| /* |
| * Copyright 2014 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef GrFragmentProcessor_DEFINED |
| #define GrFragmentProcessor_DEFINED |
| |
| #include "src/gpu/GrCoordTransform.h" |
| #include "src/gpu/GrProcessor.h" |
| #include "src/gpu/ops/GrOp.h" |
| |
| class GrGLSLFragmentProcessor; |
| class GrPaint; |
| class GrPipeline; |
| class GrProcessorKeyBuilder; |
| class GrShaderCaps; |
| class GrSwizzle; |
| |
| /** Provides custom fragment shader code. Fragment processors receive an input color (half4) and |
| produce an output color. They may reference textures and uniforms. They may use |
| GrCoordTransforms to receive a transformation of the local coordinates that map from local space |
| to the fragment being processed. |
| */ |
| class GrFragmentProcessor : public GrProcessor { |
| public: |
| class TextureSampler; |
| |
| /** |
| * In many instances (e.g. SkShader::asFragmentProcessor() implementations) it is desirable to |
| * only consider the input color's alpha. However, there is a competing desire to have reusable |
| * GrFragmentProcessor subclasses that can be used in other scenarios where the entire input |
| * color is considered. This function exists to filter the input color and pass it to a FP. It |
| * does so by returning a parent FP that multiplies the passed in FPs output by the parent's |
| * input alpha. The passed in FP will not receive an input color. |
| */ |
| static std::unique_ptr<GrFragmentProcessor> MulChildByInputAlpha( |
| std::unique_ptr<GrFragmentProcessor> child); |
| |
| /** |
| * Like MulChildByInputAlpha(), but reverses the sense of src and dst. In this case, return |
| * the input modulated by the child's alpha. The passed in FP will not receive an input color. |
| * |
| * output = input * child.a |
| */ |
| static std::unique_ptr<GrFragmentProcessor> MulInputByChildAlpha( |
| std::unique_ptr<GrFragmentProcessor> child); |
| |
| /** |
| * This assumes that the input color to the returned processor will be unpremul and that the |
| * passed processor (which becomes the returned processor's child) produces a premul output. |
| * The result of the returned processor is a premul of its input color modulated by the child |
| * processor's premul output. |
| */ |
| static std::unique_ptr<GrFragmentProcessor> MakeInputPremulAndMulByOutput( |
| std::unique_ptr<GrFragmentProcessor>); |
| |
| /** |
| * Returns a parent fragment processor that adopts the passed fragment processor as a child. |
| * The parent will ignore its input color and instead feed the passed in color as input to the |
| * child. |
| */ |
| static std::unique_ptr<GrFragmentProcessor> OverrideInput(std::unique_ptr<GrFragmentProcessor>, |
| const SkPMColor4f&, |
| bool useUniform = true); |
| |
| /** |
| * Returns a fragment processor that premuls the input before calling the passed in fragment |
| * processor. |
| */ |
| static std::unique_ptr<GrFragmentProcessor> PremulInput(std::unique_ptr<GrFragmentProcessor>); |
| |
| /** |
| * Returns a fragment processor that calls the passed in fragment processor, and then swizzles |
| * the output. |
| */ |
| static std::unique_ptr<GrFragmentProcessor> SwizzleOutput(std::unique_ptr<GrFragmentProcessor>, |
| const GrSwizzle&); |
| |
| /** |
| * Returns a fragment processor that runs the passed in array of fragment processors in a |
| * series. The original input is passed to the first, the first's output is passed to the |
| * second, etc. The output of the returned processor is the output of the last processor of the |
| * series. |
| * |
| * The array elements with be moved. |
| */ |
| static std::unique_ptr<GrFragmentProcessor> RunInSeries(std::unique_ptr<GrFragmentProcessor>*, |
| int cnt); |
| |
| /** |
| * Makes a copy of this fragment processor that draws equivalently to the original. |
| * If the processor has child processors they are cloned as well. |
