!renderbuffer_storage_msaa(*fGLContext,
desc.fSampleCnt,
msColorFormat,
desc.fWidth, desc.fHeight)) {
goto FAILED;
}
fStats.incRenderTargetBinds();
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, idDesc->fRTFBOID));
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_RENDERBUFFER,
idDesc->fMSColorRenderbufferID));
if ((desc.fFlags & kCheckAllocation_GrSurfaceFlag) ||
!this->glCaps().isConfigVerifiedColorAttachment(desc.fConfig)) {
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
goto FAILED;
}
fGLContext->caps()->markConfigAsValidColorAttachment(desc.fConfig);
}
}
fStats.incRenderTargetBinds();
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, idDesc->fTexFBOID));
if (this->glCaps().usesImplicitMSAAResolve() && desc.fSampleCnt > 0) {
GL_CALL(FramebufferTexture2DMultisample(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D,
texID, 0, desc.fSampleCnt));
} else {
GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D,
texID, 0));
}
if ((desc.fFlags & kCheckAllocation_GrSurfaceFlag) ||
!this->glCaps().isConfigVerifiedColorAttachment(desc.fConfig)) {
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
goto FAILED;
}
fGLContext->caps()->markConfigAsValidColorAttachment(desc.fConfig);
}
return true;
FAILED:
if (idDesc->fMSColorRenderbufferID) {
GL_CALL(DeleteRenderbuffers(1, &idDesc->fMSColorRenderbufferID));
}
if (idDesc->fRTFBOID != idDesc->fTexFBOID) {
GL_CALL(DeleteFramebuffers(1, &idDesc->fRTFBOID));
}
if (idDesc->fTexFBOID) {
GL_CALL(DeleteFramebuffers(1, &idDesc->fTexFBOID));
}
return false;
}
// good to set a break-point here to know when createTexture fails
static GrTexture* return_null_texture() {
// SkDEBUGFAIL("null texture");
return nullptr;
}
#if 0 && defined(SK_DEBUG)
static size_t as_size_t(int x) {
return x;
}
#endif
GrTexture* GrGLGpu::onCreateTexture(const GrSurfaceDesc& desc,
GrGpuResource::LifeCycle lifeCycle,
const void* srcData, size_t rowBytes) {
// We fail if the MSAA was requested and is not available.
if (GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType() && desc.fSampleCnt) {
//SkDebugf("MSAA RT requested but not supported on this platform.");
return return_null_texture();
}
bool renderTarget = SkToBool(desc.fFlags & kRenderTarget_GrSurfaceFlag);
GrGLTexture::IDDesc idDesc;
GL_CALL(GenTextures(1, &idDesc.fTextureID));
idDesc.fLifeCycle = lifeCycle;
if (!idDesc.fTextureID) {
return return_null_texture();
}
this->setScratchTextureUnit();
GL_CALL(BindTexture(GR_GL_TEXTURE_2D, idDesc.fTextureID));
if (renderTarget && this->glCaps().textureUsageSupport()) {
// provides a hint about how this texture will be used
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_USAGE,
GR_GL_FRAMEBUFFER_ATTACHMENT));
}
// Some drivers like to know filter/wrap before seeing glTexImage2D. Some
// drivers have a bug where an FBO won't be complete if it includes a
// texture that is not mipmap complete (considering the filter in use).
GrGLTexture::TexParams initialTexParams;
// we only set a subset here so invalidate first
initialTexParams.invalidate();
initialTexParams.fMinFilter = GR_GL_NEAREST;
initialTexParams.fMagFilter = GR_GL_NEAREST;
initialTexParams.fWrapS = GR_GL_CLAMP_TO_EDGE;
initialTexParams.fWrapT = GR_GL_CLAMP_TO_EDGE;
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MAG_FILTER,
initialTexParams.fMagFilter));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MIN_FILTER,
initialTexParams.fMinFilter));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_S,
initialTexParams.fWrapS));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_T,
initialTexParams.fWrapT));
if (!this->uploadTexData(desc, true, 0, 0,
desc.fWidth, desc.fHeight,
desc.fConfig, srcData, rowBytes)) {
GL_CALL(DeleteTextures(1, &idDesc.fTextureID));
return return_null_texture();
}
GrGLTexture* tex;
if (renderTarget) {
// unbind the texture from the texture unit before binding it to the frame buffer
GL_CALL(BindTexture(GR_GL_TEXTURE_2D, 0));
GrGLRenderTarget::IDDesc rtIDDesc;
if (!this->createRenderTargetObjects(desc, lifeCycle, idDesc.fTextureID, &rtIDDesc)) {
GL_CALL(DeleteTextures(1, &idDesc.fTextureID));
return return_null_texture();
}
tex = new GrGLTextureRenderTarget(this, desc, idDesc, rtIDDesc);
} else {
tex = new GrGLTexture(this, desc, idDesc);
}
tex->setCachedTexParams(initialTexParams, this->getResetTimestamp());
#ifdef TRACE_TEXTURE_CREATION
SkDebugf("--- new texture [%d] size=(%d %d) config=%d\n",
glTexDesc.fTextureID, desc.fWidth, desc.fHeight, desc.fConfig);
#endif
return tex;
}
GrTexture* GrGLGpu::onCreateCompressedTexture(const GrSurfaceDesc& desc,
GrGpuResource::LifeCycle lifeCycle,
const void* srcData) {
// Make sure that we're not flipping Y.
if (kBottomLeft_GrSurfaceOrigin == desc.fOrigin) {
return return_null_texture();
}
GrGLTexture::IDDesc idDesc;
GL_CALL(GenTextures(1, &idDesc.fTextureID));
idDesc.fLifeCycle = lifeCycle;
if (!idDesc.fTextureID) {
return return_null_texture();
}
this->setScratchTextureUnit();
GL_CALL(BindTexture(GR_GL_TEXTURE_2D, idDesc.fTextureID));
// Some drivers like to know filter/wrap before seeing glTexImage2D. Some
// drivers have a bug where an FBO won't be complete if it includes a
// texture that is not mipmap complete (considering the filter in use).
GrGLTexture::TexParams initialTexParams;
// we only set a subset here so invalidate first
initialTexParams.invalidate();
initialTexParams.fMinFilter = GR_GL_NEAREST;
initialTexParams.fMagFilter = GR_GL_NEAREST;
initialTexParams.fWrapS = GR_GL_CLAMP_TO_EDGE;
initialTexParams.fWrapT = GR_GL_CLAMP_TO_EDGE;
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MAG_FILTER,
initialTexParams.fMagFilter));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MIN_FILTER,
initialTexParams.fMinFilter));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_S,
initialTexParams.fWrapS));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_T,
initialTexParams.fWrapT));
if (!this->uploadCompressedTexData(desc, srcData)) {
GL_CALL(DeleteTextures(1, &idDesc.fTextureID));
return return_null_texture();
}
GrGLTexture* tex;
tex = new GrGLTexture(this, desc, idDesc);
tex->setCachedTexParams(initialTexParams, this->getResetTimestamp());
#ifdef TRACE_TEXTURE_CREATION
SkDebugf("--- new compressed texture [%d] size=(%d %d) config=%d\n",
glTexDesc.fTextureID, desc.fWidth, desc.fHeight, desc.fConfig);
#endif
return tex;
}
namespace {
const GrGLuint kUnknownBitCount = GrGLStencilAttachment::kUnknownBitCount;
void inline get_stencil_rb_sizes(const GrGLInterface* gl,
GrGLStencilAttachment::Format* format) {
// we shouldn't ever know one size and not the other
SkASSERT((kUnknownBitCount == format->fStencilBits) ==
(kUnknownBitCount == format->fTotalBits));
if (kUnknownBitCount == format->fStencilBits) {
GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER,
GR_GL_RENDERBUFFER_STENCIL_SIZE,
(GrGLint*)&format->fStencilBits);
if (format->fPacked) {
GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER,
GR_GL_RENDERBUFFER_DEPTH_SIZE,
(GrGLint*)&format->fTotalBits);
format->fTotalBits += format->fStencilBits;
} else {
format->fTotalBits = format->fStencilBits;
}
}
}
}
bool GrGLGpu::createStencilAttachmentForRenderTarget(GrRenderTarget* rt, int width, int height) {
// All internally created RTs are also textures. We don't create
// SBs for a client's standalone RT (that is a RT that isn't also a texture).
SkASSERT(rt->asTexture());
SkASSERT(width >= rt->width());
SkASSERT(height >= rt->height());
int samples = rt->numStencilSamples();
GrGLStencilAttachment::IDDesc sbDesc;
int stencilFmtCnt = this->glCaps().stencilFormats().count();
for (int i = 0; i < stencilFmtCnt; ++i) {
if (!sbDesc.fRenderbufferID) {
GL_CALL(GenRenderbuffers(1, &sbDesc.fRenderbufferID));
}
if (!sbDesc.fRenderbufferID) {
return false;
}
GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbDesc.fRenderbufferID));
// we start with the last stencil format that succeeded in hopes
// that we won't go through this loop more than once after the
// first (painful) stencil creation.
int sIdx = (i + fLastSuccessfulStencilFmtIdx) % stencilFmtCnt;
const GrGLCaps::StencilFormat& sFmt = this->glCaps().stencilFormats()[sIdx];
CLEAR_ERROR_BEFORE_ALLOC(this->glInterface());
// we do this "if" so that we don't call the multisample
// version on a GL that doesn't have an MSAA extension.
bool created;
if (samples > 0) {
created = renderbuffer_storage_msaa(*fGLContext,
samples,
sFmt.fInternalFormat,
width, height);
} else {
GL_ALLOC_CALL(this->glInterface(), RenderbufferStorage(GR_GL_RENDERBUFFER,
sFmt.fInternalFormat,
width, height));
created = (GR_GL_NO_ERROR == check_alloc_error(rt->desc(), this->glInterface()));
}
if (created) {
fStats.incStencilAttachmentCreates();
// After sized formats we attempt an unsized format and take
// whatever sizes GL gives us. In that case we query for the size.
GrGLStencilAttachment::Format format = sFmt;
get_stencil_rb_sizes(this->glInterface(), &format);
SkAutoTUnref<GrGLStencilAttachment> sb(
new GrGLStencilAttachment(this, sbDesc, width, height, samples, format));
if (this->attachStencilAttachmentToRenderTarget(sb, rt)) {
fLastSuccessfulStencilFmtIdx = sIdx;
rt->renderTargetPriv().didAttachStencilAttachment(sb);
// This work around is currently breaking on windows 7 hd2000 bot when we bind a color buffer
#if 0
// Clear the stencil buffer. We use a special purpose FBO for this so that the
// entire stencil buffer is cleared, even if it is attached to an FBO with a
// smaller color target.
if (0 == fStencilClearFBOID) {
GL_CALL(GenFramebuffers(1, &fStencilClearFBOID));
}
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, fStencilClearFBOID));
fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID;
fStats.incRenderTargetBinds();
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, sbDesc.fRenderbufferID));
if (sFmt.fPacked) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, sbDesc.fRenderbufferID));
}
GL_CALL(ClearStencil(0));
// Many GL implementations seem to have trouble with clearing an FBO with only
// a stencil buffer.
