| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "dm/DMSrcSink.h" |
| #include "gm/verifiers/gmverifier.h" |
| #include "include/codec/SkAndroidCodec.h" |
| #include "include/codec/SkCodec.h" |
| #include "include/core/SkColorSpace.h" |
| #include "include/core/SkData.h" |
| #include "include/core/SkDeferredDisplayListRecorder.h" |
| #include "include/core/SkDocument.h" |
| #include "include/core/SkExecutor.h" |
| #include "include/core/SkImageGenerator.h" |
| #include "include/core/SkMallocPixelRef.h" |
| #include "include/core/SkPictureRecorder.h" |
| #include "include/core/SkStream.h" |
| #include "include/core/SkSurface.h" |
| #include "include/core/SkSurfaceCharacterization.h" |
| #include "include/docs/SkPDFDocument.h" |
| #include "include/gpu/GrBackendSurface.h" |
| #include "include/gpu/GrDirectContext.h" |
| #include "include/ports/SkImageGeneratorCG.h" |
| #include "include/ports/SkImageGeneratorNDK.h" |
| #include "include/ports/SkImageGeneratorWIC.h" |
| #include "include/private/SkImageInfoPriv.h" |
| #include "include/private/SkTLogic.h" |
| #include "include/third_party/skcms/skcms.h" |
| #include "include/utils/SkNullCanvas.h" |
| #include "include/utils/SkRandom.h" |
| #include "modules/skottie/utils/SkottieUtils.h" |
| #include "src/codec/SkCodecImageGenerator.h" |
| #include "src/codec/SkSwizzler.h" |
| #include "src/core/SkAutoMalloc.h" |
| #include "src/core/SkAutoPixmapStorage.h" |
| #include "src/core/SkOSFile.h" |
| #include "src/core/SkOpts.h" |
| #include "src/core/SkPictureCommon.h" |
| #include "src/core/SkPictureData.h" |
| #include "src/core/SkRecordDraw.h" |
| #include "src/core/SkRecorder.h" |
| #include "src/core/SkTaskGroup.h" |
| #include "src/gpu/GrContextPriv.h" |
| #include "src/gpu/GrGpu.h" |
| #include "src/utils/SkMultiPictureDocumentPriv.h" |
| #include "src/utils/SkOSPath.h" |
| #include "tools/DDLPromiseImageHelper.h" |
| #include "tools/DDLTileHelper.h" |
| #include "tools/Resources.h" |
| #include "tools/debugger/DebugCanvas.h" |
| #include "tools/gpu/MemoryCache.h" |
| #if defined(SK_BUILD_FOR_WIN) |
| #include "include/docs/SkXPSDocument.h" |
| #include "src/utils/win/SkAutoCoInitialize.h" |
| #include "src/utils/win/SkHRESULT.h" |
| #include "src/utils/win/SkTScopedComPtr.h" |
| #include <XpsObjectModel.h> |
| #endif |
| |
| #if defined(SK_ENABLE_SKOTTIE) |
| #include "modules/skottie/include/Skottie.h" |
| #include "modules/skresources/include/SkResources.h" |
| #endif |
| |
| #if defined(SK_ENABLE_SKRIVE) |
| #include "experimental/skrive/include/SkRive.h" |
| #endif |
| |
| #if defined(SK_XML) |
| #include "experimental/svg/model/SkSVGDOM.h" |
| #include "include/svg/SkSVGCanvas.h" |
| #include "src/xml/SkXMLWriter.h" |
| #endif |
| |
| #if defined(SK_ENABLE_ANDROID_UTILS) |
| #include "client_utils/android/BitmapRegionDecoder.h" |
| #endif |
| #include "tests/TestUtils.h" |
| |
| #include <cmath> |
| #include <functional> |
| |
| static DEFINE_bool(multiPage, false, |
| "For document-type backends, render the source into multiple pages"); |
| static DEFINE_bool(RAW_threading, true, "Allow RAW decodes to run on multiple threads?"); |
| |
| DECLARE_int(gpuThreads); |
| |
| using sk_gpu_test::GrContextFactory; |
| using sk_gpu_test::ContextInfo; |
| |
| namespace DM { |
| |
| GMSrc::GMSrc(skiagm::GMFactory factory) : fFactory(factory) {} |
| |
| Result GMSrc::draw(GrDirectContext* context, SkCanvas* canvas) const { |
| std::unique_ptr<skiagm::GM> gm(fFactory()); |
| SkString msg; |
| |
| skiagm::DrawResult gpuSetupResult = gm->gpuSetup(context, canvas, &msg); |
| switch (gpuSetupResult) { |
| case skiagm::DrawResult::kOk : break; |
| case skiagm::DrawResult::kFail: return Result(Result::Status::Fatal, msg); |
| case skiagm::DrawResult::kSkip: return Result(Result::Status::Skip, msg); |
| default: SK_ABORT(""); |
| } |
| |
| skiagm::DrawResult drawResult = gm->draw(canvas, &msg); |
| switch (drawResult) { |
| case skiagm::DrawResult::kOk : return Result(Result::Status::Ok, msg); |
| case skiagm::DrawResult::kFail: return Result(Result::Status::Fatal, msg); |
| case skiagm::DrawResult::kSkip: return Result(Result::Status::Skip, msg); |
| default: SK_ABORT(""); |
| } |
| |
| // Note: we don't call "gpuTeardown" here because, when testing DDL recording, we want |
| // the gpu-backed images to live past the lifetime of the GM. |
| } |
| |
| SkISize GMSrc::size() const { |
| std::unique_ptr<skiagm::GM> gm(fFactory()); |
| return gm->getISize(); |
| } |
| |
| Name GMSrc::name() const { |
| std::unique_ptr<skiagm::GM> gm(fFactory()); |
| return gm->getName(); |
| } |
| |
| void GMSrc::modifyGrContextOptions(GrContextOptions* options) const { |
| std::unique_ptr<skiagm::GM> gm(fFactory()); |
| gm->modifyGrContextOptions(options); |
| } |
| |
| std::unique_ptr<skiagm::verifiers::VerifierList> GMSrc::getVerifiers() const { |
| std::unique_ptr<skiagm::GM> gm(fFactory()); |
| return gm->getVerifiers(); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| static SkString get_scaled_name(const Path& path, float scale) { |
| return SkStringPrintf("%s_%.3f", SkOSPath::Basename(path.c_str()).c_str(), scale); |
| } |
| |
| #ifdef SK_ENABLE_ANDROID_UTILS |
| BRDSrc::BRDSrc(Path path, Mode mode, CodecSrc::DstColorType dstColorType, uint32_t sampleSize) |
| : fPath(path) |
| , fMode(mode) |
| , fDstColorType(dstColorType) |
| , fSampleSize(sampleSize) |
| {} |
| |
| bool BRDSrc::veto(SinkFlags flags) const { |
| // No need to test to non-raster or indirect backends. |
| return flags.type != SinkFlags::kRaster |
| || flags.approach != SinkFlags::kDirect; |
| } |
| |
| static std::unique_ptr<android::skia::BitmapRegionDecoder> create_brd(Path path) { |
| sk_sp<SkData> encoded(SkData::MakeFromFileName(path.c_str())); |
| return android::skia::BitmapRegionDecoder::Make(encoded); |
| } |
| |
| static inline void alpha8_to_gray8(SkBitmap* bitmap) { |
| // Android requires kGray8 bitmaps to be tagged as kAlpha8. Here we convert |
| // them back to kGray8 so our test framework can draw them correctly. |
| if (kAlpha_8_SkColorType == bitmap->info().colorType()) { |
| SkImageInfo newInfo = bitmap->info().makeColorType(kGray_8_SkColorType) |
| .makeAlphaType(kOpaque_SkAlphaType); |
| *const_cast<SkImageInfo*>(&bitmap->info()) = newInfo; |
| } |
| } |
| |
| Result BRDSrc::draw(GrDirectContext*, SkCanvas* canvas) const { |
| SkColorType colorType = canvas->imageInfo().colorType(); |
| if (kRGB_565_SkColorType == colorType && |
| CodecSrc::kGetFromCanvas_DstColorType != fDstColorType) |
| { |
| return Result::Skip("Testing non-565 to 565 is uninteresting."); |
| } |
| switch (fDstColorType) { |
| case CodecSrc::kGetFromCanvas_DstColorType: |
| break; |
| case CodecSrc::kGrayscale_Always_DstColorType: |
| colorType = kGray_8_SkColorType; |
| break; |
| default: |
| SkASSERT(false); |
| break; |
| } |
| |
| auto brd = create_brd(fPath); |
| if (nullptr == brd) { |
| return Result::Skip("Could not create brd for %s.", fPath.c_str()); |
| } |
| |
| auto recommendedCT = brd->computeOutputColorType(colorType); |
| if (kRGB_565_SkColorType == colorType && recommendedCT != colorType) { |
| return Result::Skip("Skip decoding non-opaque to 565."); |
| } |
| colorType = recommendedCT; |
| |
| auto colorSpace = brd->computeOutputColorSpace(colorType, nullptr); |
| |
| const uint32_t width = brd->width(); |
| const uint32_t height = brd->height(); |
| // Visually inspecting very small output images is not necessary. |
| if ((width / fSampleSize <= 10 || height / fSampleSize <= 10) && 1 != fSampleSize) { |
| return Result::Skip("Scaling very small images is uninteresting."); |
| } |
| switch (fMode) { |
| case kFullImage_Mode: { |
| SkBitmap bitmap; |
| if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(0, 0, width, height), |
| fSampleSize, colorType, false, colorSpace)) { |
| return Result::Fatal("Cannot decode (full) region."); |
| } |
| alpha8_to_gray8(&bitmap); |
| |
| canvas->drawBitmap(bitmap, 0, 0); |
| return Result::Ok(); |
| } |
| case kDivisor_Mode: { |
| const uint32_t divisor = 2; |
| if (width < divisor || height < divisor) { |
| return Result::Skip("Divisor is larger than image dimension."); |
| } |
| |
| // Use a border to test subsets that extend outside the image. |
| // We will not allow the border to be larger than the image dimensions. Allowing |
| // these large borders causes off by one errors that indicate a problem with the |
| // test suite, not a problem with the implementation. |
| const uint32_t maxBorder = std::min(width, height) / (fSampleSize * divisor); |
| const uint32_t scaledBorder = std::min(5u, maxBorder); |
| const uint32_t unscaledBorder = scaledBorder * fSampleSize; |
| |
| // We may need to clear the canvas to avoid uninitialized memory. |
| // Assume we are scaling a 780x780 image with sampleSize = 8. |
| // The output image should be 97x97. |
| // Each subset will be 390x390. |
| // Each scaled subset be 48x48. |
| // Four scaled subsets will only fill a 96x96 image. |
| // The bottom row and last column will not be touched. |
| // This is an unfortunate result of our rounding rules when scaling. |
| // Maybe we need to consider testing scaled subsets without trying to |
| // combine them to match the full scaled image? Or maybe this is the |
| // best we can do? |
| canvas->clear(0); |
| |
| for (uint32_t x = 0; x < divisor; x++) { |
| for (uint32_t y = 0; y < divisor; y++) { |
| // Calculate the subset dimensions |
| uint32_t subsetWidth = width / divisor; |
| uint32_t subsetHeight = height / divisor; |
| const int left = x * subsetWidth; |
| const int top = y * subsetHeight; |
| |
| // Increase the size of the last subset in each row or column, when the |
| // divisor does not divide evenly into the image dimensions |
| subsetWidth += (x + 1 == divisor) ? (width % divisor) : 0; |
| subsetHeight += (y + 1 == divisor) ? (height % divisor) : 0; |
| |
| // Increase the size of the subset in order to have a border on each side |
| const int decodeLeft = left - unscaledBorder; |
| const int decodeTop = top - unscaledBorder; |
| const uint32_t decodeWidth = subsetWidth + unscaledBorder * 2; |
| const uint32_t decodeHeight = subsetHeight + unscaledBorder * 2; |
| SkBitmap bitmap; |
| if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(decodeLeft, |
| decodeTop, decodeWidth, decodeHeight), fSampleSize, colorType, false, |
| colorSpace)) { |
| return Result::Fatal("Cannot decode region."); |
| } |
| |
| alpha8_to_gray8(&bitmap); |
| canvas->drawBitmapRect(bitmap, |
| SkRect::MakeXYWH((SkScalar) scaledBorder, (SkScalar) scaledBorder, |
| (SkScalar) (subsetWidth / fSampleSize), |
| (SkScalar) (subsetHeight / fSampleSize)), |
| SkRect::MakeXYWH((SkScalar) (left / fSampleSize), |
| (SkScalar) (top / fSampleSize), |
| (SkScalar) (subsetWidth / fSampleSize), |