| */ |
| virtual std::unique_ptr<GrFragmentProcessor> clone() const = 0; |
| |
| GrGLSLFragmentProcessor* createGLSLInstance() const; |
| |
| void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { |
| this->onGetGLSLProcessorKey(caps, b); |
| for (int i = 0; i < fChildProcessors.count(); ++i) { |
| fChildProcessors[i]->getGLSLProcessorKey(caps, b); |
| } |
| } |
| |
| int numTextureSamplers() const { return fTextureSamplerCnt; } |
| const TextureSampler& textureSampler(int i) const; |
| |
| int numCoordTransforms() const { return fCoordTransforms.count(); } |
| |
| /** Returns the coordinate transformation at index. index must be valid according to |
| numCoordTransforms(). */ |
| const GrCoordTransform& coordTransform(int index) const { return *fCoordTransforms[index]; } |
| GrCoordTransform& coordTransform(int index) { return *fCoordTransforms[index]; } |
| |
| const SkTArray<GrCoordTransform*, true>& coordTransforms() const { |
| return fCoordTransforms; |
| } |
| |
| int numChildProcessors() const { return fChildProcessors.count(); } |
| |
| GrFragmentProcessor& childProcessor(int index) { return *fChildProcessors[index]; } |
| const GrFragmentProcessor& childProcessor(int index) const { return *fChildProcessors[index]; } |
| |
| SkDEBUGCODE(bool isInstantiated() const;) |
| |
| /** Do any of the coord transforms for this processor require local coords? */ |
| bool usesLocalCoords() const { |
| // If the processor is sampled with explicit coords then we do not need to apply the |
| // coord transforms in the vertex shader to the local coords. |
| return SkToBool(fFlags & kHasCoordTranforms_Flag) && |
| SkToBool(fFlags & kCoordTransformsApplyToLocalCoords_Flag); |
| } |
| |
| bool coordTransformsApplyToLocalCoords() const { |
| return SkToBool(fFlags & kCoordTransformsApplyToLocalCoords_Flag); |
| } |
| |
| void setSampledWithExplicitCoords(bool value) { |
| if (value) { |
| fFlags &= ~kCoordTransformsApplyToLocalCoords_Flag; |
| } else { |
| fFlags |= kCoordTransformsApplyToLocalCoords_Flag; |
| } |
| for (auto& child : fChildProcessors) { |
| child->setSampledWithExplicitCoords(value); |
| } |
| } |
| |
| /** |
| * A GrDrawOp may premultiply its antialiasing coverage into its GrGeometryProcessor's color |
| * output under the following scenario: |
| * * all the color fragment processors report true to this query, |
| * * all the coverage fragment processors report true to this query, |
| * * the blend mode arithmetic allows for it it. |
| * To be compatible a fragment processor's output must be a modulation of its input color or |
| * alpha with a computed premultiplied color or alpha that is in 0..1 range. The computed color |
| * or alpha that is modulated against the input cannot depend on the input's alpha. The computed |
| * value cannot depend on the input's color channels unless it unpremultiplies the input color |
| * channels by the input alpha. |
| */ |
| bool compatibleWithCoverageAsAlpha() const { |
| return SkToBool(fFlags & kCompatibleWithCoverageAsAlpha_OptimizationFlag); |
| } |
| |
| /** |
| * If this is true then all opaque input colors to the processor produce opaque output colors. |
| */ |
| bool preservesOpaqueInput() const { |
| return SkToBool(fFlags & kPreservesOpaqueInput_OptimizationFlag); |
| } |
| |
| /** |
| * Tests whether given a constant input color the processor produces a constant output color |
| * (for all fragments). If true outputColor will contain the constant color produces for |
| * inputColor. |
| */ |
| bool hasConstantOutputForConstantInput(SkPMColor4f inputColor, SkPMColor4f* outputColor) const { |
| if (fFlags & kConstantOutputForConstantInput_OptimizationFlag) { |
| *outputColor = this->constantOutputForConstantInput(inputColor); |
| return true; |
| } |
| return false; |
| } |
| bool hasConstantOutputForConstantInput() const { |