GrGLuint tempRB;
GL_CALL(GenRenderbuffers(1, &tempRB));
GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, tempRB));
if (samples > 0) {
renderbuffer_storage_msaa(fGLContext, samples, GR_GL_RGBA8, width, height);
} else {
GL_CALL(RenderbufferStorage(GR_GL_RENDERBUFFER, GR_GL_RGBA8, width, height));
}
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_RENDERBUFFER, tempRB));
GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT));
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_RENDERBUFFER, 0));
GL_CALL(DeleteRenderbuffers(1, &tempRB));
// Unbind the SB from the FBO so that we don't keep it alive.
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
if (sFmt.fPacked) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
}
#endif
return true;
}
// Remove the scratch key from this resource so we don't grab it from the cache ever
// again.
sb->resourcePriv().removeScratchKey();
// Set this to 0 since we handed the valid ID off to the failed stencil buffer resource.
sbDesc.fRenderbufferID = 0;
}
}
GL_CALL(DeleteRenderbuffers(1, &sbDesc.fRenderbufferID));
return false;
}
bool GrGLGpu::attachStencilAttachmentToRenderTarget(GrStencilAttachment* sb, GrRenderTarget* rt) {
GrGLRenderTarget* glrt = static_cast<GrGLRenderTarget*>(rt);
GrGLuint fbo = glrt->renderFBOID();
if (nullptr == sb) {
if (rt->renderTargetPriv().getStencilAttachment()) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
#ifdef SK_DEBUG
GrGLenum status;
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
SkASSERT(GR_GL_FRAMEBUFFER_COMPLETE == status);
#endif
}
return true;
} else {
GrGLStencilAttachment* glsb = static_cast<GrGLStencilAttachment*>(sb);
GrGLuint rb = glsb->renderbufferID();
fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID;
fStats.incRenderTargetBinds();
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, fbo));
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, rb));
if (glsb->format().fPacked) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, rb));
} else {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
}
GrGLenum status;
if (!this->glCaps().isColorConfigAndStencilFormatVerified(rt->config(), glsb->format())) {
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
if (glsb->format().fPacked) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
}
return false;
} else {
fGLContext->caps()->markColorConfigAndStencilFormatAsVerified(
rt->config(),
glsb->format());
}
}
return true;
}
}
////////////////////////////////////////////////////////////////////////////////
GrVertexBuffer* GrGLGpu::onCreateVertexBuffer(size_t size, bool dynamic) {
GrGLVertexBuffer::Desc desc;
desc.fDynamic = dynamic;
desc.fSizeInBytes = size;
if (this->glCaps().useNonVBOVertexAndIndexDynamicData() && desc.fDynamic) {
desc.fID = 0;
GrGLVertexBuffer* vertexBuffer = new GrGLVertexBuffer(this, desc);
return vertexBuffer;
} else {
GL_CALL(GenBuffers(1, &desc.fID));
if (desc.fID) {
fHWGeometryState.setVertexBufferID(this, desc.fID);
CLEAR_ERROR_BEFORE_ALLOC(this->glInterface());
// make sure driver can allocate memory for this buffer
GL_ALLOC_CALL(this->glInterface(),
BufferData(GR_GL_ARRAY_BUFFER,
(GrGLsizeiptr) desc.fSizeInBytes,
nullptr, // data ptr
desc.fDynamic ? GR_GL_DYNAMIC_DRAW : GR_GL_STATIC_DRAW));
if (CHECK_ALLOC_ERROR(this->glInterface()) != GR_GL_NO_ERROR) {
GL_CALL(DeleteBuffers(1, &desc.fID));
this->notifyVertexBufferDelete(desc.fID);
return nullptr;
}
GrGLVertexBuffer* vertexBuffer = new GrGLVertexBuffer(this, desc);
return vertexBuffer;
}
return nullptr;
}
}
GrIndexBuffer* GrGLGpu::onCreateIndexBuffer(size_t size, bool dynamic) {
GrGLIndexBuffer::Desc desc;
desc.fDynamic = dynamic;
desc.fSizeInBytes = size;
if (this->glCaps().useNonVBOVertexAndIndexDynamicData() && desc.fDynamic) {
desc.fID = 0;
GrIndexBuffer* indexBuffer = new GrGLIndexBuffer(this, desc);
return indexBuffer;
} else {
GL_CALL(GenBuffers(1, &desc.fID));
if (desc.fID) {
fHWGeometryState.setIndexBufferIDOnDefaultVertexArray(this, desc.fID);
CLEAR_ERROR_BEFORE_ALLOC(this->glInterface());
// make sure driver can allocate memory for this buffer
GL_ALLOC_CALL(this->glInterface(),
BufferData(GR_GL_ELEMENT_ARRAY_BUFFER,
(GrGLsizeiptr) desc.fSizeInBytes,
nullptr, // data ptr
desc.fDynamic ? GR_GL_DYNAMIC_DRAW : GR_GL_STATIC_DRAW));
if (CHECK_ALLOC_ERROR(this->glInterface()) != GR_GL_NO_ERROR) {
GL_CALL(DeleteBuffers(1, &desc.fID));
this->notifyIndexBufferDelete(desc.fID);
return nullptr;
}
GrIndexBuffer* indexBuffer = new GrGLIndexBuffer(this, desc);
return indexBuffer;
}
return nullptr;
}
}
void GrGLGpu::flushScissor(const GrScissorState& scissorState,
const GrGLIRect& rtViewport,
GrSurfaceOrigin rtOrigin) {
if (scissorState.enabled()) {
GrGLIRect scissor;
scissor.setRelativeTo(rtViewport,
scissorState.rect().fLeft,
scissorState.rect().fTop,
scissorState.rect().width(),
scissorState.rect().height(),
rtOrigin);
// if the scissor fully contains the viewport then we fall through and
// disable the scissor test.
if (!scissor.contains(rtViewport)) {
if (fHWScissorSettings.fRect != scissor) {
scissor.pushToGLScissor(this->glInterface());
fHWScissorSettings.fRect = scissor;
}
if (kYes_TriState != fHWScissorSettings.fEnabled) {
GL_CALL(Enable(GR_GL_SCISSOR_TEST));
fHWScissorSettings.fEnabled = kYes_TriState;
}
return;
}
}
// See fall through note above
this->disableScissor();
}
bool GrGLGpu::flushGLState(const DrawArgs& args) {
GrXferProcessor::BlendInfo blendInfo;
const GrPipeline& pipeline = *args.fPipeline;
args.fPipeline->getXferProcessor()->getBlendInfo(&blendInfo);
this->flushDither(pipeline.isDitherState());
this->flushColorWrite(blendInfo.fWriteColor);
this->flushDrawFace(pipeline.getDrawFace());
SkAutoTUnref<GrGLProgram> program(fProgramCache->refProgram(args));
if (!program) {
GrCapsDebugf(this->caps(), "Failed to create program!\n");
return false;
}
GrGLuint programID = program->programID();
if (fHWProgramID != programID) {
GL_CALL(UseProgram(programID));
fHWProgramID = programID;
}
if (blendInfo.fWriteColor) {
this->flushBlend(blendInfo);
}
SkSTArray<8, const GrTextureAccess*> textureAccesses;
program->setData(*args.fPrimitiveProcessor, pipeline, *args.fBatchTracker, &textureAccesses);
int numTextureAccesses = textureAccesses.count();
for (int i = 0; i < numTextureAccesses; i++) {
this->bindTexture(i, textureAccesses[i]->getParams(),
static_cast<GrGLTexture*>(textureAccesses[i]->getTexture()));
}
GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(pipeline.getRenderTarget());
this->flushStencil(pipeline.getStencil());
this->flushScissor(pipeline.getScissorState(), glRT->getViewport(), glRT->origin());
this->flushHWAAState(glRT, pipeline.isHWAntialiasState());
// This must come after textures are flushed because a texture may need
// to be msaa-resolved (which will modify bound FBO state).
this->flushRenderTarget(glRT, nullptr);
return true;
}
void GrGLGpu::setupGeometry(const GrPrimitiveProcessor& primProc,
const GrNonInstancedVertices& vertices,
size_t* indexOffsetInBytes) {
GrGLVertexBuffer* vbuf;
vbuf = (GrGLVertexBuffer*) vertices.vertexBuffer();
SkASSERT(vbuf);
SkASSERT(!vbuf->isMapped());
GrGLIndexBuffer* ibuf = nullptr;
if (vertices.isIndexed()) {
SkASSERT(indexOffsetInBytes);
*indexOffsetInBytes = 0;
ibuf = (GrGLIndexBuffer*)vertices.indexBuffer();
SkASSERT(ibuf);
SkASSERT(!ibuf->isMapped());
*indexOffsetInBytes += ibuf->baseOffset();
}
GrGLAttribArrayState* attribState =
fHWGeometryState.bindArrayAndBuffersToDraw(this, vbuf, ibuf);
int vaCount = primProc.numAttribs();
if (vaCount > 0) {
GrGLsizei stride = static_cast<GrGLsizei>(primProc.getVertexStride());
size_t vertexOffsetInBytes = stride * vertices.startVertex();
vertexOffsetInBytes += vbuf->baseOffset();
uint32_t usedAttribArraysMask = 0;
size_t offset = 0;
for (int attribIndex = 0; attribIndex < vaCount; attribIndex++) {
const GrGeometryProcessor::Attribute& attrib = primProc.getAttrib(attribIndex);
usedAttribArraysMask |= (1 << attribIndex);
GrVertexAttribType attribType = attrib.fType;
attribState->set(this,
attribIndex,
vbuf->bufferID(),
GrGLAttribTypeToLayout(attribType).fCount,
GrGLAttribTypeToLayout(attribType).fType,
GrGLAttribTypeToLayout(attribType).fNormalized,
stride,
reinterpret_cast<GrGLvoid*>(vertexOffsetInBytes + offset));
offset += attrib.fOffset;
}
attribState->disableUnusedArrays(this, usedAttribArraysMask);
}
}
void GrGLGpu::buildProgramDesc(GrProgramDesc* desc,
const GrPrimitiveProcessor& primProc,
const GrPipeline& pipeline,
const GrBatchTracker& batchTracker) const {
if (!GrGLProgramDescBuilder::Build(desc, primProc, pipeline, this, batchTracker)) {
SkDEBUGFAIL("Failed to generate GL program descriptor");
}
}
void GrGLGpu::disableScissor() {
if (kNo_TriState != fHWScissorSettings.fEnabled) {
GL_CALL(Disable(GR_GL_SCISSOR_TEST));
fHWScissorSettings.fEnabled = kNo_TriState;
return;
}
}
void GrGLGpu::onClear(GrRenderTarget* target, const SkIRect& rect, GrColor color) {
// parent class should never let us get here with no RT
SkASSERT(target);
GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target);
this->flushRenderTarget(glRT, &rect);
GrScissorState scissorState;
scissorState.set(rect);
this->flushScissor(scissorState, glRT->getViewport(), glRT->origin());
GrGLfloat r, g, b, a;
static const GrGLfloat scale255 = 1.f / 255.f;
a = GrColorUnpackA(color) * scale255;
GrGLfloat scaleRGB = scale255;
r = GrColorUnpackR(color) * scaleRGB;
g = GrColorUnpackG(color) * scaleRGB;
b = GrColorUnpackB(color) * scaleRGB;
GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE));
fHWWriteToColor = kYes_TriState;
GL_CALL(ClearColor(r, g, b, a));
GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT));
}
void GrGLGpu::discard(GrRenderTarget* renderTarget) {
SkASSERT(renderTarget);
if (!this->caps()->discardRenderTargetSupport()) {
return;
}
GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(renderTarget);
if (renderTarget->getUniqueID() != fHWBoundRenderTargetUniqueID) {
fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID;
fStats.incRenderTargetBinds();
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, glRT->renderFBOID()));
}
switch (this->glCaps().invalidateFBType()) {
case GrGLCaps::kNone_InvalidateFBType:
SkFAIL("Should never get here.");
break;
case GrGLCaps::kInvalidate_InvalidateFBType:
if (0 == glRT->renderFBOID()) {
// When rendering to the default framebuffer the legal values for attachments
// are GL_COLOR, GL_DEPTH, GL_STENCIL, ... rather than the various FBO attachment
// types.