| (SkScalar) (subsetHeight / fSampleSize)), |
| nullptr); |
| } |
| } |
| return Result::Ok(); |
| } |
| default: |
| SkASSERT(false); |
| return Result::Fatal("Error: Should not be reached."); |
| } |
| } |
| |
| SkISize BRDSrc::size() const { |
| auto brd = create_brd(fPath); |
| if (brd) { |
| return {std::max(1, brd->width() / (int)fSampleSize), |
| std::max(1, brd->height() / (int)fSampleSize)}; |
| } |
| return {0, 0}; |
| } |
| |
| Name BRDSrc::name() const { |
| // We will replicate the names used by CodecSrc so that images can |
| // be compared in Gold. |
| if (1 == fSampleSize) { |
| return SkOSPath::Basename(fPath.c_str()); |
| } |
| return get_scaled_name(fPath, 1.0f / (float) fSampleSize); |
| } |
| |
| #endif // SK_ENABLE_ANDROID_UTILS |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| static bool serial_from_path_name(const SkString& path) { |
| if (!FLAGS_RAW_threading) { |
| static const char* const exts[] = { |
| "arw", "cr2", "dng", "nef", "nrw", "orf", "raf", "rw2", "pef", "srw", |
| "ARW", "CR2", "DNG", "NEF", "NRW", "ORF", "RAF", "RW2", "PEF", "SRW", |
| }; |
| const char* actualExt = strrchr(path.c_str(), '.'); |
| if (actualExt) { |
| actualExt++; |
| for (auto* ext : exts) { |
| if (0 == strcmp(ext, actualExt)) { |
| return true; |
| } |
| } |
| } |
| } |
| return false; |
| } |
| |
| CodecSrc::CodecSrc(Path path, Mode mode, DstColorType dstColorType, SkAlphaType dstAlphaType, |
| float scale) |
| : fPath(path) |
| , fMode(mode) |
| , fDstColorType(dstColorType) |
| , fDstAlphaType(dstAlphaType) |
| , fScale(scale) |
| , fRunSerially(serial_from_path_name(path)) |
| {} |
| |
| bool CodecSrc::veto(SinkFlags flags) const { |
| // Test to direct raster backends (8888 and 565). |
| return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect; |
| } |
| |
| // Allows us to test decodes to non-native 8888. |
| static void swap_rb_if_necessary(SkBitmap& bitmap, CodecSrc::DstColorType dstColorType) { |
| if (CodecSrc::kNonNative8888_Always_DstColorType != dstColorType) { |
| return; |
| } |
| |
| for (int y = 0; y < bitmap.height(); y++) { |
| uint32_t* row = (uint32_t*) bitmap.getAddr(0, y); |
| SkOpts::RGBA_to_BGRA(row, row, bitmap.width()); |
| } |
| } |
| |
| static bool get_decode_info(SkImageInfo* decodeInfo, SkColorType canvasColorType, |
| CodecSrc::DstColorType dstColorType, SkAlphaType dstAlphaType) { |
| switch (dstColorType) { |
| case CodecSrc::kGrayscale_Always_DstColorType: |
| if (kRGB_565_SkColorType == canvasColorType) { |
| return false; |
| } |
| *decodeInfo = decodeInfo->makeColorType(kGray_8_SkColorType); |
| break; |
| case CodecSrc::kNonNative8888_Always_DstColorType: |
| if (kRGB_565_SkColorType == canvasColorType |
| || kRGBA_F16_SkColorType == canvasColorType) { |
| return false; |
| } |
| #ifdef SK_PMCOLOR_IS_RGBA |
| *decodeInfo = decodeInfo->makeColorType(kBGRA_8888_SkColorType); |
| #else |
| *decodeInfo = decodeInfo->makeColorType(kRGBA_8888_SkColorType); |
| #endif |
| break; |
| default: |
| if (kRGB_565_SkColorType == canvasColorType && |
| kOpaque_SkAlphaType != decodeInfo->alphaType()) { |
| return false; |
| } |
| |
| *decodeInfo = decodeInfo->makeColorType(canvasColorType); |
| break; |
| } |
| |
| *decodeInfo = decodeInfo->makeAlphaType(dstAlphaType); |
| return true; |
| } |
| |
| static void draw_to_canvas(SkCanvas* canvas, const SkImageInfo& info, void* pixels, size_t rowBytes, |
| CodecSrc::DstColorType dstColorType, |
| SkScalar left = 0, SkScalar top = 0) { |
| SkBitmap bitmap; |
| bitmap.installPixels(info, pixels, rowBytes); |
| swap_rb_if_necessary(bitmap, dstColorType); |
| canvas->drawBitmap(bitmap, left, top); |
| } |
| |
| // For codec srcs, we want the "draw" step to be a memcpy. Any interesting color space or |
| // color format conversions should be performed by the codec. Sometimes the output of the |
| // decode will be in an interesting color space. On our srgb and f16 backends, we need to |
| // "pretend" that the color space is standard sRGB to avoid triggering color conversion |
| // at draw time. |
| static void set_bitmap_color_space(SkImageInfo* info) { |
| *info = info->makeColorSpace(SkColorSpace::MakeSRGB()); |
| } |
| |
| Result CodecSrc::draw(GrDirectContext*, SkCanvas* canvas) const { |
| sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str())); |
| if (!encoded) { |
| return Result::Fatal("Couldn't read %s.", fPath.c_str()); |
| } |
| |
| std::unique_ptr<SkCodec> codec(SkCodec::MakeFromData(encoded)); |
| if (nullptr == codec) { |
| return Result::Fatal("Couldn't create codec for %s.", fPath.c_str()); |
| } |
| |
| SkImageInfo decodeInfo = codec->getInfo(); |
| if (!get_decode_info(&decodeInfo, canvas->imageInfo().colorType(), fDstColorType, |
| fDstAlphaType)) { |
| return Result::Skip("Skipping uninteresting test."); |
| } |
| |
| // Try to scale the image if it is desired |
| SkISize size = codec->getScaledDimensions(fScale); |
| if (size == decodeInfo.dimensions() && 1.0f != fScale) { |
| return Result::Skip("Test without scaling is uninteresting."); |
| } |
| |
| // Visually inspecting very small output images is not necessary. We will |
| // cover these cases in unit testing. |
| if ((size.width() <= 10 || size.height() <= 10) && 1.0f != fScale) { |
| return Result::Skip("Scaling very small images is uninteresting."); |
| } |
| decodeInfo = decodeInfo.makeDimensions(size); |
| |
| const int bpp = decodeInfo.bytesPerPixel(); |
| const size_t rowBytes = size.width() * bpp; |
| const size_t safeSize = decodeInfo.computeByteSize(rowBytes); |
| SkAutoMalloc pixels(safeSize); |
| |
| SkCodec::Options options; |
| if (kCodecZeroInit_Mode == fMode) { |
| memset(pixels.get(), 0, size.height() * rowBytes); |
| options.fZeroInitialized = SkCodec::kYes_ZeroInitialized; |
| } |
| |
| SkImageInfo bitmapInfo = decodeInfo; |
| set_bitmap_color_space(&bitmapInfo); |
| if (kRGBA_8888_SkColorType == decodeInfo.colorType() || |
| kBGRA_8888_SkColorType == decodeInfo.colorType()) { |
| bitmapInfo = bitmapInfo.makeColorType(kN32_SkColorType); |
| } |
| |
| switch (fMode) { |
| case kAnimated_Mode: { |
| std::vector<SkCodec::FrameInfo> frameInfos = codec->getFrameInfo(); |
| if (frameInfos.size() <= 1) { |
| return Result::Fatal("%s is not an animated image.", fPath.c_str()); |
| } |
| |
| // As in CodecSrc::size(), compute a roughly square grid to draw the frames |
| // into. "factor" is the number of frames to draw on one row. There will be |
| // up to "factor" rows as well. |
| const float root = sqrt((float) frameInfos.size()); |
| const int factor = sk_float_ceil2int(root); |
| |
| // Used to cache a frame that future frames will depend on. |
| SkAutoMalloc priorFramePixels; |
| int cachedFrame = SkCodec::kNoFrame; |
| for (int i = 0; static_cast<size_t>(i) < frameInfos.size(); i++) { |
| options.fFrameIndex = i; |
| // Check for a prior frame |
| const int reqFrame = frameInfos[i].fRequiredFrame; |
| if (reqFrame != SkCodec::kNoFrame && reqFrame == cachedFrame |
| && priorFramePixels.get()) { |
| // Copy into pixels |
| memcpy(pixels.get(), priorFramePixels.get(), safeSize); |
| options.fPriorFrame = reqFrame; |
| } else { |
| options.fPriorFrame = SkCodec::kNoFrame; |
| } |
| SkCodec::Result result = codec->getPixels(decodeInfo, pixels.get(), |
| rowBytes, &options); |
| if (SkCodec::kInvalidInput == result && i > 0) { |
| // Some of our test images have truncated later frames. Treat that |
| // the same as incomplete. |
| result = SkCodec::kIncompleteInput; |
| } |
| switch (result) { |
| case SkCodec::kSuccess: |
| case SkCodec::kErrorInInput: |
| case SkCodec::kIncompleteInput: { |
| // If the next frame depends on this one, store it in priorFrame. |
| // It is possible that we may discard a frame that future frames depend on, |
| // but the codec will simply redecode the discarded frame. |
| // Do this before calling draw_to_canvas, which premultiplies in place. If |
| // we're decoding to unpremul, we want to pass the unmodified frame to the |
| // codec for decoding the next frame. |
| if (static_cast<size_t>(i+1) < frameInfos.size() |
| && frameInfos[i+1].fRequiredFrame == i) { |
| memcpy(priorFramePixels.reset(safeSize), pixels.get(), safeSize); |
| cachedFrame = i; |
| } |
| |
| SkAutoCanvasRestore acr(canvas, true); |
| const int xTranslate = (i % factor) * decodeInfo.width(); |
| const int yTranslate = (i / factor) * decodeInfo.height(); |
| canvas->translate(SkIntToScalar(xTranslate), SkIntToScalar(yTranslate)); |
| draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, fDstColorType); |
| if (result != SkCodec::kSuccess) { |
| return Result::Ok(); |
| } |
| break; |
| } |
| case SkCodec::kInvalidConversion: |
| if (i > 0 && (decodeInfo.colorType() == kRGB_565_SkColorType)) { |
| return Result::Skip( |
| "Cannot decode frame %i to 565 (%s).", i, fPath.c_str()); |
| } |
| [[fallthrough]]; |
| default: |
| return Result::Fatal( |
| "Couldn't getPixels for frame %i in %s.", i, fPath.c_str()); |
| } |
| } |
| break; |
| } |
| case kCodecZeroInit_Mode: |
| case kCodec_Mode: { |
| switch (codec->getPixels(decodeInfo, pixels.get(), rowBytes, &options)) { |
| case SkCodec::kSuccess: |
| // We consider these to be valid, since we should still decode what is |
| // available. |
| case SkCodec::kErrorInInput: |
| case SkCodec::kIncompleteInput: |
| break; |
| default: |
| // Everything else is considered a failure. |
| return Result::Fatal("Couldn't getPixels %s.", fPath.c_str()); |
| } |
| |
| draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, fDstColorType); |
| break; |
| } |
| case kScanline_Mode: { |
| void* dst = pixels.get(); |
| uint32_t height = decodeInfo.height(); |
| const bool useIncremental = [this]() { |
| auto exts = { "png", "PNG", "gif", "GIF" }; |
| for (auto ext : exts) { |
| if (fPath.endsWith(ext)) { |
| return true; |
| } |
| } |
| return false; |
| }(); |
| // ico may use the old scanline method or the new one, depending on whether it |
| // internally holds a bmp or a png. |
| const bool ico = fPath.endsWith("ico"); |
| bool useOldScanlineMethod = !useIncremental && !ico; |
| if (useIncremental || ico) { |
| if (SkCodec::kSuccess == codec->startIncrementalDecode(decodeInfo, dst, |
| rowBytes, &options)) { |
| int rowsDecoded; |
| auto result = codec->incrementalDecode(&rowsDecoded); |
| if (SkCodec::kIncompleteInput == result || SkCodec::kErrorInInput == result) { |
| codec->fillIncompleteImage(decodeInfo, dst, rowBytes, |
| SkCodec::kNo_ZeroInitialized, height, |
| rowsDecoded); |
| } |
| } else { |
| if (useIncremental) { |
| // Error: These should support incremental decode. |
| return Result::Fatal("Could not start incremental decode"); |
| } |
| // Otherwise, this is an ICO. Since incremental failed, it must contain a BMP, |
| // which should work via startScanlineDecode |