| return SkToBool(fFlags & kConstantOutputForConstantInput_OptimizationFlag); |
| } |
| |
| /** Returns true if this and other processor conservatively draw identically. It can only return |
| true when the two processor are of the same subclass (i.e. they return the same object from |
| from getFactory()). |
| |
| A return value of true from isEqual() should not be used to test whether the processor would |
| generate the same shader code. To test for identical code generation use getGLSLProcessorKey |
| */ |
| bool isEqual(const GrFragmentProcessor& that) const; |
| |
| void visitProxies(const GrOp::VisitProxyFunc& func); |
| |
| // A pre-order traversal iterator over a hierarchy of FPs. It can also iterate over all the FP |
| // hierarchies rooted in a GrPaint, GrProcessorSet, or GrPipeline. For these collections it |
| // iterates the tree rooted at each color FP and then each coverage FP. |
| // |
| // Iter is the non-const version and CIter is the const version. |
| // |
| // An iterator is constructed from one of the srcs and used like this: |
| // for (GrFragmentProcessor::Iter iter(pipeline); iter; ++iter) { |
| // GrFragmentProcessor& fp = *iter; |
| // } |
| // The exit test for the loop is using Iter's operator bool(). |
| // To use a range-for loop instead see CIterRange below. |
| class Iter; |
| class CIter; |
| |
| // Used to implement a range-for loop using CIter. Src is one of GrFragmentProcessor, |
| // GrPaint, GrProcessorSet, or GrPipeline. Type aliases for these defined below. |
| // Example usage: |
| // for (const auto& fp : GrFragmentProcessor::PaintRange(paint)) { |
| // if (fp.usesLocalCoords()) { |
| // ... |
| // } |
| // } |
| template <typename Src> class CIterRange; |
| // Like CIterRange but non const and only constructable from GrFragmentProcessor. This could |
| // support GrPaint as it owns non-const FPs but no need for it as of now. |
| // for (auto& fp0 : GrFragmentProcessor::IterRange(fp)) { |
| // ... |
| // } |
| class IterRange; |
| |
| // We would use template deduction guides for Iter/CIter but for: |
| // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=79501 |
| // Instead we use these specialized type aliases to make it prettier |
| // to construct Iters for particular sources of FPs. |
| using FPCRange = CIterRange<GrFragmentProcessor>; |
| using PaintCRange = CIterRange<GrPaint>; |
| |
| // Implementation details for iterators that walk an array of Items owned by a set of FPs. |
| using CountFn = int (GrFragmentProcessor::*)() const; |
| // Defined GetFn to be a member function that returns an Item by index. The function itself is |
| // const if Item is a const type and non-const if Item is non-const. |
| template <typename Item, bool IsConst = std::is_const<Item>::value> struct GetT; |
| template <typename Item> struct GetT<Item, false> { |
| using GetFn = Item& (GrFragmentProcessor::*)(int); |
| }; |
| template <typename Item> struct GetT<Item, true> { |
| using GetFn = const Item& (GrFragmentProcessor::*)(int) const; |
| }; |
| template <typename Item> using GetFn = typename GetT<Item>::GetFn; |
| // This is an iterator over the Items owned by a (collection of) FP. CountFn is a FP member that |
| // gets the number of Items owned by each FP and GetFn is a member that gets them by index. |
| template <typename Item, CountFn Count, GetFn<Item> Get> class FPItemIter; |
| |
| // Loops over all the GrCoordTransforms owned by GrFragmentProcessors. The possible sources for |
| // the iteration are the same as those for Iter and the FPs are walked in the same order as |
| // Iter. This provides access to the coord transform and the FP that owns it. Example usage: |
| // for (GrFragmentProcessor::CoordTransformIter iter(pipeline); iter; ++iter) { |
| // // transform is const GrCoordTransform& and owningFP is const GrFragmentProcessor&. |
| // auto [transform, owningFP] = *iter; |
| // ... |