static const GrGLenum attachments[] = { GR_GL_COLOR };
GL_CALL(InvalidateFramebuffer(GR_GL_FRAMEBUFFER, SK_ARRAY_COUNT(attachments),
attachments));
} else {
static const GrGLenum attachments[] = { GR_GL_COLOR_ATTACHMENT0 };
GL_CALL(InvalidateFramebuffer(GR_GL_FRAMEBUFFER, SK_ARRAY_COUNT(attachments),
attachments));
}
break;
case GrGLCaps::kDiscard_InvalidateFBType: {
if (0 == glRT->renderFBOID()) {
// When rendering to the default framebuffer the legal values for attachments
// are GL_COLOR, GL_DEPTH, GL_STENCIL, ... rather than the various FBO attachment
// types. See glDiscardFramebuffer() spec.
static const GrGLenum attachments[] = { GR_GL_COLOR };
GL_CALL(DiscardFramebuffer(GR_GL_FRAMEBUFFER, SK_ARRAY_COUNT(attachments),
attachments));
} else {
static const GrGLenum attachments[] = { GR_GL_COLOR_ATTACHMENT0 };
GL_CALL(DiscardFramebuffer(GR_GL_FRAMEBUFFER, SK_ARRAY_COUNT(attachments),
attachments));
}
break;
}
}
renderTarget->flagAsResolved();
}
void GrGLGpu::clearStencil(GrRenderTarget* target) {
if (nullptr == target) {
return;
}
GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target);
this->flushRenderTarget(glRT, &SkIRect::EmptyIRect());
this->disableScissor();
GL_CALL(StencilMask(0xffffffff));
GL_CALL(ClearStencil(0));
GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT));
fHWStencilSettings.invalidate();
}
void GrGLGpu::onClearStencilClip(GrRenderTarget* target, const SkIRect& rect, bool insideClip) {
SkASSERT(target);
GrStencilAttachment* sb = target->renderTargetPriv().getStencilAttachment();
// this should only be called internally when we know we have a
// stencil buffer.
SkASSERT(sb);
GrGLint stencilBitCount = sb->bits();
#if 0
SkASSERT(stencilBitCount > 0);
GrGLint clipStencilMask = (1 << (stencilBitCount - 1));
#else
// we could just clear the clip bit but when we go through
// ANGLE a partial stencil mask will cause clears to be
// turned into draws. Our contract on GrDrawTarget says that
// changing the clip between stencil passes may or may not
// zero the client's clip bits. So we just clear the whole thing.
static const GrGLint clipStencilMask = ~0;
#endif
GrGLint value;
if (insideClip) {
value = (1 << (stencilBitCount - 1));
} else {
value = 0;
}
GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target);
this->flushRenderTarget(glRT, &SkIRect::EmptyIRect());
GrScissorState scissorState;
scissorState.set(rect);
this->flushScissor(scissorState, glRT->getViewport(), glRT->origin());
GL_CALL(StencilMask((uint32_t) clipStencilMask));
GL_CALL(ClearStencil(value));
GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT));
fHWStencilSettings.invalidate();
}
static bool read_pixels_pays_for_y_flip(GrRenderTarget* renderTarget, const GrGLCaps& caps,
int width, int height, GrPixelConfig config,
size_t rowBytes) {
// If this render target is already TopLeft, we don't need to flip.
if (kTopLeft_GrSurfaceOrigin == renderTarget->origin()) {
return false;
}
// If the read is really small or smaller than the min texture size, don't force a draw.
int minSize = SkTMax(32, caps.minTextureSize());
if (width < minSize || height < minSize) {
return false;
}
// if GL can do the flip then we'll never pay for it.
if (caps.packFlipYSupport()) {
return false;
}
// If we have to do memcpy to handle non-trim rowBytes then we
// get the flip for free. Otherwise it costs.
// Note that we're assuming that 0 rowBytes has already been handled and that the width has been
// clipped.
return caps.packRowLengthSupport() || GrBytesPerPixel(config) * width == rowBytes;
}
bool GrGLGpu::onGetReadPixelsInfo(GrSurface* srcSurface, int width, int height, size_t rowBytes,
GrPixelConfig readConfig, DrawPreference* drawPreference,
ReadPixelTempDrawInfo* tempDrawInfo) {
// This subclass can only read pixels from a render target. We could use glTexSubImage2D on
// GL versions that support it but we don't today.
if (!srcSurface->asRenderTarget()) {
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
}
if (GrPixelConfigIsSRGB(srcSurface->config()) != GrPixelConfigIsSRGB(readConfig)) {
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
}
tempDrawInfo->fSwapRAndB = false;
// These settings we will always want if a temp draw is performed. The config is set below
// depending on whether we want to do a R/B swap or not.
tempDrawInfo->fTempSurfaceDesc.fFlags = kRenderTarget_GrSurfaceFlag;
tempDrawInfo->fTempSurfaceDesc.fWidth = width;
tempDrawInfo->fTempSurfaceDesc.fHeight = height;
tempDrawInfo->fTempSurfaceDesc.fSampleCnt = 0;
tempDrawInfo->fTempSurfaceDesc.fOrigin = kTopLeft_GrSurfaceOrigin; // no CPU y-flip for TL.
tempDrawInfo->fUseExactScratch = this->glCaps().partialFBOReadIsSlow() &&
width >= this->caps()->minTextureSize() &&
height >= this->caps()->minTextureSize();
// Start off assuming that any temp draw should be to the readConfig, then check if that will
// be inefficient.
GrPixelConfig srcConfig = srcSurface->config();
tempDrawInfo->fTempSurfaceDesc.fConfig = readConfig;
if (this->glCaps().rgba8888PixelsOpsAreSlow() && kRGBA_8888_GrPixelConfig == readConfig) {
tempDrawInfo->fTempSurfaceDesc.fConfig = kBGRA_8888_GrPixelConfig;
tempDrawInfo->fSwapRAndB = true;
ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference);
} else if (kMesa_GrGLDriver == this->glContext().driver() &&
GrBytesPerPixel(readConfig) == 4 &&
GrPixelConfigSwapRAndB(readConfig) == srcConfig) {
// Mesa 3D takes a slow path on when reading back BGRA from an RGBA surface and vice-versa.
// Better to do a draw with a R/B swap and then read as the original config.
tempDrawInfo->fTempSurfaceDesc.fConfig = srcConfig;
tempDrawInfo->fSwapRAndB = true;
ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference);
} else if (readConfig == kBGRA_8888_GrPixelConfig &&
!this->glCaps().readPixelsSupported(this->glInterface(), GR_GL_BGRA,
GR_GL_UNSIGNED_BYTE, srcConfig)) {
tempDrawInfo->fTempSurfaceDesc.fConfig = kRGBA_8888_GrPixelConfig;
tempDrawInfo->fSwapRAndB = true;
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
}
GrRenderTarget* srcAsRT = srcSurface->asRenderTarget();
if (!srcAsRT) {
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
} else if (read_pixels_pays_for_y_flip(srcAsRT, this->glCaps(), width, height, readConfig,
rowBytes)) {
ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference);
}
return true;
}
bool GrGLGpu::onReadPixels(GrSurface* surface,
int left, int top,
int width, int height,
GrPixelConfig config,
void* buffer,
size_t rowBytes) {
SkASSERT(surface);
GrGLRenderTarget* tgt = static_cast<GrGLRenderTarget*>(surface->asRenderTarget());
if (!tgt) {
return false;
}
// OpenGL doesn't do sRGB <-> linear conversions when reading and writing pixels.
if (GrPixelConfigIsSRGB(surface->config()) != GrPixelConfigIsSRGB(config)) {
return false;
}
GrGLenum format = 0;
GrGLenum type = 0;
bool flipY = kBottomLeft_GrSurfaceOrigin == surface->origin();
if (!this->configToGLFormats(config, false, nullptr, &format, &type)) {
return false;
}
// glReadPixels does not allow GL_SRGB_ALPHA. Instead use GL_RGBA. This will not trigger a
// conversion when the src is srgb.
if (GR_GL_SRGB_ALPHA == format) {
format = GR_GL_RGBA;
}
// resolve the render target if necessary
switch (tgt->getResolveType()) {
case GrGLRenderTarget::kCantResolve_ResolveType:
return false;
case GrGLRenderTarget::kAutoResolves_ResolveType:
this->flushRenderTarget(tgt, &SkIRect::EmptyIRect());
break;
case GrGLRenderTarget::kCanResolve_ResolveType:
this->onResolveRenderTarget(tgt);
// we don't track the state of the READ FBO ID.
fStats.incRenderTargetBinds();
GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER,
tgt->textureFBOID()));
break;
default:
SkFAIL("Unknown resolve type");
}
const GrGLIRect& glvp = tgt->getViewport();
// the read rect is viewport-relative
GrGLIRect readRect;
readRect.setRelativeTo(glvp, left, top, width, height, tgt->origin());
size_t tightRowBytes = GrBytesPerPixel(config) * width;
size_t readDstRowBytes = tightRowBytes;
void* readDst = buffer;
// determine if GL can read using the passed rowBytes or if we need
// a scratch buffer.