| useOldScanlineMethod = true; |
| } |
| } |
| |
| if (useOldScanlineMethod) { |
| if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo)) { |
| return Result::Fatal("Could not start scanline decoder"); |
| } |
| |
| // We do not need to check the return value. On an incomplete |
| // image, memory will be filled with a default value. |
| codec->getScanlines(dst, height, rowBytes); |
| } |
| |
| draw_to_canvas(canvas, bitmapInfo, dst, rowBytes, fDstColorType); |
| break; |
| } |
| case kStripe_Mode: { |
| const int height = decodeInfo.height(); |
| // This value is chosen arbitrarily. We exercise more cases by choosing a value that |
| // does not align with image blocks. |
| const int stripeHeight = 37; |
| const int numStripes = (height + stripeHeight - 1) / stripeHeight; |
| void* dst = pixels.get(); |
| |
| // Decode odd stripes |
| if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, &options)) { |
| return Result::Fatal("Could not start scanline decoder"); |
| } |
| |
| // This mode was designed to test the new skip scanlines API in libjpeg-turbo. |
| // Jpegs have kTopDown_SkScanlineOrder, and at this time, it is not interesting |
| // to run this test for image types that do not have this scanline ordering. |
| // We only run this on Jpeg, which is always kTopDown. |
| SkASSERT(SkCodec::kTopDown_SkScanlineOrder == codec->getScanlineOrder()); |
| |
| for (int i = 0; i < numStripes; i += 2) { |
| // Skip a stripe |
| const int linesToSkip = std::min(stripeHeight, height - i * stripeHeight); |
| codec->skipScanlines(linesToSkip); |
| |
| // Read a stripe |
| const int startY = (i + 1) * stripeHeight; |
| const int linesToRead = std::min(stripeHeight, height - startY); |
| if (linesToRead > 0) { |
| codec->getScanlines(SkTAddOffset<void>(dst, rowBytes * startY), linesToRead, |
| rowBytes); |
| } |
| } |
| |
| // Decode even stripes |
| const SkCodec::Result startResult = codec->startScanlineDecode(decodeInfo); |
| if (SkCodec::kSuccess != startResult) { |
| return Result::Fatal("Failed to restart scanline decoder with same parameters."); |
| } |
| for (int i = 0; i < numStripes; i += 2) { |
| // Read a stripe |
| const int startY = i * stripeHeight; |
| const int linesToRead = std::min(stripeHeight, height - startY); |
| codec->getScanlines(SkTAddOffset<void>(dst, rowBytes * startY), linesToRead, |
| rowBytes); |
| |
| // Skip a stripe |
| const int linesToSkip = std::min(stripeHeight, height - (i + 1) * stripeHeight); |
| if (linesToSkip > 0) { |
| codec->skipScanlines(linesToSkip); |
| } |
| } |
| |
| draw_to_canvas(canvas, bitmapInfo, dst, rowBytes, fDstColorType); |
| break; |
| } |
| case kCroppedScanline_Mode: { |
| const int width = decodeInfo.width(); |
| const int height = decodeInfo.height(); |
| // This value is chosen because, as we move across the image, it will sometimes |
| // align with the jpeg block sizes and it will sometimes not. This allows us |
| // to test interestingly different code paths in the implementation. |
| const int tileSize = 36; |
| SkIRect subset; |
| for (int x = 0; x < width; x += tileSize) { |
| subset = SkIRect::MakeXYWH(x, 0, std::min(tileSize, width - x), height); |
| options.fSubset = ⊂ |
| if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, &options)) { |
| return Result::Fatal("Could not start scanline decoder."); |
| } |
| |
| codec->getScanlines(SkTAddOffset<void>(pixels.get(), x * bpp), height, rowBytes); |
| } |
| |
| draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, fDstColorType); |
| break; |
| } |
| case kSubset_Mode: { |
| // Arbitrarily choose a divisor. |
| int divisor = 2; |
| // Total width/height of the image. |
| const int W = codec->getInfo().width(); |
| const int H = codec->getInfo().height(); |
| if (divisor > W || divisor > H) { |
| return Result::Skip("Cannot codec subset: divisor %d is too big " |
| "for %s with dimensions (%d x %d)", divisor, |
| fPath.c_str(), W, H); |
| } |
| // subset dimensions |
| // SkWebpCodec, the only one that supports subsets, requires even top/left boundaries. |
| const int w = SkAlign2(W / divisor); |
| const int h = SkAlign2(H / divisor); |
| SkIRect subset; |
| options.fSubset = ⊂ |
| SkBitmap subsetBm; |
| // We will reuse pixel memory from bitmap. |
| void* dst = pixels.get(); |
| // Keep track of left and top (for drawing subsetBm into canvas). We could use |
| // fScale * x and fScale * y, but we want integers such that the next subset will start |
| // where the last one ended. So we'll add decodeInfo.width() and height(). |
| int left = 0; |
| for (int x = 0; x < W; x += w) { |
| int top = 0; |
| for (int y = 0; y < H; y+= h) { |
| // Do not make the subset go off the edge of the image. |
| const int preScaleW = std::min(w, W - x); |
| const int preScaleH = std::min(h, H - y); |
| subset.setXYWH(x, y, preScaleW, preScaleH); |
| // And scale |
| // FIXME: Should we have a version of getScaledDimensions that takes a subset |
| // into account? |
| const int scaledW = std::max(1, SkScalarRoundToInt(preScaleW * fScale)); |
| const int scaledH = std::max(1, SkScalarRoundToInt(preScaleH * fScale)); |
| decodeInfo = decodeInfo.makeWH(scaledW, scaledH); |
| SkImageInfo subsetBitmapInfo = bitmapInfo.makeWH(scaledW, scaledH); |
| size_t subsetRowBytes = subsetBitmapInfo.minRowBytes(); |
| const SkCodec::Result result = codec->getPixels(decodeInfo, dst, subsetRowBytes, |
| &options); |
| switch (result) { |
| case SkCodec::kSuccess: |
| case SkCodec::kErrorInInput: |
| case SkCodec::kIncompleteInput: |
| break; |
| default: |
| return Result::Fatal("subset codec failed to decode (%d, %d, %d, %d) " |
| "from %s with dimensions (%d x %d)\t error %d", |
| x, y, decodeInfo.width(), decodeInfo.height(), |
| fPath.c_str(), W, H, result); |
| } |
| draw_to_canvas(canvas, subsetBitmapInfo, dst, subsetRowBytes, fDstColorType, |
| SkIntToScalar(left), SkIntToScalar(top)); |
| |
| // translate by the scaled height. |
| top += decodeInfo.height(); |
| } |
| // translate by the scaled width. |
| left += decodeInfo.width(); |
| } |
| return Result::Ok(); |
| } |
| default: |
| SkASSERT(false); |
| return Result::Fatal("Invalid fMode"); |
| } |
| return Result::Ok(); |
| } |
| |
| SkISize CodecSrc::size() const { |
| sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str())); |
| std::unique_ptr<SkCodec> codec(SkCodec::MakeFromData(encoded)); |
| if (nullptr == codec) { |
| return {0, 0}; |
| } |
| |
| auto imageSize = codec->getScaledDimensions(fScale); |
| if (fMode == kAnimated_Mode) { |
| // We'll draw one of each frame, so make it big enough to hold them all |
| // in a grid. The grid will be roughly square, with "factor" frames per |
| // row and up to "factor" rows. |
| const size_t count = codec->getFrameInfo().size(); |
| const float root = sqrt((float) count); |
| const int factor = sk_float_ceil2int(root); |
| imageSize.fWidth = imageSize.fWidth * factor; |
| imageSize.fHeight = imageSize.fHeight * sk_float_ceil2int((float) count / (float) factor); |
| } |
| return imageSize; |
| } |
| |
| Name CodecSrc::name() const { |
| if (1.0f == fScale) { |
| Name name = SkOSPath::Basename(fPath.c_str()); |
| if (fMode == kAnimated_Mode) { |
| name.append("_animated"); |
| } |
| return name; |
| } |
| SkASSERT(fMode != kAnimated_Mode); |
| return get_scaled_name(fPath, fScale); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| AndroidCodecSrc::AndroidCodecSrc(Path path, CodecSrc::DstColorType dstColorType, |
| SkAlphaType dstAlphaType, int sampleSize) |
| : fPath(path) |
| , fDstColorType(dstColorType) |
| , fDstAlphaType(dstAlphaType) |
| , fSampleSize(sampleSize) |
| , fRunSerially(serial_from_path_name(path)) |
| {} |
| |
| bool AndroidCodecSrc::veto(SinkFlags flags) const { |
| // No need to test decoding to non-raster or indirect backend. |
| return flags.type != SinkFlags::kRaster |
| || flags.approach != SinkFlags::kDirect; |
| } |
| |
| Result AndroidCodecSrc::draw(GrDirectContext*, SkCanvas* canvas) const { |
| sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str())); |
| if (!encoded) { |
| return Result::Fatal("Couldn't read %s.", fPath.c_str()); |
| } |
| std::unique_ptr<SkAndroidCodec> codec(SkAndroidCodec::MakeFromData(encoded)); |
| if (nullptr == codec) { |
| return Result::Fatal("Couldn't create android codec for %s.", fPath.c_str()); |
| } |
| |
| SkImageInfo decodeInfo = codec->getInfo(); |
| if (!get_decode_info(&decodeInfo, canvas->imageInfo().colorType(), fDstColorType, |
| fDstAlphaType)) { |
| return Result::Skip("Skipping uninteresting test."); |
| } |
| |
| // Scale the image if it is desired. |
| SkISize size = codec->getSampledDimensions(fSampleSize); |
| |
| // Visually inspecting very small output images is not necessary. We will |
| // cover these cases in unit testing. |
| if ((size.width() <= 10 || size.height() <= 10) && 1 != fSampleSize) { |
| return Result::Skip("Scaling very small images is uninteresting."); |
| } |
| decodeInfo = decodeInfo.makeDimensions(size); |
| |
| int bpp = decodeInfo.bytesPerPixel(); |
| size_t rowBytes = size.width() * bpp; |
| SkAutoMalloc pixels(size.height() * rowBytes); |
| |
| SkBitmap bitmap; |
| SkImageInfo bitmapInfo = decodeInfo; |
| set_bitmap_color_space(&bitmapInfo); |
| if (kRGBA_8888_SkColorType == decodeInfo.colorType() || |
| kBGRA_8888_SkColorType == decodeInfo.colorType()) { |
| bitmapInfo = bitmapInfo.makeColorType(kN32_SkColorType); |
| } |
| |
| // Create options for the codec. |
| SkAndroidCodec::AndroidOptions options; |
| options.fSampleSize = fSampleSize; |
| |
| switch (codec->getAndroidPixels(decodeInfo, pixels.get(), rowBytes, &options)) { |
| case SkCodec::kSuccess: |
| case SkCodec::kErrorInInput: |
| case SkCodec::kIncompleteInput: |
| break; |
| default: |
| return Result::Fatal("Couldn't getPixels %s.", fPath.c_str()); |
| } |
| draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, fDstColorType); |
| return Result::Ok(); |
| } |
| |
| SkISize AndroidCodecSrc::size() const { |
| sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str())); |
| std::unique_ptr<SkAndroidCodec> codec(SkAndroidCodec::MakeFromData(encoded)); |
| if (nullptr == codec) { |
| return {0, 0}; |
| } |
| return codec->getSampledDimensions(fSampleSize); |
| } |
| |
| Name AndroidCodecSrc::name() const { |
| // We will replicate the names used by CodecSrc so that images can |
| // be compared in Gold. |
| if (1 == fSampleSize) { |
| return SkOSPath::Basename(fPath.c_str()); |
| } |
| return get_scaled_name(fPath, 1.0f / (float) fSampleSize); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| ImageGenSrc::ImageGenSrc(Path path, Mode mode, SkAlphaType alphaType, bool isGpu) |
| : fPath(path) |
| , fMode(mode) |
| , fDstAlphaType(alphaType) |
| , fIsGpu(isGpu) |
| , fRunSerially(serial_from_path_name(path)) |