| // } |
| // See the ranges below to make this simpler a la range-for loops. |
| using CoordTransformIter = FPItemIter<const GrCoordTransform, |
| &GrFragmentProcessor::numCoordTransforms, |
| &GrFragmentProcessor::coordTransform>; |
| // Same as CoordTransformIter but for TextureSamplers: |
| // for (GrFragmentProcessor::TextureSamplerIter iter(pipeline); iter; ++iter) { |
| // // TextureSamplerIter is const GrFragmentProcessor::TextureSampler& and |
| // // owningFP is const GrFragmentProcessor&. |
| // auto [sampler, owningFP] = *iter; |
| // ... |
| // } |
| // See the ranges below to make this simpler a la range-for loops. |
| using TextureSamplerIter = FPItemIter<const TextureSampler, |
| &GrFragmentProcessor::numTextureSamplers, |
| &GrFragmentProcessor::textureSampler>; |
| |
| // Implementation detail for using CoordTransformIter and TextureSamplerIter in range-for loops. |
| template <typename Src, typename ItemIter> class FPItemRange; |
| |
| // These allow iteration over coord transforms/texture samplers for various FP sources via |
| // range-for loops. An example usage for looping over the coord transforms in a pipeline: |
| // for (auto [transform, fp] : GrFragmentProcessor::PipelineCoordTransformRange(pipeline)) { |
| // ... |
| // } |
| // Only the combinations of FP sources and iterable things have been defined but it is easy |
| // to add more as they become useful. Maybe someday we'll have template argument deduction |
| // with guides for type aliases and the sources can be removed from the type aliases: |
| // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1021r5.html |
| using PipelineCoordTransformRange = FPItemRange<const GrPipeline, CoordTransformIter>; |
| using PipelineTextureSamplerRange = FPItemRange<const GrPipeline, TextureSamplerIter>; |
| using FPTextureSamplerRange = FPItemRange<const GrFragmentProcessor, TextureSamplerIter>; |
| using ProcessorSetTextureSamplerRange = FPItemRange<const GrProcessorSet, TextureSamplerIter>; |
| |
| // Not used directly. |
| using NonConstCoordTransformIter = |
| FPItemIter<GrCoordTransform, &GrFragmentProcessor::numCoordTransforms, |
| &GrFragmentProcessor::coordTransform>; |
| // Iterator over non-const GrCoordTransforms owned by FP and its descendants. |
| using FPCoordTransformRange = FPItemRange<GrFragmentProcessor, NonConstCoordTransformIter>; |
| |
| // Sentinel type for range-for using Iter. |
| class EndIter {}; |
| // Sentinel type for range-for using FPItemIter. |
| class FPItemEndIter {}; |
| |
| protected: |
| enum OptimizationFlags : uint32_t { |
| kNone_OptimizationFlags, |
| kCompatibleWithCoverageAsAlpha_OptimizationFlag = 0x1, |
| kPreservesOpaqueInput_OptimizationFlag = 0x2, |
| kConstantOutputForConstantInput_OptimizationFlag = 0x4, |
| kAll_OptimizationFlags = kCompatibleWithCoverageAsAlpha_OptimizationFlag | |
| kPreservesOpaqueInput_OptimizationFlag | |
| kConstantOutputForConstantInput_OptimizationFlag |
| }; |
| GR_DECL_BITFIELD_OPS_FRIENDS(OptimizationFlags) |
| |
| /** |
| * Can be used as a helper to decide which fragment processor OptimizationFlags should be set. |
| * This assumes that the subclass output color will be a modulation of the input color with a |
| * value read from a texture of the passed color type and that the texture contains |
| * premultiplied color or alpha values that are in range. |
| * |
| * Since there are multiple ways in which a sampler may have its coordinates clamped or wrapped, |
| * callers must determine on their own if the sampling uses a decal strategy in any way, in |
| * which case the texture may become transparent regardless of the color type. |
| */ |
| static OptimizationFlags ModulateForSamplerOptFlags(SkAlphaType alphaType, bool samplingDecal) { |
| if (samplingDecal) { |
| return kCompatibleWithCoverageAsAlpha_OptimizationFlag; |
| } else { |