SkAutoSMalloc<32 * sizeof(GrColor)> scratch;
if (rowBytes != tightRowBytes) {
if (this->glCaps().packRowLengthSupport()) {
SkASSERT(!(rowBytes % sizeof(GrColor)));
GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH,
static_cast<GrGLint>(rowBytes / sizeof(GrColor))));
readDstRowBytes = rowBytes;
} else {
scratch.reset(tightRowBytes * height);
readDst = scratch.get();
}
}
if (flipY && this->glCaps().packFlipYSupport()) {
GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 1));
}
GL_CALL(ReadPixels(readRect.fLeft, readRect.fBottom,
readRect.fWidth, readRect.fHeight,
format, type, readDst));
if (readDstRowBytes != tightRowBytes) {
SkASSERT(this->glCaps().packRowLengthSupport());
GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0));
}
if (flipY && this->glCaps().packFlipYSupport()) {
GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 0));
flipY = false;
}
// now reverse the order of the rows, since GL's are bottom-to-top, but our
// API presents top-to-bottom. We must preserve the padding contents. Note
// that the above readPixels did not overwrite the padding.
if (readDst == buffer) {
SkASSERT(rowBytes == readDstRowBytes);
if (flipY) {
scratch.reset(tightRowBytes);
void* tmpRow = scratch.get();
// flip y in-place by rows
const int halfY = height >> 1;
char* top = reinterpret_cast<char*>(buffer);
char* bottom = top + (height - 1) * rowBytes;
for (int y = 0; y < halfY; y++) {
memcpy(tmpRow, top, tightRowBytes);
memcpy(top, bottom, tightRowBytes);
memcpy(bottom, tmpRow, tightRowBytes);
top += rowBytes;
bottom -= rowBytes;
}
}
} else {
SkASSERT(readDst != buffer); SkASSERT(rowBytes != tightRowBytes);
// copy from readDst to buffer while flipping y
// const int halfY = height >> 1;
const char* src = reinterpret_cast<const char*>(readDst);
char* dst = reinterpret_cast<char*>(buffer);
if (flipY) {
dst += (height-1) * rowBytes;
}
for (int y = 0; y < height; y++) {
memcpy(dst, src, tightRowBytes);
src += readDstRowBytes;
if (!flipY) {
dst += rowBytes;
} else {
dst -= rowBytes;
}
}
}
return true;
}
void GrGLGpu::flushRenderTarget(GrGLRenderTarget* target, const SkIRect* bound) {
SkASSERT(target);
uint32_t rtID = target->getUniqueID();
if (fHWBoundRenderTargetUniqueID != rtID) {
fStats.incRenderTargetBinds();
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, target->renderFBOID()));
#ifdef SK_DEBUG
// don't do this check in Chromium -- this is causing
// lots of repeated command buffer flushes when the compositor is
// rendering with Ganesh, which is really slow; even too slow for
// Debug mode.
if (kChromium_GrGLDriver != this->glContext().driver()) {
GrGLenum status;
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
SkDebugf("GrGLGpu::flushRenderTarget glCheckFramebufferStatus %x\n", status);
}
}
#endif
fHWBoundRenderTargetUniqueID = rtID;
const GrGLIRect& vp = target->getViewport();
if (fHWViewport != vp) {
vp.pushToGLViewport(this->glInterface());
fHWViewport = vp;
}
if (this->glCaps().srgbWriteControl()) {
bool enableSRGBWrite = GrPixelConfigIsSRGB(target->config());
if (enableSRGBWrite && kYes_TriState != fHWSRGBFramebuffer) {
GL_CALL(Enable(GR_GL_FRAMEBUFFER_SRGB));
fHWSRGBFramebuffer = kYes_TriState;
} else if (!enableSRGBWrite && kNo_TriState != fHWSRGBFramebuffer) {
GL_CALL(Disable(GR_GL_FRAMEBUFFER_SRGB));
fHWSRGBFramebuffer = kNo_TriState;
}
}
}
if (nullptr == bound || !bound->isEmpty()) {
target->flagAsNeedingResolve(bound);
}
GrTexture *texture = target->asTexture();
if (texture) {
texture->texturePriv().dirtyMipMaps(true);
}
}
GrGLenum gPrimitiveType2GLMode[] = {
GR_GL_TRIANGLES,
GR_GL_TRIANGLE_STRIP,
GR_GL_TRIANGLE_FAN,
GR_GL_POINTS,
GR_GL_LINES,
GR_GL_LINE_STRIP
};
#define SWAP_PER_DRAW 0
#if SWAP_PER_DRAW
#if defined(SK_BUILD_FOR_MAC)
#include <AGL/agl.h>
#elif defined(SK_BUILD_FOR_WIN32)
#include <gl/GL.h>
void SwapBuf() {
DWORD procID = GetCurrentProcessId();
HWND hwnd = GetTopWindow(GetDesktopWindow());
while(hwnd) {
DWORD wndProcID = 0;
GetWindowThreadProcessId(hwnd, &wndProcID);
if(wndProcID == procID) {
SwapBuffers(GetDC(hwnd));
}
hwnd = GetNextWindow(hwnd, GW_HWNDNEXT);
}
}
#endif
#endif
void GrGLGpu::onDraw(const DrawArgs& args, const GrNonInstancedVertices& vertices) {
if (!this->flushGLState(args)) {
return;
}
size_t indexOffsetInBytes = 0;
this->setupGeometry(*args.fPrimitiveProcessor, vertices, &indexOffsetInBytes);
SkASSERT((size_t)vertices.primitiveType() < SK_ARRAY_COUNT(gPrimitiveType2GLMode));
if (vertices.isIndexed()) {
GrGLvoid* indices =
reinterpret_cast<GrGLvoid*>(indexOffsetInBytes + sizeof(uint16_t) *
vertices.startIndex());
// info.startVertex() was accounted for by setupGeometry.
GL_CALL(DrawElements(gPrimitiveType2GLMode[vertices.primitiveType()],
vertices.indexCount(),
GR_GL_UNSIGNED_SHORT,
indices));
} else {
// Pass 0 for parameter first. We have to adjust glVertexAttribPointer() to account for
// startVertex in the DrawElements case. So we always rely on setupGeometry to have
// accounted for startVertex.
GL_CALL(DrawArrays(gPrimitiveType2GLMode[vertices.primitiveType()], 0,
vertices.vertexCount()));
}
#if SWAP_PER_DRAW
glFlush();
#if defined(SK_BUILD_FOR_MAC)
aglSwapBuffers(aglGetCurrentContext());
int set_a_break_pt_here = 9;
aglSwapBuffers(aglGetCurrentContext());
#elif defined(SK_BUILD_FOR_WIN32)
SwapBuf();
int set_a_break_pt_here = 9;
SwapBuf();
#endif
#endif
}
void GrGLGpu::onResolveRenderTarget(GrRenderTarget* target) {
GrGLRenderTarget* rt = static_cast<GrGLRenderTarget*>(target);
if (rt->needsResolve()) {
// Some extensions automatically resolves the texture when it is read.
if (this->glCaps().usesMSAARenderBuffers()) {
SkASSERT(rt->textureFBOID() != rt->renderFBOID());
fStats.incRenderTargetBinds();
fStats.incRenderTargetBinds();
GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, rt->renderFBOID()));
GL_CALL(BindFramebuffer(GR_GL_DRAW_FRAMEBUFFER, rt->textureFBOID()));
// make sure we go through flushRenderTarget() since we've modified
// the bound DRAW FBO ID.
fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID;
const GrGLIRect& vp = rt->getViewport();
const SkIRect dirtyRect = rt->getResolveRect();
if (GrGLCaps::kES_Apple_MSFBOType == this->glCaps().msFBOType()) {
// Apple's extension uses the scissor as the blit bounds.
GrScissorState scissorState;
scissorState.set(dirtyRect);
this->flushScissor(scissorState, vp, rt->origin());
GL_CALL(ResolveMultisampleFramebuffer());
} else {
GrGLIRect r;
r.setRelativeTo(vp, dirtyRect.fLeft, dirtyRect.fTop,
dirtyRect.width(), dirtyRect.height(), target->origin());
int right = r.fLeft + r.fWidth;
int top = r.fBottom + r.fHeight;
// BlitFrameBuffer respects the scissor, so disable it.
this->disableScissor();
GL_CALL(BlitFramebuffer(r.fLeft, r.fBottom, right, top,
r.fLeft, r.fBottom, right, top,
GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST));
}
}
rt->flagAsResolved();
}
}
namespace {
GrGLenum gr_to_gl_stencil_op(GrStencilOp op) {
static const GrGLenum gTable[] = {
GR_GL_KEEP, // kKeep_StencilOp
GR_GL_REPLACE, // kReplace_StencilOp
GR_GL_INCR_WRAP, // kIncWrap_StencilOp
GR_GL_INCR, // kIncClamp_StencilOp
GR_GL_DECR_WRAP, // kDecWrap_StencilOp
GR_GL_DECR, // kDecClamp_StencilOp
GR_GL_ZERO, // kZero_StencilOp
GR_GL_INVERT, // kInvert_StencilOp
};
GR_STATIC_ASSERT(SK_ARRAY_COUNT(gTable) == kStencilOpCount);
GR_STATIC_ASSERT(0 == kKeep_StencilOp);
GR_STATIC_ASSERT(1 == kReplace_StencilOp);
GR_STATIC_ASSERT(2 == kIncWrap_StencilOp);
GR_STATIC_ASSERT(3 == kIncClamp_StencilOp);
GR_STATIC_ASSERT(4 == kDecWrap_StencilOp);
GR_STATIC_ASSERT(5 == kDecClamp_StencilOp);
GR_STATIC_ASSERT(6 == kZero_StencilOp);
GR_STATIC_ASSERT(7 == kInvert_StencilOp);
SkASSERT((unsigned) op < kStencilOpCount);
return gTable[op];
}
void set_gl_stencil(const GrGLInterface* gl,
const GrStencilSettings& settings,
GrGLenum glFace,
GrStencilSettings::Face grFace) {
GrGLenum glFunc = GrToGLStencilFunc(settings.func(grFace));
GrGLenum glFailOp = gr_to_gl_stencil_op(settings.failOp(grFace));
GrGLenum glPassOp = gr_to_gl_stencil_op(settings.passOp(grFace));
GrGLint ref = settings.funcRef(grFace);
GrGLint mask = settings.funcMask(grFace);
GrGLint writeMask = settings.writeMask(grFace);
if (GR_GL_FRONT_AND_BACK == glFace) {
// we call the combined func just in case separate stencil is not
// supported.