| {} |
| |
| bool ImageGenSrc::veto(SinkFlags flags) const { |
| if (fIsGpu) { |
| // MSAA runs tend to run out of memory and tests the same code paths as regular gpu configs. |
| return flags.type != SinkFlags::kGPU || flags.approach != SinkFlags::kDirect || |
| flags.multisampled == SinkFlags::kMultisampled; |
| } |
| |
| return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect; |
| } |
| |
| Result ImageGenSrc::draw(GrDirectContext*, SkCanvas* canvas) const { |
| if (kRGB_565_SkColorType == canvas->imageInfo().colorType()) { |
| return Result::Skip("Uninteresting to test image generator to 565."); |
| } |
| |
| sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str())); |
| if (!encoded) { |
| return Result::Fatal("Couldn't read %s.", fPath.c_str()); |
| } |
| |
| #if defined(SK_BUILD_FOR_WIN) |
| // Initialize COM in order to test with WIC. |
| SkAutoCoInitialize com; |
| if (!com.succeeded()) { |
| return Result::Fatal("Could not initialize COM."); |
| } |
| #endif |
| |
| std::unique_ptr<SkImageGenerator> gen(nullptr); |
| switch (fMode) { |
| case kCodec_Mode: |
| gen = SkCodecImageGenerator::MakeFromEncodedCodec(encoded); |
| if (!gen) { |
| return Result::Fatal("Could not create codec image generator."); |
| } |
| break; |
| case kPlatform_Mode: { |
| #if defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_IOS) |
| gen = SkImageGeneratorCG::MakeFromEncodedCG(encoded); |
| #elif defined(SK_BUILD_FOR_WIN) |
| gen = SkImageGeneratorWIC::MakeFromEncodedWIC(encoded); |
| #elif defined(SK_ENABLE_NDK_IMAGES) |
| gen = SkImageGeneratorNDK::MakeFromEncodedNDK(encoded); |
| #endif |
| if (!gen) { |
| return Result::Fatal("Could not create platform image generator."); |
| } |
| break; |
| } |
| default: |
| SkASSERT(false); |
| return Result::Fatal("Invalid image generator mode"); |
| } |
| |
| // Test deferred decoding path on GPU |
| if (fIsGpu) { |
| sk_sp<SkImage> image(SkImage::MakeFromGenerator(std::move(gen))); |
| if (!image) { |
| return Result::Fatal("Could not create image from codec image generator."); |
| } |
| canvas->drawImage(image, 0, 0); |
| return Result::Ok(); |
| } |
| |
| // Test various color and alpha types on CPU |
| SkImageInfo decodeInfo = gen->getInfo().makeAlphaType(fDstAlphaType); |
| |
| int bpp = decodeInfo.bytesPerPixel(); |
| size_t rowBytes = decodeInfo.width() * bpp; |
| SkAutoMalloc pixels(decodeInfo.height() * rowBytes); |
| if (!gen->getPixels(decodeInfo, pixels.get(), rowBytes)) { |
| Result::Status status = Result::Status::Fatal; |
| #if defined(SK_BUILD_FOR_WIN) |
| if (kPlatform_Mode == fMode) { |
| // Do not issue a fatal error for WIC flakiness. |
| status = Result::Status::Skip; |
| } |
| #endif |
| return Result(status, "Image generator could not getPixels() for %s\n", fPath.c_str()); |
| } |
| |
| set_bitmap_color_space(&decodeInfo); |
| draw_to_canvas(canvas, decodeInfo, pixels.get(), rowBytes, |
| CodecSrc::kGetFromCanvas_DstColorType); |
| return Result::Ok(); |
| } |
| |
| SkISize ImageGenSrc::size() const { |
| sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str())); |
| std::unique_ptr<SkCodec> codec(SkCodec::MakeFromData(encoded)); |
| if (nullptr == codec) { |
| return {0, 0}; |
| } |
| return codec->getInfo().dimensions(); |
| } |
| |
| Name ImageGenSrc::name() const { |
| return SkOSPath::Basename(fPath.c_str()); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| ColorCodecSrc::ColorCodecSrc(Path path, bool decode_to_dst) : fPath(path) |
| , fDecodeToDst(decode_to_dst) {} |
| |
| bool ColorCodecSrc::veto(SinkFlags flags) const { |
| // Test to direct raster backends (8888 and 565). |
| return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect; |
| } |
| |
| Result ColorCodecSrc::draw(GrDirectContext*, SkCanvas* canvas) const { |
| sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str())); |
| if (!encoded) { |
| return Result::Fatal("Couldn't read %s.", fPath.c_str()); |
| } |
| |
| std::unique_ptr<SkCodec> codec(SkCodec::MakeFromData(encoded)); |
| if (nullptr == codec) { |
| return Result::Fatal("Couldn't create codec for %s.", fPath.c_str()); |
| } |
| |
| SkImageInfo info = codec->getInfo(); |
| if (fDecodeToDst) { |
| SkImageInfo canvasInfo = canvas->imageInfo(); |
| if (!canvasInfo.colorSpace()) { |
| // This will skip color conversion, and the resulting images will |
| // look different from images they are compared against in Gold, but |
| // that doesn't mean they are wrong. We have a test verifying that |
| // passing a null SkColorSpace skips conversion, so skip this |
| // misleading test. |
| return Result::Skip("Skipping decoding without color transform."); |
| } |
| info = canvasInfo.makeDimensions(info.dimensions()); |
| } |
| |
| SkBitmap bitmap; |
| if (!bitmap.tryAllocPixels(info)) { |
| return Result::Fatal("Image(%s) is too large (%d x %d)", |
| fPath.c_str(), info.width(), info.height()); |
| } |
| |
| switch (auto r = codec->getPixels(info, bitmap.getPixels(), bitmap.rowBytes())) { |
| case SkCodec::kSuccess: |
| case SkCodec::kErrorInInput: |
| case SkCodec::kIncompleteInput: |
| canvas->drawBitmap(bitmap, 0,0); |
| return Result::Ok(); |
| case SkCodec::kInvalidConversion: |
| // TODO(mtklein): why are there formats we can't decode to? |
| return Result::Skip("SkCodec can't decode to this format."); |
| default: |
| return Result::Fatal("Couldn't getPixels %s. Error code %d", fPath.c_str(), r); |
| } |
| } |
| |
| SkISize ColorCodecSrc::size() const { |
| sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str())); |
| std::unique_ptr<SkCodec> codec(SkCodec::MakeFromData(encoded)); |
| if (nullptr == codec) { |
| return {0, 0}; |
| } |
| return {codec->getInfo().width(), codec->getInfo().height()}; |
| } |
| |
| Name ColorCodecSrc::name() const { |
| return SkOSPath::Basename(fPath.c_str()); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| static DEFINE_int(skpViewportSize, 1000, |
| "Width & height of the viewport used to crop skp rendering."); |
| |
| SKPSrc::SKPSrc(Path path) : fPath(path) { } |
| |
| Result SKPSrc::draw(GrDirectContext*, SkCanvas* canvas) const { |
| std::unique_ptr<SkStream> stream = SkStream::MakeFromFile(fPath.c_str()); |
| if (!stream) { |
| return Result::Fatal("Couldn't read %s.", fPath.c_str()); |
| } |
| sk_sp<SkPicture> pic(SkPicture::MakeFromStream(stream.get())); |
| if (!pic) { |
| return Result::Fatal("Couldn't parse file %s.", fPath.c_str()); |
| } |
| stream = nullptr; // Might as well drop this when we're done with it. |
| canvas->clipRect(SkRect::MakeWH(FLAGS_skpViewportSize, FLAGS_skpViewportSize)); |
| canvas->drawPicture(pic); |
| return Result::Ok(); |
| } |
| |
| static SkRect get_cull_rect_for_skp(const char* path) { |
| std::unique_ptr<SkStream> stream = SkStream::MakeFromFile(path); |
| if (!stream) { |
| return SkRect::MakeEmpty(); |
| } |
| SkPictInfo info; |
| if (!SkPicture_StreamIsSKP(stream.get(), &info)) { |
| return SkRect::MakeEmpty(); |
| } |
| |
| return info.fCullRect; |
| } |
| |
| SkISize SKPSrc::size() const { |
| SkRect viewport = get_cull_rect_for_skp(fPath.c_str()); |
| if (!viewport.intersect((SkRect::MakeWH(FLAGS_skpViewportSize, FLAGS_skpViewportSize)))) { |
| return {0, 0}; |
| } |
| return viewport.roundOut().size(); |
| } |
| |
| Name SKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| BisectSrc::BisectSrc(Path path, const char* trail) : INHERITED(path), fTrail(trail) {} |
| |
| Result BisectSrc::draw(GrDirectContext* context, SkCanvas* canvas) const { |
| struct FoundPath { |
| SkPath fPath; |
| SkPaint fPaint; |
| SkMatrix fViewMatrix; |
| }; |
| |
| // This subclass of SkCanvas just extracts all the SkPaths (drawn via drawPath) from an SKP. |
| class PathFindingCanvas : public SkCanvas { |
| public: |
| PathFindingCanvas(int width, int height) : SkCanvas(width, height, nullptr) {} |
| const SkTArray<FoundPath>& foundPaths() const { return fFoundPaths; } |
| |
| private: |
| void onDrawPath(const SkPath& path, const SkPaint& paint) override { |
| fFoundPaths.push_back() = {path, paint, this->getTotalMatrix()}; |
| } |
| |
| SkTArray<FoundPath> fFoundPaths; |
| }; |
| |
| PathFindingCanvas pathFinder(canvas->getBaseLayerSize().width(), |
| canvas->getBaseLayerSize().height()); |
| Result result = this->INHERITED::draw(context, &pathFinder); |
| if (!result.isOk()) { |
| return result; |
| } |
| |
| int start = 0, end = pathFinder.foundPaths().count(); |
| for (const char* ch = fTrail.c_str(); *ch; ++ch) { |
| int midpt = (start + end) / 2; |
| if ('l' == *ch) { |
| start = midpt; |
| } else if ('r' == *ch) { |
| end = midpt; |
| } |
| } |
| |
| for (int i = start; i < end; ++i) { |
| const FoundPath& path = pathFinder.foundPaths()[i]; |
| SkAutoCanvasRestore acr(canvas, true); |
| canvas->concat(path.fViewMatrix); |
| canvas->drawPath(path.fPath, path.fPaint); |
| } |
| |
| return Result::Ok(); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| #if defined(SK_ENABLE_SKOTTIE) |
| static DEFINE_bool(useLottieGlyphPaths, false, |
| "Prioritize embedded glyph paths over native fonts."); |
| |
| SkottieSrc::SkottieSrc(Path path) : fPath(std::move(path)) {} |
| |
| Result SkottieSrc::draw(GrDirectContext*, SkCanvas* canvas) const { |
| auto resource_provider = |
| skresources::DataURIResourceProviderProxy::Make( |
| skresources::FileResourceProvider::Make(SkOSPath::Dirname(fPath.c_str()), |
| /*predecode=*/true), |
| /*predecode=*/true); |
| |
| static constexpr char kInterceptPrefix[] = "__"; |
| auto precomp_interceptor = |
| sk_make_sp<skottie_utils::ExternalAnimationPrecompInterceptor>(resource_provider, |
| kInterceptPrefix); |
| uint32_t flags = 0; |
| if (FLAGS_useLottieGlyphPaths) { |
| flags |= skottie::Animation::Builder::kPreferEmbeddedFonts; |
| } |
| |
| auto animation = skottie::Animation::Builder(flags) |
| .setResourceProvider(std::move(resource_provider)) |
| .setPrecompInterceptor(std::move(precomp_interceptor)) |
| .makeFromFile(fPath.c_str()); |
| if (!animation) { |
| return Result::Fatal("Unable to parse file: %s", fPath.c_str()); |
| } |
| |
| canvas->drawColor(SK_ColorWHITE); |
| |
| const auto t_rate = 1.0f / (kTileCount * kTileCount - 1); |
| |
| // Draw the frames in a shuffled order to exercise non-linear |
| // frame progression. The film strip will still be in order left-to-right, |
| // top-down, just not drawn in that order. |
| static constexpr int frameOrder[] = { 4, 0, 3, 1, 2 }; |
| static_assert(SK_ARRAY_COUNT(frameOrder) == kTileCount, ""); |
| |
| for (int i = 0; i < kTileCount; ++i) { |
| const SkScalar y = frameOrder[i] * kTileSize; |
| |
| for (int j = 0; j < kTileCount; ++j) { |
| const SkScalar x = frameOrder[j] * kTileSize; |
| SkRect dest = SkRect::MakeXYWH(x, y, kTileSize, kTileSize); |
| |
| const auto t = t_rate * (frameOrder[i] * kTileCount + frameOrder[j]); |