| return ModulateForClampedSamplerOptFlags(alphaType); |
| } |
| } |
| |
| // As above, but callers should somehow ensure or assert their sampler still uses clamping |
| static OptimizationFlags ModulateForClampedSamplerOptFlags(SkAlphaType alphaType) { |
| if (alphaType == kOpaque_SkAlphaType) { |
| return kCompatibleWithCoverageAsAlpha_OptimizationFlag | |
| kPreservesOpaqueInput_OptimizationFlag; |
| } else { |
| return kCompatibleWithCoverageAsAlpha_OptimizationFlag; |
| } |
| } |
| |
| GrFragmentProcessor(ClassID classID, OptimizationFlags optimizationFlags) |
| : INHERITED(classID) |
| , fFlags(optimizationFlags | kCoordTransformsApplyToLocalCoords_Flag) { |
| SkASSERT((optimizationFlags & ~kAll_OptimizationFlags) == 0); |
| } |
| |
| OptimizationFlags optimizationFlags() const { |
| return static_cast<OptimizationFlags>(kAll_OptimizationFlags & fFlags); |
| } |
| |
| /** Useful when you can't call fp->optimizationFlags() on a base class object from a subclass.*/ |
| static OptimizationFlags ProcessorOptimizationFlags(const GrFragmentProcessor* fp) { |
| return fp->optimizationFlags(); |
| } |
| |
| /** |
| * This allows one subclass to access another subclass's implementation of |
| * constantOutputForConstantInput. It must only be called when |
| * hasConstantOutputForConstantInput() is known to be true. |
| */ |
| static SkPMColor4f ConstantOutputForConstantInput(const GrFragmentProcessor& fp, |
| const SkPMColor4f& input) { |
| SkASSERT(fp.hasConstantOutputForConstantInput()); |
| return fp.constantOutputForConstantInput(input); |
| } |
| |
| /** |
| * Fragment Processor subclasses call this from their constructor to register coordinate |
| * transformations. Coord transforms provide a mechanism for a processor to receive coordinates |
| * in their FS code. The matrix expresses a transformation from local space. For a given |
| * fragment the matrix will be applied to the local coordinate that maps to the fragment. |
| * |
| * When the transformation has perspective, the transformed coordinates will have |
| * 3 components. Otherwise they'll have 2. |
| * |
| * This must only be called from the constructor because GrProcessors are immutable. The |
| * processor subclass manages the lifetime of the transformations (this function only stores a |
| * pointer). The GrCoordTransform is typically a member field of the GrProcessor subclass. |
| * |
| * A processor subclass that has multiple methods of construction should always add its coord |
| * transforms in a consistent order. The non-virtual implementation of isEqual() automatically |
| * compares transforms and will assume they line up across the two processor instances. |
| */ |
| void addCoordTransform(GrCoordTransform*); |
| |
| /** |
| * FragmentProcessor subclasses call this from their constructor to register any child |
| * FragmentProcessors they have. This must be called AFTER all texture accesses and coord |
| * transforms have been added. |
| * This is for processors whose shader code will be composed of nested processors whose output |
| * colors will be combined somehow to produce its output color. Registering these child |
| * processors will allow the ProgramBuilder to automatically handle their transformed coords and |
| * texture accesses and mangle their uniform and output color names. |
| */ |
| int registerChildProcessor(std::unique_ptr<GrFragmentProcessor> child); |
| |
| void setTextureSamplerCnt(int cnt) { |
| SkASSERT(cnt >= 0); |
| fTextureSamplerCnt = cnt; |
| } |
| |
| /** |
| * Helper for implementing onTextureSampler(). E.g.: |
| * return IthTexureSampler(i, fMyFirstSampler, fMySecondSampler, fMyThirdSampler); |
| */ |
| template <typename... Args> |
| static const TextureSampler& IthTextureSampler(int i, const TextureSampler& samp0, |
| const Args&... samps) { |
| return (0 == i) ? samp0 : IthTextureSampler(i - 1, samps...); |
| } |