GR_GL_CALL(gl, StencilFunc(glFunc, ref, mask));
GR_GL_CALL(gl, StencilMask(writeMask));
GR_GL_CALL(gl, StencilOp(glFailOp, GR_GL_KEEP, glPassOp));
} else {
GR_GL_CALL(gl, StencilFuncSeparate(glFace, glFunc, ref, mask));
GR_GL_CALL(gl, StencilMaskSeparate(glFace, writeMask));
GR_GL_CALL(gl, StencilOpSeparate(glFace, glFailOp, GR_GL_KEEP, glPassOp));
}
}
}
void GrGLGpu::flushStencil(const GrStencilSettings& stencilSettings) {
if (fHWStencilSettings != stencilSettings) {
if (stencilSettings.isDisabled()) {
if (kNo_TriState != fHWStencilTestEnabled) {
GL_CALL(Disable(GR_GL_STENCIL_TEST));
fHWStencilTestEnabled = kNo_TriState;
}
} else {
if (kYes_TriState != fHWStencilTestEnabled) {
GL_CALL(Enable(GR_GL_STENCIL_TEST));
fHWStencilTestEnabled = kYes_TriState;
}
}
if (!stencilSettings.isDisabled()) {
if (this->caps()->twoSidedStencilSupport()) {
set_gl_stencil(this->glInterface(),
stencilSettings,
GR_GL_FRONT,
GrStencilSettings::kFront_Face);
set_gl_stencil(this->glInterface(),
stencilSettings,
GR_GL_BACK,
GrStencilSettings::kBack_Face);
} else {
set_gl_stencil(this->glInterface(),
stencilSettings,
GR_GL_FRONT_AND_BACK,
GrStencilSettings::kFront_Face);
}
}
fHWStencilSettings = stencilSettings;
}
}
void GrGLGpu::flushHWAAState(GrRenderTarget* rt, bool useHWAA) {
SkASSERT(!useHWAA || rt->isStencilBufferMultisampled());
if (this->glCaps().multisampleDisableSupport()) {
if (useHWAA) {
if (kYes_TriState != fMSAAEnabled) {
GL_CALL(Enable(GR_GL_MULTISAMPLE));
fMSAAEnabled = kYes_TriState;
}
} else {
if (kNo_TriState != fMSAAEnabled) {
GL_CALL(Disable(GR_GL_MULTISAMPLE));
fMSAAEnabled = kNo_TriState;
}
}
}
}
void GrGLGpu::flushBlend(const GrXferProcessor::BlendInfo& blendInfo) {
// Any optimization to disable blending should have already been applied and
// tweaked the equation to "add" or "subtract", and the coeffs to (1, 0).
GrBlendEquation equation = blendInfo.fEquation;
GrBlendCoeff srcCoeff = blendInfo.fSrcBlend;
GrBlendCoeff dstCoeff = blendInfo.fDstBlend;
bool blendOff = (kAdd_GrBlendEquation == equation || kSubtract_GrBlendEquation == equation) &&
kOne_GrBlendCoeff == srcCoeff && kZero_GrBlendCoeff == dstCoeff;
if (blendOff) {
if (kNo_TriState != fHWBlendState.fEnabled) {
GL_CALL(Disable(GR_GL_BLEND));
// Workaround for the ARM KHR_blend_equation_advanced blacklist issue
// https://code.google.com/p/skia/issues/detail?id=3943
if (kARM_GrGLVendor == this->ctxInfo().vendor() &&
GrBlendEquationIsAdvanced(fHWBlendState.fEquation)) {
SkASSERT(this->caps()->advancedBlendEquationSupport());
// Set to any basic blending equation.
GrBlendEquation blend_equation = kAdd_GrBlendEquation;
GL_CALL(BlendEquation(gXfermodeEquation2Blend[blend_equation]));
fHWBlendState.fEquation = blend_equation;
}
fHWBlendState.fEnabled = kNo_TriState;
}
return;
}
if (kYes_TriState != fHWBlendState.fEnabled) {
GL_CALL(Enable(GR_GL_BLEND));
fHWBlendState.fEnabled = kYes_TriState;
}
if (fHWBlendState.fEquation != equation) {
GL_CALL(BlendEquation(gXfermodeEquation2Blend[equation]));
fHWBlendState.fEquation = equation;
}
if (GrBlendEquationIsAdvanced(equation)) {
SkASSERT(this->caps()->advancedBlendEquationSupport());
// Advanced equations have no other blend state.
return;
}
if (fHWBlendState.fSrcCoeff != srcCoeff ||
fHWBlendState.fDstCoeff != dstCoeff) {
GL_CALL(BlendFunc(gXfermodeCoeff2Blend[srcCoeff],
gXfermodeCoeff2Blend[dstCoeff]));
fHWBlendState.fSrcCoeff = srcCoeff;
fHWBlendState.fDstCoeff = dstCoeff;
}
GrColor blendConst = blendInfo.fBlendConstant;
if ((BlendCoeffReferencesConstant(srcCoeff) ||
BlendCoeffReferencesConstant(dstCoeff)) &&
(!fHWBlendState.fConstColorValid ||
fHWBlendState.fConstColor != blendConst)) {
GrGLfloat c[4];
GrColorToRGBAFloat(blendConst, c);
GL_CALL(BlendColor(c[0], c[1], c[2], c[3]));
fHWBlendState.fConstColor = blendConst;
fHWBlendState.fConstColorValid = true;
}
}
static inline GrGLenum tile_to_gl_wrap(SkShader::TileMode tm) {
static const GrGLenum gWrapModes[] = {
GR_GL_CLAMP_TO_EDGE,
GR_GL_REPEAT,
GR_GL_MIRRORED_REPEAT
};
GR_STATIC_ASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gWrapModes));
GR_STATIC_ASSERT(0 == SkShader::kClamp_TileMode);
GR_STATIC_ASSERT(1 == SkShader::kRepeat_TileMode);
GR_STATIC_ASSERT(2 == SkShader::kMirror_TileMode);
return gWrapModes[tm];
}
void GrGLGpu::bindTexture(int unitIdx, const GrTextureParams& params, GrGLTexture* texture) {
SkASSERT(texture);
// If we created a rt/tex and rendered to it without using a texture and now we're texturing
// from the rt it will still be the last bound texture, but it needs resolving. So keep this
// out of the "last != next" check.
GrGLRenderTarget* texRT = static_cast<GrGLRenderTarget*>(texture->asRenderTarget());
if (texRT) {
this->onResolveRenderTarget(texRT);
}
uint32_t textureID = texture->getUniqueID();
if (fHWBoundTextureUniqueIDs[unitIdx] != textureID) {
this->setTextureUnit(unitIdx);
GL_CALL(BindTexture(GR_GL_TEXTURE_2D, texture->textureID()));
fHWBoundTextureUniqueIDs[unitIdx] = textureID;
}
ResetTimestamp timestamp;
const GrGLTexture::TexParams& oldTexParams = texture->getCachedTexParams(&timestamp);
bool setAll = timestamp < this->getResetTimestamp();
GrGLTexture::TexParams newTexParams;
static GrGLenum glMinFilterModes[] = {
GR_GL_NEAREST,
GR_GL_LINEAR,
GR_GL_LINEAR_MIPMAP_LINEAR
};
static GrGLenum glMagFilterModes[] = {
GR_GL_NEAREST,
GR_GL_LINEAR,
GR_GL_LINEAR
};
GrTextureParams::FilterMode filterMode = params.filterMode();
if (GrTextureParams::kMipMap_FilterMode == filterMode) {
if (!this->caps()->mipMapSupport() || GrPixelConfigIsCompressed(texture->config())) {
filterMode = GrTextureParams::kBilerp_FilterMode;
}
}
newTexParams.fMinFilter = glMinFilterModes[filterMode];
newTexParams.fMagFilter = glMagFilterModes[filterMode];
if (GrTextureParams::kMipMap_FilterMode == filterMode &&
texture->texturePriv().mipMapsAreDirty()) {
GL_CALL(GenerateMipmap(GR_GL_TEXTURE_2D));
texture->texturePriv().dirtyMipMaps(false);
}
newTexParams.fWrapS = tile_to_gl_wrap(params.getTileModeX());
newTexParams.fWrapT = tile_to_gl_wrap(params.getTileModeY());
memcpy(newTexParams.fSwizzleRGBA,
GrGLShaderBuilder::GetTexParamSwizzle(texture->config(), this->glCaps()),
sizeof(newTexParams.fSwizzleRGBA));
if (setAll || newTexParams.fMagFilter != oldTexParams.fMagFilter) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MAG_FILTER,
newTexParams.fMagFilter));
}
if (setAll || newTexParams.fMinFilter != oldTexParams.fMinFilter) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MIN_FILTER,
newTexParams.fMinFilter));
}
if (setAll || newTexParams.fWrapS != oldTexParams.fWrapS) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_S,
newTexParams.fWrapS));
}
if (setAll || newTexParams.fWrapT != oldTexParams.fWrapT) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_T,
newTexParams.fWrapT));
}
if (this->glCaps().textureSwizzleSupport() &&
(setAll || memcmp(newTexParams.fSwizzleRGBA,
oldTexParams.fSwizzleRGBA,
sizeof(newTexParams.fSwizzleRGBA)))) {
this->setTextureUnit(unitIdx);
if (this->glStandard() == kGLES_GrGLStandard) {
// ES3 added swizzle support but not GL_TEXTURE_SWIZZLE_RGBA.
