blob: 19037fccfc27bb0d062cdbb29192c55a18071beb [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "gm/gm.h"
#include "include/core/SkBlendMode.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColor.h"
#include "include/core/SkColorFilter.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPoint.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkScalar.h"
#include "include/core/SkShader.h"
#include "include/core/SkSize.h"
#include "include/core/SkString.h"
#include "include/core/SkTileMode.h"
#include "include/core/SkTypes.h"
#include "include/core/SkVertices.h"
#include "include/effects/SkGradientShader.h"
#include "include/effects/SkRuntimeEffect.h"
#include "include/private/SkTDArray.h"
#include "include/utils/SkRandom.h"
#include "src/core/SkVerticesPriv.h"
#include "src/shaders/SkLocalMatrixShader.h"
#include "src/utils/SkPatchUtils.h"
#include "tools/Resources.h"
#include "tools/ToolUtils.h"
#include <initializer_list>
#include <utility>
static constexpr SkScalar kShaderSize = 40;
static sk_sp<SkShader> make_shader1(SkScalar shaderScale) {
const SkColor colors[] = {
SK_ColorRED, SK_ColorCYAN, SK_ColorGREEN, SK_ColorWHITE,
SK_ColorMAGENTA, SK_ColorBLUE, SK_ColorYELLOW,
};
const SkPoint pts[] = {{kShaderSize / 4, 0}, {3 * kShaderSize / 4, kShaderSize}};
const SkMatrix localMatrix = SkMatrix::Scale(shaderScale, shaderScale);
sk_sp<SkShader> grad = SkGradientShader::MakeLinear(pts, colors, nullptr,
SK_ARRAY_COUNT(colors),
SkTileMode::kMirror, 0,
&localMatrix);
// Throw in a couple of local matrix wrappers for good measure.
return shaderScale == 1
? grad
: sk_make_sp<SkLocalMatrixShader>(
sk_make_sp<SkLocalMatrixShader>(std::move(grad), SkMatrix::Translate(-10, 0)),
SkMatrix::Translate(10, 0));
}
static sk_sp<SkShader> make_shader2() {
return SkShaders::Color(SK_ColorBLUE);
}
static sk_sp<SkColorFilter> make_color_filter() {
return SkColorFilters::Blend(0xFFAABBCC, SkBlendMode::kDarken);
}
static constexpr SkScalar kMeshSize = 30;
// start with the center of a 3x3 grid of vertices.
static constexpr uint16_t kMeshFan[] = {
4,
0, 1, 2, 5, 8, 7, 6, 3, 0
};
static const int kMeshIndexCnt = (int)SK_ARRAY_COUNT(kMeshFan);
static const int kMeshVertexCnt = 9;
static void fill_mesh(SkPoint pts[kMeshVertexCnt], SkPoint texs[kMeshVertexCnt],
SkColor colors[kMeshVertexCnt], SkScalar shaderScale) {
pts[0].set(0, 0);
pts[1].set(kMeshSize / 2, 3);
pts[2].set(kMeshSize, 0);
pts[3].set(3, kMeshSize / 2);
pts[4].set(kMeshSize / 2, kMeshSize / 2);
pts[5].set(kMeshSize - 3, kMeshSize / 2);
pts[6].set(0, kMeshSize);
pts[7].set(kMeshSize / 2, kMeshSize - 3);
pts[8].set(kMeshSize, kMeshSize);
const auto shaderSize = kShaderSize * shaderScale;
texs[0].set(0, 0);
texs[1].set(shaderSize / 2, 0);
texs[2].set(shaderSize, 0);
texs[3].set(0, shaderSize / 2);
texs[4].set(shaderSize / 2, shaderSize / 2);
texs[5].set(shaderSize, shaderSize / 2);
texs[6].set(0, shaderSize);
texs[7].set(shaderSize / 2, shaderSize);
texs[8].set(shaderSize, shaderSize);
SkRandom rand;
for (size_t i = 0; i < kMeshVertexCnt; ++i) {
colors[i] = rand.nextU() | 0xFF000000;
}
}
class VerticesGM : public skiagm::GM {
SkPoint fPts[kMeshVertexCnt];
SkPoint fTexs[kMeshVertexCnt];
SkColor fColors[kMeshVertexCnt];
sk_sp<SkShader> fShader1;
sk_sp<SkShader> fShader2;
sk_sp<SkColorFilter> fColorFilter;
SkScalar fShaderScale;
public:
VerticesGM(SkScalar shaderScale) : fShaderScale(shaderScale) {}
protected:
void onOnceBeforeDraw() override {
fill_mesh(fPts, fTexs, fColors, fShaderScale);