| inline static const TextureSampler& IthTextureSampler(int i); |
| |
| private: |
| // Implementation details of Iter and CIter. |
| template <typename> class IterBase; |
| |
| virtual SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& /* inputColor */) const { |
| SK_ABORT("Subclass must override this if advertising this optimization."); |
| } |
| |
| /** Returns a new instance of the appropriate *GL* implementation class |
| for the given GrFragmentProcessor; caller is responsible for deleting |
| the object. */ |
| virtual GrGLSLFragmentProcessor* onCreateGLSLInstance() const = 0; |
| |
| /** Implemented using GLFragmentProcessor::GenKey as described in this class's comment. */ |
| virtual void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const = 0; |
| |
| /** |
| * Subclass implements this to support isEqual(). It will only be called if it is known that |
| * the two processors are of the same subclass (i.e. they return the same object from |
| * getFactory()). The processor subclass should not compare its coord transforms as that will |
| * be performed automatically in the non-virtual isEqual(). |
| */ |
| virtual bool onIsEqual(const GrFragmentProcessor&) const = 0; |
| |
| virtual const TextureSampler& onTextureSampler(int) const { return IthTextureSampler(0); } |
| |
| bool hasSameTransforms(const GrFragmentProcessor&) const; |
| |
| enum PrivateFlags { |
| kFirstPrivateFlag = kAll_OptimizationFlags + 1, |
| kHasCoordTranforms_Flag = kFirstPrivateFlag, |
| kCoordTransformsApplyToLocalCoords_Flag = kFirstPrivateFlag << 1, |
| }; |
| |
| uint32_t fFlags = kCoordTransformsApplyToLocalCoords_Flag; |
| |
| int fTextureSamplerCnt = 0; |
| |
| SkSTArray<4, GrCoordTransform*, true> fCoordTransforms; |
| |
| SkSTArray<1, std::unique_ptr<GrFragmentProcessor>, true> fChildProcessors; |
| |
| typedef GrProcessor INHERITED; |
| }; |
| |
| /** |
| * Used to represent a texture that is required by a GrFragmentProcessor. It holds a GrTextureProxy |
| * along with an associated GrSamplerState. TextureSamplers don't perform any coord manipulation to |
| * account for texture origin. |
| */ |
| class GrFragmentProcessor::TextureSampler { |
| public: |
| TextureSampler() = default; |
| |
| /** |
| * This copy constructor is used by GrFragmentProcessor::clone() implementations. |
| */ |
| explicit TextureSampler(const TextureSampler& that) |
| : fProxy(that.fProxy) |
| , fSamplerState(that.fSamplerState) {} |
| |
| TextureSampler(sk_sp<GrSurfaceProxy>, const GrSamplerState& = GrSamplerState::ClampNearest()); |
| |
| TextureSampler& operator=(const TextureSampler&) = delete; |
| |
| void reset(sk_sp<GrSurfaceProxy>, const GrSamplerState&); |
| |
| bool operator==(const TextureSampler& that) const { |
| return this->proxy()->underlyingUniqueID() == that.proxy()->underlyingUniqueID() && |
| fSamplerState == that.fSamplerState; |
| } |
| |
| bool operator!=(const TextureSampler& other) const { return !(*this == other); } |
| |
| SkDEBUGCODE(bool isInstantiated() const { return fProxy->isInstantiated(); }) |
| |
| // 'peekTexture' should only ever be called after a successful 'instantiate' call |
| GrTexture* peekTexture() const { |
| SkASSERT(fProxy->isInstantiated()); |
| return fProxy->peekTexture(); |
| } |
| |
| GrSurfaceProxy* proxy() const { return fProxy.get(); } |
| const GrSamplerState& samplerState() const { return fSamplerState; } |
| const GrSwizzle& swizzle() const { return this->proxy()->textureSwizzle(); } |
| |
| bool isInitialized() const { return SkToBool(fProxy.get()); } |
| |
| private: |
| sk_sp<GrSurfaceProxy> fProxy; |
| GrSamplerState fSamplerState; |
| }; |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| const GrFragmentProcessor::TextureSampler& GrFragmentProcessor::IthTextureSampler(int i) { |
| SK_ABORT("Illegal texture sampler index"); |
| static const TextureSampler kBogus; |
| return kBogus; |