| { |
| SkAutoCanvasRestore acr(canvas, true); |
| canvas->clipRect(dest, true); |
| canvas->concat(SkMatrix::MakeRectToRect(SkRect::MakeSize(animation->size()), |
| dest, |
| SkMatrix::kCenter_ScaleToFit)); |
| animation->seek(t); |
| animation->render(canvas); |
| } |
| } |
| } |
| |
| return Result::Ok(); |
| } |
| |
| SkISize SkottieSrc::size() const { |
| return SkISize::Make(kTargetSize, kTargetSize); |
| } |
| |
| Name SkottieSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } |
| |
| bool SkottieSrc::veto(SinkFlags flags) const { |
| // No need to test to non-(raster||gpu||vector) or indirect backends. |
| bool type_ok = flags.type == SinkFlags::kRaster |
| || flags.type == SinkFlags::kGPU |
| || flags.type == SinkFlags::kVector; |
| |
| return !type_ok || flags.approach != SinkFlags::kDirect; |
| } |
| #endif |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| #if defined(SK_ENABLE_SKRIVE) |
| SkRiveSrc::SkRiveSrc(Path path) : fPath(std::move(path)) {} |
| |
| Result SkRiveSrc::draw(GrDirectContext*, SkCanvas* canvas) const { |
| auto fileStream = SkFILEStream::Make(fPath.c_str()); |
| if (!fileStream) { |
| return Result::Fatal("Unable to open file: %s", fPath.c_str()); |
| } |
| |
| const auto skrive = skrive::SkRive::Builder().make(std::move(fileStream)); |
| if (!skrive) { |
| return Result::Fatal("Unable to parse file: %s", fPath.c_str()); |
| } |
| |
| auto bounds = SkRect::MakeEmpty(); |
| |
| for (const auto& ab : skrive->artboards()) { |
| const auto& pos = ab->getTranslation(); |
| const auto& size = ab->getSize(); |
| |
| bounds.join(SkRect::MakeXYWH(pos.x, pos.y, size.x, size.y)); |
| } |
| |
| canvas->drawColor(SK_ColorWHITE); |
| |
| if (!bounds.isEmpty()) { |
| // TODO: tiled frames when we add animation support |
| SkAutoCanvasRestore acr(canvas, true); |
| canvas->concat(SkMatrix::MakeRectToRect(bounds, |
| SkRect::MakeWH(kTargetSize, kTargetSize), |
| SkMatrix::kCenter_ScaleToFit )); |
| for (const auto& ab : skrive->artboards()) { |
| ab->render(canvas); |
| } |
| } |
| |
| return Result::Ok(); |
| } |
| |
| SkISize SkRiveSrc::size() const { |
| return SkISize::Make(kTargetSize, kTargetSize); |
| } |
| |
| Name SkRiveSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } |
| |
| bool SkRiveSrc::veto(SinkFlags flags) const { |
| // No need to test to non-(raster||gpu||vector) or indirect backends. |
| bool type_ok = flags.type == SinkFlags::kRaster |
| || flags.type == SinkFlags::kGPU |
| || flags.type == SinkFlags::kVector; |
| |
| return !type_ok || flags.approach != SinkFlags::kDirect; |
| } |
| #endif |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| #if defined(SK_XML) |
| // Used when the image doesn't have an intrinsic size. |
| static const SkSize kDefaultSVGSize = {1000, 1000}; |
| |
| // Used to force-scale tiny fixed-size images. |
| static const SkSize kMinimumSVGSize = {128, 128}; |
| |
| SVGSrc::SVGSrc(Path path) |
| : fName(SkOSPath::Basename(path.c_str())) |
| , fScale(1) { |
| |
| sk_sp<SkData> data(SkData::MakeFromFileName(path.c_str())); |
| if (!data) { |
| return; |
| } |
| |
| SkMemoryStream stream(std::move(data)); |
| fDom = SkSVGDOM::MakeFromStream(stream); |
| if (!fDom) { |
| return; |
| } |
| |
| const SkSize& sz = fDom->containerSize(); |
| if (sz.isEmpty()) { |
| // no intrinsic size |
| fDom->setContainerSize(kDefaultSVGSize); |
| } else { |
| fScale = std::max(1.f, std::max(kMinimumSVGSize.width() / sz.width(), |
| kMinimumSVGSize.height() / sz.height())); |
| } |
| } |
| |
| Result SVGSrc::draw(GrDirectContext*, SkCanvas* canvas) const { |
| if (!fDom) { |
| return Result::Fatal("Unable to parse file: %s", fName.c_str()); |
| } |
| |
| SkAutoCanvasRestore acr(canvas, true); |
| canvas->scale(fScale, fScale); |
| fDom->render(canvas); |
| |
| return Result::Ok(); |
| } |
| |
| SkISize SVGSrc::size() const { |
| if (!fDom) { |
| return {0, 0}; |
| } |
| |
| return SkSize{fDom->containerSize().width() * fScale, fDom->containerSize().height() * fScale} |
| .toRound(); |
| } |
| |
| Name SVGSrc::name() const { return fName; } |
| |
| bool SVGSrc::veto(SinkFlags flags) const { |
| // No need to test to non-(raster||gpu||vector) or indirect backends. |
| bool type_ok = flags.type == SinkFlags::kRaster |
| || flags.type == SinkFlags::kGPU |
| || flags.type == SinkFlags::kVector; |
| |
| return !type_ok || flags.approach != SinkFlags::kDirect; |
| } |
| |
| #endif // defined(SK_XML) |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| MSKPSrc::MSKPSrc(Path path) : fPath(path) { |
| std::unique_ptr<SkStreamAsset> stream = SkStream::MakeFromFile(fPath.c_str()); |
| int count = SkMultiPictureDocumentReadPageCount(stream.get()); |
| if (count > 0) { |
| fPages.reset(count); |
| (void)SkMultiPictureDocumentReadPageSizes(stream.get(), &fPages[0], fPages.count()); |
| } |
| } |
| |
| int MSKPSrc::pageCount() const { return fPages.count(); } |
| |
| SkISize MSKPSrc::size() const { return this->size(0); } |
| SkISize MSKPSrc::size(int i) const { |
| return i >= 0 && i < fPages.count() ? fPages[i].fSize.toCeil() : SkISize{0, 0}; |
| } |
| |
| Result MSKPSrc::draw(GrDirectContext* context, SkCanvas* c) const { |
| return this->draw(0, context, c); |
| } |
| Result MSKPSrc::draw(int i, GrDirectContext*, SkCanvas* canvas) const { |
| if (this->pageCount() == 0) { |
| return Result::Fatal("Unable to parse MultiPictureDocument file: %s", fPath.c_str()); |
| } |
| if (i >= fPages.count() || i < 0) { |
| return Result::Fatal("MultiPictureDocument page number out of range: %d", i); |
| } |
| SkPicture* page = fPages[i].fPicture.get(); |
| if (!page) { |
| std::unique_ptr<SkStreamAsset> stream = SkStream::MakeFromFile(fPath.c_str()); |
| if (!stream) { |
| return Result::Fatal("Unable to open file: %s", fPath.c_str()); |
| } |
| if (!SkMultiPictureDocumentRead(stream.get(), &fPages[0], fPages.count())) { |
| return Result::Fatal("SkMultiPictureDocument reader failed on page %d: %s", i, |
| fPath.c_str()); |
| } |
| page = fPages[i].fPicture.get(); |
| } |
| canvas->drawPicture(page); |
| return Result::Ok(); |
| } |
| |
| Name MSKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| Result NullSink::draw(const Src& src, SkBitmap*, SkWStream*, SkString*) const { |
| return src.draw(nullptr, SkMakeNullCanvas().get()); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| static Result compare_bitmaps(const SkBitmap& reference, const SkBitmap& bitmap) { |
| // The dimensions are a property of the Src only, and so should be identical. |
| SkASSERT(reference.computeByteSize() == bitmap.computeByteSize()); |
| if (reference.computeByteSize() != bitmap.computeByteSize()) { |
| return Result::Fatal("Dimensions don't match reference"); |
| } |
| // All SkBitmaps in DM are tight, so this comparison is easy. |
| if (0 != memcmp(reference.getPixels(), bitmap.getPixels(), reference.computeByteSize())) { |
| SkString encoded; |
| SkString errString("Pixels don't match reference"); |
| if (BipmapToBase64DataURI(reference, &encoded)) { |
| errString.append("\nExpected: "); |
| errString.append(encoded); |
| } else { |
| errString.append("\nExpected image failed to encode: "); |
| errString.append(encoded); |
| } |
| if (BipmapToBase64DataURI(bitmap, &encoded)) { |
| errString.append("\nActual: "); |
| errString.append(encoded); |
| } else { |
| errString.append("\nActual image failed to encode: "); |
| errString.append(encoded); |
| } |
| return Result::Fatal(errString); |
| } |
| return Result::Ok(); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| static DEFINE_bool(gpuStats, false, "Append GPU stats to the log for each GPU task?"); |
| static DEFINE_bool(preAbandonGpuContext, false, |
| "Test abandoning the GrContext before running the test."); |
| static DEFINE_bool(abandonGpuContext, false, |
| "Test abandoning the GrContext after running each test."); |
| static DEFINE_bool(releaseAndAbandonGpuContext, false, |
| "Test releasing all gpu resources and abandoning the GrContext " |
| "after running each test"); |
| static DEFINE_bool(drawOpClip, false, "Clip each GrDrawOp to its device bounds for testing."); |
| static DEFINE_bool(programBinaryCache, true, "Use in-memory program binary cache"); |
| |
| GPUSink::GPUSink(const SkCommandLineConfigGpu* config, |
| const GrContextOptions& grCtxOptions) |
| : fContextType(config->getContextType()) |
| , fContextOverrides(config->getContextOverrides()) |
| , fSurfType(config->getSurfType()) |
| , fSampleCount(config->getSamples()) |
| , fUseDIText(config->getUseDIText()) |
| , fColorType(config->getColorType()) |
| , fAlphaType(config->getAlphaType()) |
| , fColorSpace(sk_ref_sp(config->getColorSpace())) |
| , fBaseContextOptions(grCtxOptions) { |
| if (FLAGS_programBinaryCache) { |
| fBaseContextOptions.fPersistentCache = &fMemoryCache; |
| } |
| } |
| |
| Result GPUSink::draw(const Src& src, SkBitmap* dst, SkWStream* dstStream, SkString* log) const { |
| return this->onDraw(src, dst, dstStream, log, fBaseContextOptions); |
| } |
| |
| sk_sp<SkSurface> GPUSink::createDstSurface(GrDirectContext* context, SkISize size, |
| GrBackendTexture* backendTexture, |
| GrBackendRenderTarget* backendRT) const { |
| sk_sp<SkSurface> surface; |
| |
| SkImageInfo info = SkImageInfo::Make(size, fColorType, fAlphaType, fColorSpace); |
| uint32_t flags = fUseDIText ? SkSurfaceProps::kUseDeviceIndependentFonts_Flag : 0; |
| SkSurfaceProps props(flags, SkSurfaceProps::kLegacyFontHost_InitType); |
| |
| switch (fSurfType) { |
| case SkCommandLineConfigGpu::SurfType::kDefault: |
| surface = SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, info, fSampleCount, |
| &props); |
| break; |
| case SkCommandLineConfigGpu::SurfType::kBackendTexture: |
| CreateBackendTexture(context, backendTexture, info.width(), info.height(), |
| info.colorType(), SkColors::kTransparent, GrMipmapped::kNo, |
| GrRenderable::kYes, GrProtected::kNo); |
| surface = SkSurface::MakeFromBackendTexture(context, *backendTexture, |
| kTopLeft_GrSurfaceOrigin, fSampleCount, |
| fColorType, info.refColorSpace(), &props); |
| break; |
| case SkCommandLineConfigGpu::SurfType::kBackendRenderTarget: |
| if (1 == fSampleCount) { |
| auto colorType = SkColorTypeToGrColorType(info.colorType()); |
| *backendRT = context->priv().getGpu()->createTestingOnlyBackendRenderTarget( |
| info.width(), info.height(), colorType); |
| surface = SkSurface::MakeFromBackendRenderTarget( |
| context, *backendRT, kBottomLeft_GrSurfaceOrigin, info.colorType(), |
| info.refColorSpace(), &props); |
| } |
| break; |
| } |
| |
| return surface; |
| } |
| |
| bool GPUSink::readBack(SkSurface* surface, SkBitmap* dst) const { |
| SkCanvas* canvas = surface->getCanvas(); |
| SkISize size = surface->imageInfo().dimensions(); |
| |
| SkImageInfo info = SkImageInfo::Make(size, fColorType, fAlphaType, fColorSpace); |