const GrGLenum* swizzle = newTexParams.fSwizzleRGBA;
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_R, swizzle[0]));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_G, swizzle[1]));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_B, swizzle[2]));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_A, swizzle[3]));
} else {
GR_STATIC_ASSERT(sizeof(newTexParams.fSwizzleRGBA[0]) == sizeof(GrGLint));
const GrGLint* swizzle = reinterpret_cast<const GrGLint*>(newTexParams.fSwizzleRGBA);
GL_CALL(TexParameteriv(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_RGBA, swizzle));
}
}
texture->setCachedTexParams(newTexParams, this->getResetTimestamp());
}
void GrGLGpu::flushDither(bool dither) {
if (dither) {
if (kYes_TriState != fHWDitherEnabled) {
GL_CALL(Enable(GR_GL_DITHER));
fHWDitherEnabled = kYes_TriState;
}
} else {
if (kNo_TriState != fHWDitherEnabled) {
GL_CALL(Disable(GR_GL_DITHER));
fHWDitherEnabled = kNo_TriState;
}
}
}
void GrGLGpu::flushColorWrite(bool writeColor) {
if (!writeColor) {
if (kNo_TriState != fHWWriteToColor) {
GL_CALL(ColorMask(GR_GL_FALSE, GR_GL_FALSE,
GR_GL_FALSE, GR_GL_FALSE));
fHWWriteToColor = kNo_TriState;
}
} else {
if (kYes_TriState != fHWWriteToColor) {
GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE));
fHWWriteToColor = kYes_TriState;
}
}
}
void GrGLGpu::flushDrawFace(GrPipelineBuilder::DrawFace face) {
if (fHWDrawFace != face) {
switch (face) {
case GrPipelineBuilder::kCCW_DrawFace:
GL_CALL(Enable(GR_GL_CULL_FACE));
GL_CALL(CullFace(GR_GL_BACK));
break;
case GrPipelineBuilder::kCW_DrawFace:
GL_CALL(Enable(GR_GL_CULL_FACE));
GL_CALL(CullFace(GR_GL_FRONT));
break;
case GrPipelineBuilder::kBoth_DrawFace:
GL_CALL(Disable(GR_GL_CULL_FACE));
break;
default:
SkFAIL("Unknown draw face.");
}
fHWDrawFace = face;
}
}
bool GrGLGpu::configToGLFormats(GrPixelConfig config,
bool getSizedInternalFormat,
GrGLenum* internalFormat,
GrGLenum* externalFormat,
GrGLenum* externalType) const {
GrGLenum dontCare;
if (nullptr == internalFormat) {
internalFormat = &dontCare;
}
if (nullptr == externalFormat) {
externalFormat = &dontCare;
}
if (nullptr == externalType) {
externalType = &dontCare;
}
if(!this->glCaps().isConfigTexturable(config)) {
return false;
}
switch (config) {
case kRGBA_8888_GrPixelConfig:
*internalFormat = GR_GL_RGBA;
*externalFormat = GR_GL_RGBA;
if (getSizedInternalFormat) {
*internalFormat = GR_GL_RGBA8;
} else {
*internalFormat = GR_GL_RGBA;
}
*externalType = GR_GL_UNSIGNED_BYTE;
break;
case kBGRA_8888_GrPixelConfig:
if (this->glCaps().bgraIsInternalFormat()) {
if (getSizedInternalFormat) {
*internalFormat = GR_GL_BGRA8;
} else {
*internalFormat = GR_GL_BGRA;
}
} else {
if (getSizedInternalFormat) {
*internalFormat = GR_GL_RGBA8;
} else {
*internalFormat = GR_GL_RGBA;
}
}
*externalFormat = GR_GL_BGRA;
*externalType = GR_GL_UNSIGNED_BYTE;
break;
case kSRGBA_8888_GrPixelConfig:
if (getSizedInternalFormat) {
*internalFormat = GR_GL_SRGB8_ALPHA8;
} else {
*internalFormat = GR_GL_SRGB_ALPHA;
}
// OpenGL ES 2.0 + GL_EXT_sRGB allows GL_SRGB_ALPHA to be specified as the <format>
// param to Tex(Sub)Image2D. ES 2.0 requires the internalFormat and format to match.
// Thus, on ES 2.0 we will use GL_SRGB_ALPHA as the externalFormat. However,
// onReadPixels needs code to override that because GL_SRGB_ALPHA is not allowed as a
// glReadPixels format.
// On OpenGL and ES 3.0 GL_SRGB_ALPHA does not work for the <format> param to
// glReadPixels nor does it work with Tex(Sub)Image2D So we always set the externalFormat
// return to GL_RGBA.
if (this->glStandard() == kGLES_GrGLStandard &&
this->glVersion() == GR_GL_VER(2,0)) {
*externalFormat = GR_GL_SRGB_ALPHA;
} else {
*externalFormat = GR_GL_RGBA;
}
*externalType = GR_GL_UNSIGNED_BYTE;
break;
case kRGB_565_GrPixelConfig:
*internalFormat = GR_GL_RGB;
*externalFormat = GR_GL_RGB;
if (getSizedInternalFormat) {
if (!this->glCaps().ES2CompatibilitySupport()) {
*internalFormat = GR_GL_RGB5;
} else {
*internalFormat = GR_GL_RGB565;
}
} else {
*internalFormat = GR_GL_RGB;
}
*externalType = GR_GL_UNSIGNED_SHORT_5_6_5;
break;
case kRGBA_4444_GrPixelConfig:
*internalFormat = GR_GL_RGBA;
*externalFormat = GR_GL_RGBA;
if (getSizedInternalFormat) {
*internalFormat = GR_GL_RGBA4;
} else {
*internalFormat = GR_GL_RGBA;
}
*externalType = GR_GL_UNSIGNED_SHORT_4_4_4_4;
break;
case kIndex_8_GrPixelConfig:
// no sized/unsized internal format distinction here
*internalFormat = GR_GL_PALETTE8_RGBA8;
break;
case kAlpha_8_GrPixelConfig:
if (this->glCaps().textureRedSupport()) {
*internalFormat = GR_GL_RED;
*externalFormat = GR_GL_RED;
if (getSizedInternalFormat) {
*internalFormat = GR_GL_R8;
} else {
*internalFormat = GR_GL_RED;
}
*externalType = GR_GL_UNSIGNED_BYTE;
} else {
*internalFormat = GR_GL_ALPHA;
*externalFormat = GR_GL_ALPHA;
if (getSizedInternalFormat) {
*internalFormat = GR_GL_ALPHA8;
} else {
*internalFormat = GR_GL_ALPHA;
}
*externalType = GR_GL_UNSIGNED_BYTE;
}
break;
case kETC1_GrPixelConfig:
*internalFormat = GR_GL_COMPRESSED_ETC1_RGB8;
break;
case kLATC_GrPixelConfig:
switch(this->glCaps().latcAlias()) {
case GrGLCaps::kLATC_LATCAlias:
*internalFormat = GR_GL_COMPRESSED_LUMINANCE_LATC1;
break;
case GrGLCaps::kRGTC_LATCAlias:
*internalFormat = GR_GL_COMPRESSED_RED_RGTC1;
break;
case GrGLCaps::k3DC_LATCAlias:
*internalFormat = GR_GL_COMPRESSED_3DC_X;
break;
}
break;
case kR11_EAC_GrPixelConfig:
*internalFormat = GR_GL_COMPRESSED_R11_EAC;
break;
case kASTC_12x12_GrPixelConfig:
*internalFormat = GR_GL_COMPRESSED_RGBA_ASTC_12x12_KHR;
break;
case kRGBA_float_GrPixelConfig:
*internalFormat = GR_GL_RGBA32F;
*externalFormat = GR_GL_RGBA;
*externalType = GR_GL_FLOAT;
break;
case kAlpha_half_GrPixelConfig:
if (this->glCaps().textureRedSupport()) {
if (getSizedInternalFormat) {
*internalFormat = GR_GL_R16F;
} else {
*internalFormat = GR_GL_RED;
}
*externalFormat = GR_GL_RED;
} else {
if (getSizedInternalFormat) {
*internalFormat = GR_GL_ALPHA16F;
} else {
*internalFormat = GR_GL_ALPHA;
}
*externalFormat = GR_GL_ALPHA;
}
if (kGL_GrGLStandard == this->glStandard() || this->glVersion() >= GR_GL_VER(3, 0)) {
*externalType = GR_GL_HALF_FLOAT;
} else {
*externalType = GR_GL_HALF_FLOAT_OES;
}
break;
case kRGBA_half_GrPixelConfig:
*internalFormat = GR_GL_RGBA16F;
*externalFormat = GR_GL_RGBA;
if (kGL_GrGLStandard == this->glStandard() || this->glVersion() >= GR_GL_VER(3, 0)) {
*externalType = GR_GL_HALF_FLOAT;
} else {
*externalType = GR_GL_HALF_FLOAT_OES;
}
break;
default:
return false;
}
return true;
}
void GrGLGpu::setTextureUnit(int unit) {
SkASSERT(unit >= 0 && unit < fHWBoundTextureUniqueIDs.count());
if (unit != fHWActiveTextureUnitIdx) {
GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + unit));
fHWActiveTextureUnitIdx = unit;
}
}
void GrGLGpu::setScratchTextureUnit() {
// Bind the last texture unit since it is the least likely to be used by GrGLProgram.
int lastUnitIdx = fHWBoundTextureUniqueIDs.count() - 1;
if (lastUnitIdx != fHWActiveTextureUnitIdx) {
GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + lastUnitIdx));
fHWActiveTextureUnitIdx = lastUnitIdx;
}
// clear out the this field so that if a program does use this unit it will rebind the correct
// texture.
fHWBoundTextureUniqueIDs[lastUnitIdx] = SK_InvalidUniqueID;
}
namespace {
// Determines whether glBlitFramebuffer could be used between src and dst.
inline bool can_blit_framebuffer(const GrSurface* dst,
const GrSurface* src,
const GrGLGpu* gpu) {
if (gpu->glCaps().isConfigRenderable(dst->config(), dst->desc().fSampleCnt > 0) &&
gpu->glCaps().isConfigRenderable(src->config(), src->desc().fSampleCnt > 0) &&
gpu->glCaps().usesMSAARenderBuffers()) {
// ES3 doesn't allow framebuffer blits when the src has MSAA and the configs don't match
// or the rects are not the same (not just the same size but have the same edges).
if (GrGLCaps::kES_3_0_MSFBOType == gpu->glCaps().msFBOType() &&
(src->desc().fSampleCnt > 0 || src->config() != dst->config())) {
return false;
}
return true;
} else {
return false;
}
}
inline bool can_copy_texsubimage(const GrSurface* dst,
const GrSurface* src,
const GrGLGpu* gpu) {
// Table 3.9 of the ES2 spec indicates the supported formats with CopyTexSubImage
// and BGRA isn't in the spec. There doesn't appear to be any extension that adds it. Perhaps
// many drivers would allow it to work, but ANGLE does not.
if (kGLES_GrGLStandard == gpu->glStandard() && gpu->glCaps().bgraIsInternalFormat() &&
(kBGRA_8888_GrPixelConfig == dst->config() || kBGRA_8888_GrPixelConfig == src->config())) {
return false;
}
const GrGLRenderTarget* dstRT = static_cast<const GrGLRenderTarget*>(dst->asRenderTarget());
// If dst is multisampled (and uses an extension where there is a separate MSAA renderbuffer)
// then we don't want to copy to the texture but to the MSAA buffer.
if (dstRT && dstRT->renderFBOID() != dstRT->textureFBOID()) {
return false;
}
const GrGLRenderTarget* srcRT = static_cast<const GrGLRenderTarget*>(src->asRenderTarget());
// If the src is multisampled (and uses an extension where there is a separate MSAA
// renderbuffer) then it is an invalid operation to call CopyTexSubImage
if (srcRT && srcRT->renderFBOID() != srcRT->textureFBOID()) {
return false;
}
if (gpu->glCaps().isConfigRenderable(src->config(), src->desc().fSampleCnt > 0) &&
dst->asTexture() &&
dst->origin() == src->origin() &&
!GrPixelConfigIsCompressed(src->config())) {
return true;
} else {
return false;
}
}
}
// If a temporary FBO was created, its non-zero ID is returned. The viewport that the copy rect is
// relative to is output.