| } |
| |
| GR_MAKE_BITFIELD_OPS(GrFragmentProcessor::OptimizationFlags) |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| template <typename FP> class GrFragmentProcessor::IterBase { |
| public: |
| FP& operator*() const { return *fFPStack.back(); } |
| FP* operator->() const { return fFPStack.back(); } |
| operator bool() const { return !fFPStack.empty(); } |
| bool operator!=(const EndIter&) { return (bool)*this; } |
| |
| // Because each iterator carries a stack we want to avoid copies. |
| IterBase(const IterBase&) = delete; |
| IterBase& operator=(const IterBase&) = delete; |
| |
| protected: |
| void increment(); |
| |
| IterBase() = default; |
| explicit IterBase(FP& fp) { fFPStack.push_back(&fp); } |
| |
| SkSTArray<4, FP*, true> fFPStack; |
| }; |
| |
| template <typename FP> void GrFragmentProcessor::IterBase<FP>::increment() { |
| SkASSERT(!fFPStack.empty()); |
| FP* back = fFPStack.back(); |
| fFPStack.pop_back(); |
| for (int i = back->numChildProcessors() - 1; i >= 0; --i) { |
| fFPStack.push_back(&back->childProcessor(i)); |
| } |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class GrFragmentProcessor::Iter : public IterBase<GrFragmentProcessor> { |
| public: |
| explicit Iter(GrFragmentProcessor& fp) : IterBase(fp) {} |
| Iter& operator++() { |
| this->increment(); |
| return *this; |
| } |
| }; |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class GrFragmentProcessor::CIter : public IterBase<const GrFragmentProcessor> { |
| public: |
| explicit CIter(const GrFragmentProcessor& fp) : IterBase(fp) {} |
| explicit CIter(const GrPaint&); |
| explicit CIter(const GrProcessorSet&); |
| explicit CIter(const GrPipeline&); |
| CIter& operator++() { |
| this->increment(); |
| return *this; |
| } |
| }; |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| template <typename Src> class GrFragmentProcessor::CIterRange { |
| public: |
| explicit CIterRange(const Src& t) : fT(t) {} |
| CIter begin() const { return CIter(fT); } |
| EndIter end() const { return EndIter(); } |
| |
| private: |
| const Src& fT; |
| }; |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| template <typename Item, GrFragmentProcessor::CountFn Count, GrFragmentProcessor::GetFn<Item> Get> |
| class GrFragmentProcessor::FPItemIter { |
| public: |
| template <typename Src> explicit FPItemIter(Src& s); |
| |
| std::pair<Item&, const GrFragmentProcessor&> operator*() const { |
| return {(*fFPIter.*Get)(fIndex), *fFPIter}; |
| } |
| FPItemIter& operator++(); |
| operator bool() const { return fFPIter; } |
| bool operator!=(const FPItemEndIter&) { return (bool)*this; } |
| |
| FPItemIter(const FPItemIter&) = delete; |
| FPItemIter& operator=(const FPItemIter&) = delete; |
| |
| private: |
| typename std::conditional<std::is_const<Item>::value, CIter, Iter>::type fFPIter; |
| int fIndex; |
| }; |
| |
| template <typename Item, GrFragmentProcessor::CountFn Count, GrFragmentProcessor::GetFn<Item> Get> |
| template <typename Src> |
| GrFragmentProcessor::FPItemIter<Item, Count, Get>::FPItemIter(Src& s) : fFPIter(s), fIndex(-1) { |
| if (fFPIter) { |
| ++*this; |
| } |
| } |
| |
| template <typename Item, GrFragmentProcessor::CountFn Count, GrFragmentProcessor::GetFn<Item> Get> |
| GrFragmentProcessor::FPItemIter<Item, Count, Get>& |
| GrFragmentProcessor::FPItemIter<Item, Count, Get>::operator++() { |
| ++fIndex; |
| if (fIndex < ((*fFPIter).*Count)()) { |
| return *this; |
| } |
| fIndex = 0; |
| do {} while (++fFPIter && !((*fFPIter).*Count)()); |
| return *this; |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| template <typename Src, typename ItemIter> class GrFragmentProcessor::FPItemRange { |
| public: |
| FPItemRange(Src& src) : fSrc(src) {} |
| ItemIter begin() const { return ItemIter(fSrc); } |
| FPItemEndIter end() const { return FPItemEndIter(); } |
| |
| private: |
| Src& fSrc; |
| }; |
| |
| #endif |