| dst->allocPixels(info); |
| return canvas->readPixels(*dst, 0, 0); |
| } |
| |
| Result GPUSink::onDraw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log, |
| const GrContextOptions& baseOptions, |
| std::function<void(GrDirectContext*)> initContext) const { |
| GrContextOptions grOptions = baseOptions; |
| |
| // We don't expect the src to mess with the persistent cache or the executor. |
| SkDEBUGCODE(auto cache = grOptions.fPersistentCache); |
| SkDEBUGCODE(auto exec = grOptions.fExecutor); |
| src.modifyGrContextOptions(&grOptions); |
| SkASSERT(cache == grOptions.fPersistentCache); |
| SkASSERT(exec == grOptions.fExecutor); |
| |
| GrContextFactory factory(grOptions); |
| auto direct = factory.getContextInfo(fContextType, fContextOverrides).directContext(); |
| if (initContext) { |
| initContext(direct); |
| } |
| |
| const int maxDimension = direct->priv().caps()->maxTextureSize(); |
| if (maxDimension < std::max(src.size().width(), src.size().height())) { |
| return Result::Skip("Src too large to create a texture.\n"); |
| } |
| |
| GrBackendTexture backendTexture; |
| GrBackendRenderTarget backendRT; |
| sk_sp<SkSurface> surface = this->createDstSurface(direct, src.size(), |
| &backendTexture, &backendRT); |
| if (!surface) { |
| return Result::Fatal("Could not create a surface."); |
| } |
| if (FLAGS_preAbandonGpuContext) { |
| factory.abandonContexts(); |
| } |
| SkCanvas* canvas = surface->getCanvas(); |
| Result result = src.draw(direct, canvas); |
| if (!result.isOk()) { |
| return result; |
| } |
| surface->flushAndSubmit(); |
| if (FLAGS_gpuStats) { |
| direct->priv().dumpCacheStats(log); |
| direct->priv().dumpGpuStats(log); |
| direct->priv().dumpContextStats(log); |
| } |
| |
| this->readBack(surface.get(), dst); |
| |
| if (FLAGS_abandonGpuContext) { |
| factory.abandonContexts(); |
| } else if (FLAGS_releaseAndAbandonGpuContext) { |
| factory.releaseResourcesAndAbandonContexts(); |
| } |
| if (!direct->abandoned()) { |
| surface.reset(); |
| if (backendTexture.isValid()) { |
| direct->deleteBackendTexture(backendTexture); |
| } |
| if (backendRT.isValid()) { |
| direct->priv().getGpu()->deleteTestingOnlyBackendRenderTarget(backendRT); |
| } |
| } |
| if (grOptions.fPersistentCache) { |
| direct->storeVkPipelineCacheData(); |
| } |
| return Result::Ok(); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| GPUThreadTestingSink::GPUThreadTestingSink(const SkCommandLineConfigGpu* config, |
| const GrContextOptions& grCtxOptions) |
| : INHERITED(config, grCtxOptions) |
| , fExecutor(SkExecutor::MakeFIFOThreadPool(FLAGS_gpuThreads)) { |
| SkASSERT(fExecutor); |
| } |
| |
| Result GPUThreadTestingSink::draw(const Src& src, SkBitmap* dst, SkWStream* wStream, |
| SkString* log) const { |
| // Draw twice, once with worker threads, and once without. Verify that we get the same result. |
| // Also, force us to only use the software path renderer, so we really stress-test the threaded |
| // version of that code. |
| GrContextOptions contextOptions = this->baseContextOptions(); |
| contextOptions.fGpuPathRenderers = GpuPathRenderers::kNone; |
| contextOptions.fExecutor = fExecutor.get(); |
| |
| Result result = this->onDraw(src, dst, wStream, log, contextOptions); |
| if (!result.isOk() || !dst) { |
| return result; |
| } |
| |
| SkBitmap reference; |
| SkString refLog; |
| SkDynamicMemoryWStream refStream; |
| contextOptions.fExecutor = nullptr; |
| Result refResult = this->onDraw(src, &reference, &refStream, &refLog, contextOptions); |
| if (!refResult.isOk()) { |
| return refResult; |
| } |
| |
| return compare_bitmaps(reference, *dst); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| GPUPersistentCacheTestingSink::GPUPersistentCacheTestingSink(const SkCommandLineConfigGpu* config, |
| const GrContextOptions& grCtxOptions) |
| : INHERITED(config, grCtxOptions) |
| , fCacheType(config->getTestPersistentCache()) {} |
| |
| Result GPUPersistentCacheTestingSink::draw(const Src& src, SkBitmap* dst, SkWStream* wStream, |
| SkString* log) const { |
| // Draw twice, once with a cold cache, and again with a warm cache. Verify that we get the same |
| // result. |
| sk_gpu_test::MemoryCache memoryCache; |
| GrContextOptions contextOptions = this->baseContextOptions(); |
| contextOptions.fPersistentCache = &memoryCache; |
| if (fCacheType == 2) { |
| contextOptions.fShaderCacheStrategy = GrContextOptions::ShaderCacheStrategy::kBackendSource; |
| } |
| |
| Result result = this->onDraw(src, dst, wStream, log, contextOptions); |
| if (!result.isOk() || !dst) { |
| return result; |
| } |
| |
| SkBitmap reference; |
| SkString refLog; |
| SkDynamicMemoryWStream refStream; |
| memoryCache.resetCacheStats(); |
| Result refResult = this->onDraw(src, &reference, &refStream, &refLog, contextOptions); |
| if (!refResult.isOk()) { |
| return refResult; |
| } |
| SkASSERT(!memoryCache.numCacheMisses()); |
| SkASSERT(!memoryCache.numCacheStores()); |
| |
| return compare_bitmaps(reference, *dst); |
| } |
| |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| GPUPrecompileTestingSink::GPUPrecompileTestingSink(const SkCommandLineConfigGpu* config, |
| const GrContextOptions& grCtxOptions) |
| : INHERITED(config, grCtxOptions) {} |
| |
| Result GPUPrecompileTestingSink::draw(const Src& src, SkBitmap* dst, SkWStream* wStream, |
| SkString* log) const { |
| // Three step process: |
| // 1) Draw once with an SkSL cache, and store off the shader blobs. |
| // 2) For the second context, pre-compile the shaders to warm the cache. |
| // 3) Draw with the second context, ensuring that we get the same result, and no cache misses. |
| sk_gpu_test::MemoryCache memoryCache; |
| GrContextOptions contextOptions = this->baseContextOptions(); |
| contextOptions.fPersistentCache = &memoryCache; |
| contextOptions.fShaderCacheStrategy = GrContextOptions::ShaderCacheStrategy::kSkSL; |
| |
| Result result = this->onDraw(src, dst, wStream, log, contextOptions); |
| if (!result.isOk() || !dst) { |
| return result; |
| } |
| |
| auto precompileShaders = [&memoryCache](GrDirectContext* dContext) { |
| memoryCache.foreach([dContext](sk_sp<const SkData> key, |
| sk_sp<SkData> data, |
| int /*count*/) { |
| SkAssertResult(dContext->precompileShader(*key, *data)); |
| }); |
| }; |
| |
| sk_gpu_test::MemoryCache replayCache; |
| GrContextOptions replayOptions = this->baseContextOptions(); |
| // Ensure that the runtime cache is large enough to hold all of the shaders we pre-compile |
| replayOptions.fRuntimeProgramCacheSize = memoryCache.numCacheMisses(); |
| replayOptions.fPersistentCache = &replayCache; |
| |
| SkBitmap reference; |
| SkString refLog; |
| SkDynamicMemoryWStream refStream; |
| Result refResult = this->onDraw(src, &reference, &refStream, &refLog, replayOptions, |
| precompileShaders); |
| if (!refResult.isOk()) { |
| return refResult; |
| } |
| SkASSERT(!replayCache.numCacheMisses()); |
| |
| return compare_bitmaps(reference, *dst); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| GPUOOPRSink::GPUOOPRSink(const SkCommandLineConfigGpu* config, const GrContextOptions& ctxOptions) |
| : INHERITED(config, ctxOptions) { |
| } |
| |
| Result GPUOOPRSink::ooprDraw(const Src& src, |
| sk_sp<SkSurface> dstSurface, |
| GrDirectContext* context) const { |
| SkSurfaceCharacterization dstCharacterization; |
| SkAssertResult(dstSurface->characterize(&dstCharacterization)); |
| |
| SkDeferredDisplayListRecorder recorder(dstCharacterization); |
| |
| Result result = src.draw(context, recorder.getCanvas()); |
| if (!result.isOk()) { |
| return result; |
| } |
| |
| auto ddl = recorder.detach(); |
| |
| SkDeferredDisplayList::ProgramIterator iter(context, ddl.get()); |
| for (; !iter.done(); iter.next()) { |
| iter.compile(); |
| } |
| |
| SkAssertResult(dstSurface->draw(std::move(ddl))); |
| |
| return Result::Ok(); |
| } |
| |
| Result GPUOOPRSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log) const { |
| GrContextOptions contextOptions = this->baseContextOptions(); |
| src.modifyGrContextOptions(&contextOptions); |
| contextOptions.fPersistentCache = nullptr; |
| contextOptions.fExecutor = nullptr; |
| |
| GrContextFactory factory(contextOptions); |
| |
| ContextInfo ctxInfo = factory.getContextInfo(this->contextType(), this->contextOverrides()); |
| auto context = ctxInfo.directContext(); |
| if (!context) { |
| return Result::Fatal("Could not create context."); |
| } |
| |
| SkASSERT(context->priv().getGpu()); |
| |
| GrBackendTexture backendTexture; |
| GrBackendRenderTarget backendRT; |
| sk_sp<SkSurface> surface = this->createDstSurface(context, src.size(), |
| &backendTexture, &backendRT); |
| if (!surface) { |
| return Result::Fatal("Could not create a surface."); |
| } |
| |
| Result result = this->ooprDraw(src, surface, context); |
| if (!result.isOk()) { |
| return result; |
| } |
| |
| if (FLAGS_gpuStats) { |
| context->priv().dumpCacheStats(log); |
| context->priv().dumpGpuStats(log); |
| context->priv().dumpContextStats(log); |
| } |
| |
| if (!this->readBack(surface.get(), dst)) { |
| return Result::Fatal("Could not readback from surface."); |
| } |
| |
| surface.reset(); |
| if (backendTexture.isValid()) { |
| context->deleteBackendTexture(backendTexture); |
| } |
| if (backendRT.isValid()) { |
| context->priv().getGpu()->deleteTestingOnlyBackendRenderTarget(backendRT); |
| } |
| |
| return Result::Ok(); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| GPUDDLSink::GPUDDLSink(const SkCommandLineConfigGpu* config, const GrContextOptions& ctxOptions) |
| : INHERITED(config, ctxOptions) |
| , fRecordingExecutor(SkExecutor::MakeLIFOThreadPool(1)) |
| , fGPUExecutor(SkExecutor::MakeFIFOThreadPool(1, false)) { |
| } |
| |
| Result GPUDDLSink::ddlDraw(const Src& src, |
| sk_sp<SkSurface> dstSurface, |
| SkTaskGroup* recordingTaskGroup, |
| SkTaskGroup* gpuTaskGroup, |
| sk_gpu_test::TestContext* gpuTestCtx, |
| GrDirectContext* gpuThreadCtx) const { |
| |
| // We have to do this here bc characterization can hit the SkGpuDevice's thread guard (i.e., |
| // leaving it until the DDLTileHelper ctor will result in multiple threads trying to use the |
| // same context (this thread and the gpuThread - which will be uploading textures)). |
| SkSurfaceCharacterization dstCharacterization; |
| SkAssertResult(dstSurface->characterize(&dstCharacterization)); |
| |
| auto size = src.size(); |
| SkPictureRecorder recorder; |
| Result result = src.draw(gpuThreadCtx, recorder.beginRecording(SkIntToScalar(size.width()), |
| SkIntToScalar(size.height()))); |
| if (!result.isOk()) { |
| return result; |
| } |
| sk_sp<SkPicture> inputPicture(recorder.finishRecordingAsPicture()); |
| |
| // this is our ultimate final drawing area/rect |
| SkIRect viewport = SkIRect::MakeWH(size.fWidth, size.fHeight); |