GrGLuint GrGLGpu::bindSurfaceAsFBO(GrSurface* surface, GrGLenum fboTarget, GrGLIRect* viewport,
TempFBOTarget tempFBOTarget) {
GrGLRenderTarget* rt = static_cast<GrGLRenderTarget*>(surface->asRenderTarget());
if (nullptr == rt) {
SkASSERT(surface->asTexture());
GrGLuint texID = static_cast<GrGLTexture*>(surface->asTexture())->textureID();
GrGLuint* tempFBOID;
tempFBOID = kSrc_TempFBOTarget == tempFBOTarget ? &fTempSrcFBOID : &fTempDstFBOID;
if (0 == *tempFBOID) {
GR_GL_CALL(this->glInterface(), GenFramebuffers(1, tempFBOID));
}
fStats.incRenderTargetBinds();
GR_GL_CALL(this->glInterface(), BindFramebuffer(fboTarget, *tempFBOID));
GR_GL_CALL(this->glInterface(), FramebufferTexture2D(fboTarget,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D,
texID,
0));
viewport->fLeft = 0;
viewport->fBottom = 0;
viewport->fWidth = surface->width();
viewport->fHeight = surface->height();
return *tempFBOID;
} else {
GrGLuint tempFBOID = 0;
fStats.incRenderTargetBinds();
GR_GL_CALL(this->glInterface(), BindFramebuffer(fboTarget, rt->renderFBOID()));
*viewport = rt->getViewport();
return tempFBOID;
}
}
void GrGLGpu::unbindTextureFromFBO(GrGLenum fboTarget) {
GR_GL_CALL(this->glInterface(), FramebufferTexture2D(fboTarget,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D,
0,
0));
}
bool GrGLGpu::initCopySurfaceDstDesc(const GrSurface* src, GrSurfaceDesc* desc) const {
// If the src is a texture, we can implement the blit as a draw assuming the config is
// renderable.
if (src->asTexture() && this->caps()->isConfigRenderable(src->config(), false)) {
desc->fOrigin = kDefault_GrSurfaceOrigin;
desc->fFlags = kRenderTarget_GrSurfaceFlag;
desc->fConfig = src->config();
return true;
}
// We look for opportunities to use CopyTexSubImage, or fbo blit. If neither are
// possible and we return false to fallback to creating a render target dst for render-to-
// texture. This code prefers CopyTexSubImage to fbo blit and avoids triggering temporary fbo
// creation. It isn't clear that avoiding temporary fbo creation is actually optimal.
// Check for format issues with glCopyTexSubImage2D
if (kGLES_GrGLStandard == this->glStandard() && this->glCaps().bgraIsInternalFormat() &&
kBGRA_8888_GrPixelConfig == src->config()) {
// glCopyTexSubImage2D doesn't work with this config. If the bgra can be used with fbo blit
// then we set up for that, otherwise fail.
if (this->caps()->isConfigRenderable(kBGRA_8888_GrPixelConfig, false)) {
desc->fOrigin = kDefault_GrSurfaceOrigin;
desc->fFlags = kRenderTarget_GrSurfaceFlag;
desc->fConfig = kBGRA_8888_GrPixelConfig;
return true;
}
return false;
} else if (nullptr == src->asRenderTarget()) {
// CopyTexSubImage2D or fbo blit would require creating a temp fbo for the src.
return false;
}
const GrGLRenderTarget* srcRT = static_cast<const GrGLRenderTarget*>(src->asRenderTarget());
if (srcRT && srcRT->renderFBOID() != srcRT->textureFBOID()) {
// It's illegal to call CopyTexSubImage2D on a MSAA renderbuffer. Set up for FBO blit or
// fail.
if (this->caps()->isConfigRenderable(src->config(), false)) {
desc->fOrigin = kDefault_GrSurfaceOrigin;
desc->fFlags = kRenderTarget_GrSurfaceFlag;
desc->fConfig = src->config();
return true;
}
return false;
}
// We'll do a CopyTexSubImage. Make the dst a plain old texture.
desc->fConfig = src->config();
desc->fOrigin = src->origin();
desc->fFlags = kNone_GrSurfaceFlags;
return true;
}
bool GrGLGpu::onCopySurface(GrSurface* dst,
GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
if (src->asTexture() && dst->asRenderTarget()) {
this->copySurfaceAsDraw(dst, src, srcRect, dstPoint);
return true;
}
if (can_copy_texsubimage(dst, src, this)) {
this->copySurfaceAsCopyTexSubImage(dst, src, srcRect, dstPoint);
return true;
}
if (can_blit_framebuffer(dst, src, this)) {
return this->copySurfaceAsBlitFramebuffer(dst, src, srcRect, dstPoint);
}
return false;
}
void GrGLGpu::createCopyProgram() {
const char* version = GrGLGetGLSLVersionDecl(this->ctxInfo());
GrGLShaderVar aVertex("a_vertex", kVec2f_GrSLType, GrShaderVar::kAttribute_TypeModifier);
GrGLShaderVar uTexCoordXform("u_texCoordXform", kVec4f_GrSLType,
GrShaderVar::kUniform_TypeModifier);
GrGLShaderVar uPosXform("u_posXform", kVec4f_GrSLType, GrShaderVar::kUniform_TypeModifier);
GrGLShaderVar uTexture("u_texture", kSampler2D_GrSLType, GrShaderVar::kUniform_TypeModifier);
GrGLShaderVar vTexCoord("v_texCoord", kVec2f_GrSLType, GrShaderVar::kVaryingOut_TypeModifier);
GrGLShaderVar oFragColor("o_FragColor", kVec4f_GrSLType, GrShaderVar::kOut_TypeModifier);
SkString vshaderTxt(version);
aVertex.appendDecl(this->ctxInfo(), &vshaderTxt);
vshaderTxt.append(";");
uTexCoordXform.appendDecl(this->ctxInfo(), &vshaderTxt);
vshaderTxt.append(";");
uPosXform.appendDecl(this->ctxInfo(), &vshaderTxt);
vshaderTxt.append(";");
vTexCoord.appendDecl(this->ctxInfo(), &vshaderTxt);
vshaderTxt.append(";");
vshaderTxt.append(
"// Copy Program VS\n"
"void main() {"
" v_texCoord = a_vertex.xy * u_texCoordXform.xy + u_texCoordXform.zw;"
" gl_Position.xy = a_vertex * u_posXform.xy + u_posXform.zw;"
" gl_Position.zw = vec2(0, 1);"
"}"
);
SkString fshaderTxt(version);
GrGLAppendGLSLDefaultFloatPrecisionDeclaration(kDefault_GrSLPrecision, this->glStandard(),
&fshaderTxt);
vTexCoord.setTypeModifier(GrShaderVar::kVaryingIn_TypeModifier);
vTexCoord.appendDecl(this->ctxInfo(), &fshaderTxt);
fshaderTxt.append(";");
uTexture.appendDecl(this->ctxInfo(), &fshaderTxt);
fshaderTxt.append(";");
const char* fsOutName;
if (this->glCaps().glslCaps()->mustDeclareFragmentShaderOutput()) {
oFragColor.appendDecl(this->ctxInfo(), &fshaderTxt);
fshaderTxt.append(";");
fsOutName = oFragColor.c_str();
} else {
fsOutName = "gl_FragColor";
}
fshaderTxt.appendf(
"// Copy Program FS\n"
"void main() {"
" %s = %s(u_texture, v_texCoord);"
"}",
fsOutName,
GrGLSLTexture2DFunctionName(kVec2f_GrSLType, this->glslGeneration())
);
GL_CALL_RET(fCopyProgram.fProgram, CreateProgram());
const char* str;
GrGLint length;
str = vshaderTxt.c_str();
length = SkToInt(vshaderTxt.size());
GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fCopyProgram.fProgram,
GR_GL_VERTEX_SHADER, &str, &length, 1, &fStats);
str = fshaderTxt.c_str();
length = SkToInt(fshaderTxt.size());
GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fCopyProgram.fProgram,
GR_GL_FRAGMENT_SHADER, &str, &length, 1, &fStats);
GL_CALL(LinkProgram(fCopyProgram.fProgram));
GL_CALL_RET(fCopyProgram.fTextureUniform, GetUniformLocation(fCopyProgram.fProgram,
"u_texture"));
GL_CALL_RET(fCopyProgram.fPosXformUniform, GetUniformLocation(fCopyProgram.fProgram,
"u_posXform"));
GL_CALL_RET(fCopyProgram.fTexCoordXformUniform, GetUniformLocation(fCopyProgram.fProgram,
"u_texCoordXform"));
GL_CALL(BindAttribLocation(fCopyProgram.fProgram, 0, "a_vertex"));
GL_CALL(DeleteShader(vshader));
GL_CALL(DeleteShader(fshader));
GL_CALL(GenBuffers(1, &fCopyProgram.fArrayBuffer));
fHWGeometryState.setVertexBufferID(this, fCopyProgram.fArrayBuffer);
static const GrGLfloat vdata[] = {
0, 0,
0, 1,
1, 0,
1, 1
};
GL_ALLOC_CALL(this->glInterface(),
BufferData(GR_GL_ARRAY_BUFFER,
(GrGLsizeiptr) sizeof(vdata),
vdata, // data ptr
GR_GL_STATIC_DRAW));
}
void GrGLGpu::copySurfaceAsDraw(GrSurface* dst,
GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
int w = srcRect.width();
int h = srcRect.height();
GrGLTexture* srcTex = static_cast<GrGLTexture*>(src->asTexture());
GrTextureParams params(SkShader::kClamp_TileMode, GrTextureParams::kNone_FilterMode);
this->bindTexture(0, params, srcTex);
GrGLRenderTarget* dstRT = static_cast<GrGLRenderTarget*>(dst->asRenderTarget());
SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, w, h);
this->flushRenderTarget(dstRT, &dstRect);
GL_CALL(UseProgram(fCopyProgram.fProgram));
fHWProgramID = fCopyProgram.fProgram;
fHWGeometryState.setVertexArrayID(this, 0);
GrGLAttribArrayState* attribs =
fHWGeometryState.bindArrayAndBufferToDraw(this, fCopyProgram.fArrayBuffer);
attribs->set(this, 0, fCopyProgram.fArrayBuffer, 2, GR_GL_FLOAT, false,
2 * sizeof(GrGLfloat), 0);
attribs->disableUnusedArrays(this, 0x1);
// dst rect edges in NDC (-1 to 1)
int dw = dst->width();
int dh = dst->height();
GrGLfloat dx0 = 2.f * dstPoint.fX / dw - 1.f;
GrGLfloat dx1 = 2.f * (dstPoint.fX + w) / dw - 1.f;
GrGLfloat dy0 = 2.f * dstPoint.fY / dh - 1.f;
GrGLfloat dy1 = 2.f * (dstPoint.fY + h) / dh - 1.f;