| |
| SkYUVAPixmapInfo::SupportedDataTypes supportedYUVADataTypes(*gpuThreadCtx); |
| DDLPromiseImageHelper promiseImageHelper(supportedYUVADataTypes); |
| sk_sp<SkData> compressedPictureData = promiseImageHelper.deflateSKP(inputPicture.get()); |
| if (!compressedPictureData) { |
| return Result::Fatal("GPUDDLSink: Couldn't deflate SkPicture"); |
| } |
| |
| promiseImageHelper.createCallbackContexts(gpuThreadCtx); |
| |
| // 'gpuTestCtx/gpuThreadCtx' is being shifted to the gpuThread. Leave the main (this) |
| // thread w/o a context. |
| gpuTestCtx->makeNotCurrent(); |
| |
| // Job one for the GPU thread is to make 'gpuTestCtx' current! |
| gpuTaskGroup->add([gpuTestCtx] { gpuTestCtx->makeCurrent(); }); |
| |
| // TODO: move the image upload to the utility thread |
| promiseImageHelper.uploadAllToGPU(gpuTaskGroup, gpuThreadCtx); |
| |
| // Care must be taken when using 'gpuThreadCtx' bc it moves between the gpu-thread and this |
| // one. About all it can be consistently used for is GrCaps access and 'defaultBackendFormat' |
| // calls. |
| constexpr int kNumDivisions = 3; |
| DDLTileHelper tiles(gpuThreadCtx, dstCharacterization, viewport, kNumDivisions); |
| |
| tiles.createBackendTextures(gpuTaskGroup, gpuThreadCtx); |
| |
| // Reinflate the compressed picture individually for each thread. |
| tiles.createSKPPerTile(compressedPictureData.get(), promiseImageHelper); |
| |
| tiles.kickOffThreadedWork(recordingTaskGroup, gpuTaskGroup, gpuThreadCtx); |
| |
| // We have to wait for the recording threads to schedule all their work on the gpu thread |
| // before we can schedule the composition draw and the flush. Note that the gpu thread |
| // is not blocked at this point and this thread is borrowing recording work. |
| recordingTaskGroup->wait(); |
| |
| // Note: at this point the recording thread(s) are stalled out w/ nothing to do. |
| |
| // The recording threads have already scheduled the drawing of each tile's DDL on the gpu |
| // thread. The composition DDL must be scheduled last bc it relies on the result of all |
| // the tiles' rendering. Additionally, bc we're aliasing the tiles' backend textures, |
| // there is nothing in the DAG to automatically force the required order. |
| gpuTaskGroup->add([dstSurface, ddl = tiles.composeDDL()]() { |
| dstSurface->draw(ddl); |
| }); |
| |
| // This should be the only explicit flush for the entire DDL draw. |
| // TODO: remove the flushes in do_gpu_stuff |
| gpuTaskGroup->add([gpuThreadCtx]() { |
| // We need to ensure all the GPU work is finished so |
| // the following 'deleteAllFromGPU' call will work |
| // on Vulkan. |
| // TODO: switch over to using the promiseImage callbacks |
| // to free the backendTextures. This is complicated a |
| // bit by which thread possesses the direct context. |
| gpuThreadCtx->flush(); |
| gpuThreadCtx->submit(true); |
| }); |
| |
| // The backend textures are created on the gpuThread by the 'uploadAllToGPU' call. |
| // It is simpler to also delete them at this point on the gpuThread. |
| promiseImageHelper.deleteAllFromGPU(gpuTaskGroup, gpuThreadCtx); |
| |
| tiles.deleteBackendTextures(gpuTaskGroup, gpuThreadCtx); |
| |
| // A flush has already been scheduled on the gpu thread along with the clean up of the backend |
| // textures so it is safe to schedule making 'gpuTestCtx' not current on the gpuThread. |
| gpuTaskGroup->add([gpuTestCtx] { gpuTestCtx->makeNotCurrent(); }); |
| |
| // All the work is scheduled on the gpu thread, we just need to wait |
| gpuTaskGroup->wait(); |
| |
| return Result::Ok(); |
| } |
| |
| Result GPUDDLSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log) const { |
| GrContextOptions contextOptions = this->baseContextOptions(); |
| src.modifyGrContextOptions(&contextOptions); |
| contextOptions.fPersistentCache = nullptr; |
| contextOptions.fExecutor = nullptr; |
| |
| GrContextFactory factory(contextOptions); |
| |
| // This captures the context destined to be the main gpu context |
| ContextInfo mainCtxInfo = factory.getContextInfo(this->contextType(), this->contextOverrides()); |
| sk_gpu_test::TestContext* mainTestCtx = mainCtxInfo.testContext(); |
| auto mainCtx = mainCtxInfo.directContext(); |
| if (!mainCtx) { |
| return Result::Fatal("Could not create context."); |
| } |
| |
| SkASSERT(mainCtx->priv().getGpu()); |
| |
| // TODO: make use of 'otherCtx' for uploads & compilation |
| #if 0 |
| // This captures the context destined to be the utility context. It is in a share group |
| // with the main context |
| ContextInfo otherCtxInfo = factory.getSharedContextInfo(mainCtx); |
| sk_gpu_test::TestContext* otherTestCtx = otherCtxInfo.testContext(); |
| auto otherCtx = otherCtxInfo.directContext(); |
| if (!otherCtx) { |
| return Result::Fatal("Cound not create shared context."); |
| } |
| |
| SkASSERT(otherCtx->priv().getGpu()); |
| #endif |
| |
| SkTaskGroup recordingTaskGroup(*fRecordingExecutor); |
| SkTaskGroup gpuTaskGroup(*fGPUExecutor); |
| |
| // Make sure 'mainCtx' is current |
| mainTestCtx->makeCurrent(); |
| |
| GrBackendTexture backendTexture; |
| GrBackendRenderTarget backendRT; |
| sk_sp<SkSurface> surface = this->createDstSurface(mainCtx, src.size(), |
| &backendTexture, &backendRT); |
| if (!surface) { |
| return Result::Fatal("Could not create a surface."); |
| } |
| |
| Result result = this->ddlDraw(src, surface, &recordingTaskGroup, &gpuTaskGroup, |
| mainTestCtx, mainCtx); |
| if (!result.isOk()) { |
| return result; |
| } |
| |
| // 'ddlDraw' will have made 'mainCtx' not current on the gpuThread |
| mainTestCtx->makeCurrent(); |
| |
| if (FLAGS_gpuStats) { |
| mainCtx->priv().dumpCacheStats(log); |
| mainCtx->priv().dumpGpuStats(log); |
| mainCtx->priv().dumpContextStats(log); |
| |
| #if 0 |
| otherCtx->priv().dumpCacheStats(log); |
| otherCtx->priv().dumpGpuStats(log); |
| otherCtx->priv().dumpContextStats(log); |
| #endif |
| } |
| |
| if (!this->readBack(surface.get(), dst)) { |
| return Result::Fatal("Could not readback from surface."); |
| } |
| |
| surface.reset(); |
| if (backendTexture.isValid()) { |
| mainCtx->deleteBackendTexture(backendTexture); |
| } |
| if (backendRT.isValid()) { |
| mainCtx->priv().getGpu()->deleteTestingOnlyBackendRenderTarget(backendRT); |
| } |
| |
| return Result::Ok(); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| static Result draw_skdocument(const Src& src, SkDocument* doc, SkWStream* dst) { |
| if (src.size().isEmpty()) { |
| return Result::Fatal("Source has empty dimensions"); |
| } |
| SkASSERT(doc); |
| int pageCount = src.pageCount(); |
| for (int i = 0; i < pageCount; ++i) { |
| int width = src.size(i).width(), height = src.size(i).height(); |
| SkCanvas* canvas = |
| doc->beginPage(SkIntToScalar(width), SkIntToScalar(height)); |
| if (!canvas) { |
| return Result::Fatal("SkDocument::beginPage(w,h) returned nullptr"); |
| } |
| Result result = src.draw(i, nullptr, canvas); |
| if (!result.isOk()) { |
| return result; |
| } |
| doc->endPage(); |
| } |
| doc->close(); |
| dst->flush(); |
| return Result::Ok(); |
| } |
| |
| Result PDFSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { |
| SkPDF::Metadata metadata; |
| metadata.fTitle = src.name(); |
| metadata.fSubject = "rendering correctness test"; |
| metadata.fCreator = "Skia/DM"; |
| metadata.fRasterDPI = fRasterDpi; |
| metadata.fPDFA = fPDFA; |
| #if SK_PDF_TEST_EXECUTOR |
| std::unique_ptr<SkExecutor> executor = SkExecutor::MakeFIFOThreadPool(); |
| metadata.fExecutor = executor.get(); |
| #endif |
| auto doc = SkPDF::MakeDocument(dst, metadata); |
| if (!doc) { |
| return Result::Fatal("SkPDF::MakeDocument() returned nullptr"); |
| } |
| return draw_skdocument(src, doc.get(), dst); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| XPSSink::XPSSink() {} |
| |
| #if defined(SK_SUPPORT_XPS) |
| static SkTScopedComPtr<IXpsOMObjectFactory> make_xps_factory() { |
| IXpsOMObjectFactory* factory; |
| HRN(CoCreateInstance(CLSID_XpsOMObjectFactory, |
| nullptr, |
| CLSCTX_INPROC_SERVER, |
| IID_PPV_ARGS(&factory))); |
| return SkTScopedComPtr<IXpsOMObjectFactory>(factory); |
| } |
| |
| Result XPSSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { |
| SkAutoCoInitialize com; |
| if (!com.succeeded()) { |
| return Result::Fatal("Could not initialize COM."); |
| } |
| SkTScopedComPtr<IXpsOMObjectFactory> factory = make_xps_factory(); |
| if (!factory) { |
| return Result::Fatal("Failed to create XPS Factory."); |
| } |
| auto doc = SkXPS::MakeDocument(dst, factory.get()); |
| if (!doc) { |
| return Result::Fatal("SkXPS::MakeDocument() returned nullptr"); |
| } |
| return draw_skdocument(src, doc.get(), dst); |
| } |
| #else |
| Result XPSSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { |
| return Result::Fatal("XPS not supported on this platform."); |
| } |
| #endif |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| SKPSink::SKPSink() {} |
| |
| Result SKPSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { |
| auto size = SkSize::Make(src.size()); |
| SkPictureRecorder recorder; |
| Result result = src.draw(nullptr, recorder.beginRecording(size.width(), size.height())); |
| if (!result.isOk()) { |
| return result; |
| } |
| recorder.finishRecordingAsPicture()->serialize(dst); |
| return Result::Ok(); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| Result DebugSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { |
| DebugCanvas debugCanvas(src.size().width(), src.size().height()); |
| Result result = src.draw(nullptr, &debugCanvas); |
| if (!result.isOk()) { |
| return result; |
| } |
| std::unique_ptr<SkCanvas> nullCanvas = SkMakeNullCanvas(); |
| UrlDataManager dataManager(SkString("data")); |
| SkJSONWriter writer(dst, SkJSONWriter::Mode::kPretty); |
| writer.beginObject(); // root |
| debugCanvas.toJSON(writer, dataManager, nullCanvas.get()); |
| writer.endObject(); // root |
| writer.flush(); |
| return Result::Ok(); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| SVGSink::SVGSink(int pageIndex) : fPageIndex(pageIndex) {} |
| |
| Result SVGSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { |
| #if defined(SK_XML) |
| if (src.pageCount() > 1) { |
| int pageCount = src.pageCount(); |
| if (fPageIndex > pageCount - 1) { |
| return Result::Fatal("Page index %d too high for document with only %d pages.", |
| fPageIndex, pageCount); |
| } |
| } |
| return src.draw(fPageIndex, nullptr, |
| SkSVGCanvas::Make(SkRect::MakeWH(SkIntToScalar(src.size().width()), |
| SkIntToScalar(src.size().height())), |
| dst) |
| .get()); |
| #else |
| (void)fPageIndex; |
| return Result::Fatal("SVG sink is disabled."); |
| #endif // SK_XML |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| RasterSink::RasterSink(SkColorType colorType, sk_sp<SkColorSpace> colorSpace) |
| : fColorType(colorType) |
| , fColorSpace(std::move(colorSpace)) {} |
| |
| Result RasterSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString*) const { |
| const SkISize size = src.size(); |
| // If there's an appropriate alpha type for this color type, use it, otherwise use premul. |
| SkAlphaType alphaType = kPremul_SkAlphaType; |
| (void)SkColorTypeValidateAlphaType(fColorType, alphaType, &alphaType); |
| |
| dst->allocPixelsFlags(SkImageInfo::Make(size, fColorType, alphaType, fColorSpace), |
| SkBitmap::kZeroPixels_AllocFlag); |
| |
| SkCanvas canvas(*dst); |
| return src.draw(nullptr, &canvas); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| // Handy for front-patching a Src. Do whatever up-front work you need, then call draw_to_canvas(), |
| // passing the Sink draw() arguments, a size, and a function draws into an SkCanvas. |
| // Several examples below. |
| |
| template <typename Fn> |
| static Result draw_to_canvas(Sink* sink, SkBitmap* bitmap, SkWStream* stream, SkString* log, |
| SkISize size, const Fn& draw) { |
| class ProxySrc : public Src { |
| public: |
| ProxySrc(SkISize size, const Fn& draw) : fSize(size), fDraw(draw) {} |
| Result draw(GrDirectContext*, SkCanvas* canvas) const override { return fDraw(canvas); } |
| Name name() const override { return "ProxySrc"; } |
| SkISize size() const override { return fSize; } |
| private: |
| SkISize fSize; |
| const Fn& fDraw; |
| }; |
| return sink->draw(ProxySrc(size, draw), bitmap, stream, log); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| static DEFINE_bool(check, true, "If true, have most Via- modes fail if they affect the output."); |
| |
| // Is *bitmap identical to what you get drawing src into sink? |
| static Result check_against_reference(const SkBitmap* bitmap, const Src& src, Sink* sink) { |
| // We can only check raster outputs. |
| // (Non-raster outputs like .pdf, .skp, .svg may differ but still draw identically.) |
| if (FLAGS_check && bitmap) { |
| SkBitmap reference; |
| SkString log; |
| SkDynamicMemoryWStream wStream; |
| Result result = sink->draw(src, &reference, &wStream, &log); |
| // If we can draw into this Sink via some pipeline, we should be able to draw directly. |
| SkASSERT(result.isOk()); |
| if (!result.isOk()) { |
| return result; |
| } |
| return compare_bitmaps(reference, *bitmap); |
| } |
| return Result::Ok(); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| static SkISize auto_compute_translate(SkMatrix* matrix, int srcW, int srcH) { |
| SkRect bounds = SkRect::MakeIWH(srcW, srcH); |
| matrix->mapRect(&bounds); |
| matrix->postTranslate(-bounds.x(), -bounds.y()); |
| return {SkScalarRoundToInt(bounds.width()), SkScalarRoundToInt(bounds.height())}; |
| } |
| |
| ViaMatrix::ViaMatrix(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {} |
| |
| Result ViaMatrix::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| SkMatrix matrix = fMatrix; |
| SkISize size = auto_compute_translate(&matrix, src.size().width(), src.size().height()); |
| return draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) { |
| canvas->concat(matrix); |
| return src.draw(nullptr, canvas); |
| }); |
| } |
| |
| // Undoes any flip or 90 degree rotate without changing the scale of the bitmap. |
| // This should be pixel-preserving. |
| ViaUpright::ViaUpright(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {} |
| |
| Result ViaUpright::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| Result result = fSink->draw(src, bitmap, stream, log); |
| if (!result.isOk()) { |
| return result; |
| } |
| |
| SkMatrix inverse; |
| if (!fMatrix.rectStaysRect() || !fMatrix.invert(&inverse)) { |
| return Result::Fatal("Cannot upright --matrix."); |
| } |
| SkMatrix upright = SkMatrix::I(); |
| upright.setScaleX(SkScalarSignAsScalar(inverse.getScaleX())); |
| upright.setScaleY(SkScalarSignAsScalar(inverse.getScaleY())); |
| upright.setSkewX(SkScalarSignAsScalar(inverse.getSkewX())); |
| upright.setSkewY(SkScalarSignAsScalar(inverse.getSkewY())); |
| |
| SkBitmap uprighted; |
| SkISize size = auto_compute_translate(&upright, bitmap->width(), bitmap->height()); |
| uprighted.allocPixels(bitmap->info().makeDimensions(size)); |
| |
| SkCanvas canvas(uprighted); |
| canvas.concat(upright); |
| SkPaint paint; |
| paint.setBlendMode(SkBlendMode::kSrc); |
| canvas.drawBitmap(*bitmap, 0, 0, &paint); |
| |
| *bitmap = uprighted; |
| return Result::Ok(); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| Result ViaSerialization::draw( |
| const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| // Record our Src into a picture. |
| auto size = src.size(); |
| SkPictureRecorder recorder; |
| Result result = src.draw(nullptr, recorder.beginRecording(SkIntToScalar(size.width()), |
| SkIntToScalar(size.height()))); |
| if (!result.isOk()) { |
| return result; |
| } |
| sk_sp<SkPicture> pic(recorder.finishRecordingAsPicture()); |
| |
| // Serialize it and then deserialize it. |
| sk_sp<SkPicture> deserialized(SkPicture::MakeFromData(pic->serialize().get())); |
| |
| result = draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) { |
| canvas->drawPicture(deserialized); |
| return Result::Ok(); |
| }); |
| if (!result.isOk()) { |
| return result; |
| } |
| |
| return check_against_reference(bitmap, src, fSink.get()); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| ViaDDL::ViaDDL(int numReplays, int numDivisions, Sink* sink) |
| : Via(sink), fNumReplays(numReplays), fNumDivisions(numDivisions) {} |
| |
| Result ViaDDL::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| auto size = src.size(); |
| SkPictureRecorder recorder; |
| Result result = src.draw(nullptr, recorder.beginRecording(SkIntToScalar(size.width()), |
| SkIntToScalar(size.height()))); |
| if (!result.isOk()) { |
| return result; |
| } |
| sk_sp<SkPicture> inputPicture(recorder.finishRecordingAsPicture()); |
| |
| // this is our ultimate final drawing area/rect |
| SkIRect viewport = SkIRect::MakeWH(size.fWidth, size.fHeight); |
| |
| DDLPromiseImageHelper promiseImageHelper(SkYUVAPixmapInfo::SupportedDataTypes::All()); |
| sk_sp<SkData> compressedPictureData = promiseImageHelper.deflateSKP(inputPicture.get()); |
| if (!compressedPictureData) { |
| return Result::Fatal("ViaDDL: Couldn't deflate SkPicture"); |
| } |
| auto draw = [&](SkCanvas* canvas) -> Result { |
| auto direct = canvas->recordingContext() ? canvas->recordingContext()->asDirectContext() |
| : nullptr; |
| if (!direct) { |
| return Result::Fatal("ViaDDL: DDLs are GPU only"); |
| } |
| SkSurface* tmp = canvas->getSurface(); |
| if (!tmp) { |
| return Result::Fatal("ViaDDL: cannot get surface from canvas"); |
| } |
| sk_sp<SkSurface> dstSurface = sk_ref_sp(tmp); |
| |
| SkSurfaceCharacterization dstCharacterization; |
| SkAssertResult(dstSurface->characterize(&dstCharacterization)); |
| |
| promiseImageHelper.createCallbackContexts(direct); |
| |
| // This is here bc this is the first point where we have access to the context |
| promiseImageHelper.uploadAllToGPU(nullptr, direct); |
| // We draw N times, with a clear between. |
| for (int replay = 0; replay < fNumReplays; ++replay) { |
| if (replay > 0) { |
| // Clear the drawing of the previous replay |
| canvas->clear(SK_ColorTRANSPARENT); |
| } |
| // First, create all the tiles (including their individual dest surfaces) |
| DDLTileHelper tiles(direct, dstCharacterization, viewport, fNumDivisions); |
| |
| tiles.createBackendTextures(nullptr, direct); |
| |
| // Second, reinflate the compressed picture individually for each thread |
| // This recreates the promise SkImages on each replay iteration. We are currently |
| // relying on this to test using a SkPromiseImageTexture to fulfill different |
| // SkImages. On each replay the promise SkImages are recreated in createSKPPerTile. |
| tiles.createSKPPerTile(compressedPictureData.get(), promiseImageHelper); |
| |
| // Third, create the DDLs in parallel |
| tiles.createDDLsInParallel(); |
| |
| if (replay == fNumReplays - 1) { |
| // All the DDLs are created and they ref any created promise images which, |
| // in turn, ref the callback contexts. If it is the last run, drop the |
| // promise image helper's refs on the callback contexts. |
| promiseImageHelper.reset(); |
| // Note: we cannot drop the tiles' callback contexts here bc they are needed |
| // to create each tile's destination surface. |
| } |
| |
| // Fourth, synchronously render the display lists into the dest tiles |
| // TODO: it would be cool to not wait until all the tiles are drawn to begin |
| // drawing to the GPU and composing to the final surface |
| tiles.precompileAndDrawAllTiles(direct); |
| |
| if (replay == fNumReplays - 1) { |
| // At this point the compose DDL holds refs to the composition promise images |
| // which, in turn, hold refs on the tile callback contexts. If it is the last run, |
| // drop the refs on tile callback contexts. |
| tiles.dropCallbackContexts(); |
| } |
| |
| dstSurface->draw(tiles.composeDDL()); |
| |
| // We need to ensure all the GPU work is finished so the promise image callback |
| // contexts will delete all the backend textures. |
| direct->flush(); |
| direct->submit(true); |
| } |
| return Result::Ok(); |
| }; |
| return draw_to_canvas(fSink.get(), bitmap, stream, log, size, draw); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| Result ViaPicture::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| auto size = src.size(); |
| Result result = draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) { |
| SkPictureRecorder recorder; |
| sk_sp<SkPicture> pic; |
| Result result = src.draw(nullptr, recorder.beginRecording(SkIntToScalar(size.width()), |
| SkIntToScalar(size.height()))); |
| if (!result.isOk()) { |
| return result; |
| } |
| pic = recorder.finishRecordingAsPicture(); |
| canvas->drawPicture(pic); |
| return result; |
| }); |
| if (!result.isOk()) { |
| return result; |
| } |
| |
| return check_against_reference(bitmap, src, fSink.get()); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| #ifdef TEST_VIA_SVG |
| #include "experimental/svg/model/SkSVGDOM.h" |
| #include "include/svg/SkSVGCanvas.h" |
| #include "src/xml/SkXMLWriter.h" |
| |
| Result ViaSVG::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| auto size = src.size(); |
| return draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) -> Result { |
| SkDynamicMemoryWStream wstream; |
| SkXMLStreamWriter writer(&wstream); |
| Result result = src.draw(SkSVGCanvas::Make(SkRect::Make(size), &writer).get()); |
| if (!result.isOk()) { |
| return result; |
| } |
| std::unique_ptr<SkStream> rstream(wstream.detachAsStream()); |
| auto dom = SkSVGDOM::MakeFromStream(*rstream); |
| if (dom) { |
| dom->setContainerSize(SkSize::Make(size)); |
| dom->render(canvas); |
| } |
| return Result::Ok(); |
| }); |
| } |
| #endif |
| |
| } // namespace DM |