if (kBottomLeft_GrSurfaceOrigin == dst->origin()) {
dy0 = -dy0;
dy1 = -dy1;
}
// src rect edges in normalized texture space (0 to 1)
int sw = src->width();
int sh = src->height();
GrGLfloat sx0 = (GrGLfloat)srcRect.fLeft / sw;
GrGLfloat sx1 = (GrGLfloat)(srcRect.fLeft + w) / sw;
GrGLfloat sy0 = (GrGLfloat)srcRect.fTop / sh;
GrGLfloat sy1 = (GrGLfloat)(srcRect.fTop + h) / sh;
if (kBottomLeft_GrSurfaceOrigin == src->origin()) {
sy0 = 1.f - sy0;
sy1 = 1.f - sy1;
}
GL_CALL(Uniform4f(fCopyProgram.fPosXformUniform, dx1 - dx0, dy1 - dy0, dx0, dy0));
GL_CALL(Uniform4f(fCopyProgram.fTexCoordXformUniform, sx1 - sx0, sy1 - sy0, sx0, sy0));
GL_CALL(Uniform1i(fCopyProgram.fTextureUniform, 0));
GrXferProcessor::BlendInfo blendInfo;
blendInfo.reset();
this->flushBlend(blendInfo);
this->flushColorWrite(true);
this->flushDither(false);
this->flushDrawFace(GrPipelineBuilder::kBoth_DrawFace);
this->flushHWAAState(dstRT, false);
this->disableScissor();
GrStencilSettings stencil;
stencil.setDisabled();
this->flushStencil(stencil);
GL_CALL(DrawArrays(GR_GL_TRIANGLE_STRIP, 0, 4));
}
void GrGLGpu::copySurfaceAsCopyTexSubImage(GrSurface* dst,
GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
SkASSERT(can_copy_texsubimage(dst, src, this));
GrGLuint srcFBO;
GrGLIRect srcVP;
srcFBO = this->bindSurfaceAsFBO(src, GR_GL_FRAMEBUFFER, &srcVP, kSrc_TempFBOTarget);
GrGLTexture* dstTex = static_cast<GrGLTexture*>(dst->asTexture());
SkASSERT(dstTex);
// We modified the bound FBO
fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID;
GrGLIRect srcGLRect;
srcGLRect.setRelativeTo(srcVP,
srcRect.fLeft,
srcRect.fTop,
srcRect.width(),
srcRect.height(),
src->origin());
this->setScratchTextureUnit();
GL_CALL(BindTexture(GR_GL_TEXTURE_2D, dstTex->textureID()));
GrGLint dstY;
if (kBottomLeft_GrSurfaceOrigin == dst->origin()) {
dstY = dst->height() - (dstPoint.fY + srcGLRect.fHeight);
} else {
dstY = dstPoint.fY;
}
GL_CALL(CopyTexSubImage2D(GR_GL_TEXTURE_2D, 0,
dstPoint.fX, dstY,
srcGLRect.fLeft, srcGLRect.fBottom,
srcGLRect.fWidth, srcGLRect.fHeight));
if (srcFBO) {
this->unbindTextureFromFBO(GR_GL_FRAMEBUFFER);
}
}
bool GrGLGpu::copySurfaceAsBlitFramebuffer(GrSurface* dst,
GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
SkASSERT(can_blit_framebuffer(dst, src, this));
SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY,
srcRect.width(), srcRect.height());
if (dst == src) {
if (SkIRect::IntersectsNoEmptyCheck(dstRect, srcRect)) {
return false;
}
}
GrGLuint dstFBO;
GrGLuint srcFBO;
GrGLIRect dstVP;
GrGLIRect srcVP;
dstFBO = this->bindSurfaceAsFBO(dst, GR_GL_DRAW_FRAMEBUFFER, &dstVP,
kDst_TempFBOTarget);
srcFBO = this->bindSurfaceAsFBO(src, GR_GL_READ_FRAMEBUFFER, &srcVP,
kSrc_TempFBOTarget);
// We modified the bound FBO
fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID;
GrGLIRect srcGLRect;
GrGLIRect dstGLRect;
srcGLRect.setRelativeTo(srcVP,
srcRect.fLeft,
srcRect.fTop,
srcRect.width(),
srcRect.height(),
src->origin());
dstGLRect.setRelativeTo(dstVP,
dstRect.fLeft,
dstRect.fTop,
dstRect.width(),
dstRect.height(),
dst->origin());
// BlitFrameBuffer respects the scissor, so disable it.
this->disableScissor();
GrGLint srcY0;
GrGLint srcY1;
// Does the blit need to y-mirror or not?
if (src->origin() == dst->origin()) {
srcY0 = srcGLRect.fBottom;
srcY1 = srcGLRect.fBottom + srcGLRect.fHeight;
} else {
srcY0 = srcGLRect.fBottom + srcGLRect.fHeight;
srcY1 = srcGLRect.fBottom;
}
GL_CALL(BlitFramebuffer(srcGLRect.fLeft,
srcY0,
srcGLRect.fLeft + srcGLRect.fWidth,
srcY1,
dstGLRect.fLeft,
dstGLRect.fBottom,
dstGLRect.fLeft + dstGLRect.fWidth,
dstGLRect.fBottom + dstGLRect.fHeight,
GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST));
if (dstFBO) {
this->unbindTextureFromFBO(GR_GL_DRAW_FRAMEBUFFER);
}
if (srcFBO) {
this->unbindTextureFromFBO(GR_GL_READ_FRAMEBUFFER);
}
return true;
}
void GrGLGpu::xferBarrier(GrRenderTarget* rt, GrXferBarrierType type) {
SkASSERT(type);
switch (type) {
case kTexture_GrXferBarrierType: {
GrGLRenderTarget* glrt = static_cast<GrGLRenderTarget*>(rt);
if (glrt->textureFBOID() != glrt->renderFBOID()) {
// The render target uses separate storage so no need for glTextureBarrier.
// FIXME: The render target will resolve automatically when its texture is bound,
// but we could resolve only the bounds that will be read if we do it here instead.
return;
}
SkASSERT(this->caps()->textureBarrierSupport());
GL_CALL(TextureBarrier());
return;
}
case kBlend_GrXferBarrierType:
SkASSERT(GrCaps::kAdvanced_BlendEquationSupport ==
this->caps()->blendEquationSupport());
GL_CALL(BlendBarrier());
return;
default: break; // placate compiler warnings that kNone not handled
}
}
void GrGLGpu::didAddGpuTraceMarker() {
if (this->caps()->gpuTracingSupport()) {
const GrTraceMarkerSet& markerArray = this->getActiveTraceMarkers();
SkString markerString = markerArray.toStringLast();
#if GR_FORCE_GPU_TRACE_DEBUGGING
SkDebugf("%s\n", markerString.c_str());
#else
GL_CALL(PushGroupMarker(0, markerString.c_str()));
#endif
}
}
void GrGLGpu::didRemoveGpuTraceMarker() {
if (this->caps()->gpuTracingSupport()) {
#if GR_FORCE_GPU_TRACE_DEBUGGING
SkDebugf("Pop trace marker.\n");
#else
GL_CALL(PopGroupMarker());
#endif
}
}
GrBackendObject GrGLGpu::createTestingOnlyBackendTexture(void* pixels, int w, int h,
GrPixelConfig config) const {
GrGLuint texID;
GL_CALL(GenTextures(1, &texID));
GL_CALL(ActiveTexture(GR_GL_TEXTURE0));
GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, 1));
GL_CALL(BindTexture(GR_GL_TEXTURE_2D, texID));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MAG_FILTER, GR_GL_NEAREST));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MIN_FILTER, GR_GL_NEAREST));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_S, GR_GL_CLAMP_TO_EDGE));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_T, GR_GL_CLAMP_TO_EDGE));
GrGLenum internalFormat = 0x0; // suppress warning
GrGLenum externalFormat = 0x0; // suppress warning
GrGLenum externalType = 0x0; // suppress warning
this->configToGLFormats(config, false, &internalFormat, &externalFormat, &externalType);
GL_CALL(TexImage2D(GR_GL_TEXTURE_2D, 0, internalFormat, w, h, 0, externalFormat,
externalType, pixels));
return texID;
}
bool GrGLGpu::isTestingOnlyBackendTexture(GrBackendObject id) const {
GrGLuint texID = (GrGLuint)id;
GrGLboolean result;
GL_CALL_RET(result, IsTexture(texID));
return (GR_GL_TRUE == result);
}
void GrGLGpu::deleteTestingOnlyBackendTexture(GrBackendObject id) const {
GrGLuint texID = (GrGLuint)id;
GL_CALL(DeleteTextures(1, &texID));
}
///////////////////////////////////////////////////////////////////////////////
GrGLAttribArrayState* GrGLGpu::HWGeometryState::bindArrayAndBuffersToDraw(
GrGLGpu* gpu,
const GrGLVertexBuffer* vbuffer,
const GrGLIndexBuffer* ibuffer) {
SkASSERT(vbuffer);
GrGLuint vbufferID = vbuffer->bufferID();
GrGLuint* ibufferIDPtr = nullptr;
GrGLuint ibufferID;
if (ibuffer) {
ibufferID = ibuffer->bufferID();
ibufferIDPtr = &ibufferID;
}
return this->internalBind(gpu, vbufferID, ibufferIDPtr);
}
GrGLAttribArrayState* GrGLGpu::HWGeometryState::bindArrayAndBufferToDraw(GrGLGpu* gpu,
GrGLuint vbufferID) {
return this->internalBind(gpu, vbufferID, nullptr);
}
GrGLAttribArrayState* GrGLGpu::HWGeometryState::bindArrayAndBuffersToDraw(GrGLGpu* gpu,
GrGLuint vbufferID,
GrGLuint ibufferID) {
return this->internalBind(gpu, vbufferID, &ibufferID);
}
GrGLAttribArrayState* GrGLGpu::HWGeometryState::internalBind(GrGLGpu* gpu,
GrGLuint vbufferID,
GrGLuint* ibufferID) {
GrGLAttribArrayState* attribState;
if (gpu->glCaps().isCoreProfile() && 0 != vbufferID) {
if (!fVBOVertexArray) {
GrGLuint arrayID;
GR_GL_CALL(gpu->glInterface(), GenVertexArrays(1, &arrayID));
int attrCount = gpu->glCaps().maxVertexAttributes();
fVBOVertexArray = new GrGLVertexArray(arrayID, attrCount);
}
if (ibufferID) {
attribState = fVBOVertexArray->bindWithIndexBuffer(gpu, *ibufferID);
} else {
attribState = fVBOVertexArray->bind(gpu);
}
} else {
if (ibufferID) {
this->setIndexBufferIDOnDefaultVertexArray(gpu, *ibufferID);
} else {
this->setVertexArrayID(gpu, 0);
}
int attrCount = gpu->glCaps().maxVertexAttributes();
if (fDefaultVertexArrayAttribState.count() != attrCount) {
fDefaultVertexArrayAttribState.resize(attrCount);
}
attribState = &fDefaultVertexArrayAttribState;
}
return attribState;
}