fShader1 = make_shader1(fShaderScale);
fShader2 = make_shader2();
fColorFilter = make_color_filter();
}
SkString onShortName() override {
SkString name("vertices");
if (fShaderScale != 1) {
name.append("_scaled_shader");
}
return name;
}
SkISize onISize() override {
return SkISize::Make(975, 1175);
}
void onDraw(SkCanvas* canvas) override {
const SkBlendMode modes[] = {
SkBlendMode::kClear,
SkBlendMode::kSrc,
SkBlendMode::kDst,
SkBlendMode::kSrcOver,
SkBlendMode::kDstOver,
SkBlendMode::kSrcIn,
SkBlendMode::kDstIn,
SkBlendMode::kSrcOut,
SkBlendMode::kDstOut,
SkBlendMode::kSrcATop,
SkBlendMode::kDstATop,
SkBlendMode::kXor,
SkBlendMode::kPlus,
SkBlendMode::kModulate,
SkBlendMode::kScreen,
SkBlendMode::kOverlay,
SkBlendMode::kDarken,
SkBlendMode::kLighten,
SkBlendMode::kColorDodge,
SkBlendMode::kColorBurn,
SkBlendMode::kHardLight,
SkBlendMode::kSoftLight,
SkBlendMode::kDifference,
SkBlendMode::kExclusion,
SkBlendMode::kMultiply,
SkBlendMode::kHue,
SkBlendMode::kSaturation,
SkBlendMode::kColor,
SkBlendMode::kLuminosity,
};
SkPaint paint;
canvas->translate(4, 4);
int x = 0;
for (auto mode : modes) {
canvas->save();
for (float alpha : {1.0f, 0.5f}) {
for (const auto& cf : {sk_sp<SkColorFilter>(nullptr), fColorFilter}) {
for (const auto& shader : {fShader1, fShader2}) {
static constexpr struct {
bool fHasColors;
bool fHasTexs;
} kAttrs[] = {{true, false}, {false, true}, {true, true}};
for (auto attrs : kAttrs) {
paint.setShader(shader);
paint.setColorFilter(cf);
paint.setAlphaf(alpha);
const SkColor* colors = attrs.fHasColors ? fColors : nullptr;
const SkPoint* texs = attrs.fHasTexs ? fTexs : nullptr;
auto v = SkVertices::MakeCopy(SkVertices::kTriangleFan_VertexMode,
kMeshVertexCnt, fPts, texs, colors,
kMeshIndexCnt, kMeshFan);
canvas->drawVertices(v, mode, paint);
canvas->translate(40, 0);
++x;
}
}
}
}
canvas->restore();
canvas->translate(0, 40);
}
}
private:
using INHERITED = skiagm::GM;
};
/////////////////////////////////////////////////////////////////////////////////////
DEF_GM(return new VerticesGM(1);)
DEF_GM(return new VerticesGM(1 / kShaderSize);)
static void draw_batching(SkCanvas* canvas) {
// Triangle fans can't batch so we convert to regular triangles,
static constexpr int kNumTris = kMeshIndexCnt - 2;
SkVertices::Builder builder(SkVertices::kTriangles_VertexMode, kMeshVertexCnt, 3 * kNumTris,
SkVertices::kHasColors_BuilderFlag |
SkVertices::kHasTexCoords_BuilderFlag);
SkPoint* pts = builder.positions();
SkPoint* texs = builder.texCoords();
SkColor* colors = builder.colors();
fill_mesh(pts, texs, colors, 1);
SkTDArray<SkMatrix> matrices;
matrices.push()->reset();
matrices.push()->setTranslate(0, 40);
SkMatrix* m = matrices.push();
m->setRotate(45, kMeshSize / 2, kMeshSize / 2);
m->postScale(1.2f, .8f, kMeshSize / 2, kMeshSize / 2);
m->postTranslate(0, 80);
auto shader = make_shader1(1);
uint16_t* indices = builder.indices();
for (size_t i = 0; i < kNumTris; ++i) {
indices[3 * i] = kMeshFan[0];
indices[3 * i + 1] = kMeshFan[i + 1];
indices[3 * i + 2] = kMeshFan[i + 2];
}
canvas->save();
canvas->translate(10, 10);
for (bool useShader : {false, true}) {
for (bool useTex : {false, true}) {
for (const auto& m : matrices) {
canvas->save();
canvas->concat(m);
SkPaint paint;
paint.setShader(useShader ? shader : nullptr);
const SkPoint* t = useTex ? texs : nullptr;
auto v = SkVertices::MakeCopy(SkVertices::kTriangles_VertexMode, kMeshVertexCnt,
pts, t, colors, kNumTris * 3, indices);
canvas->drawVertices(v, SkBlendMode::kModulate, paint);
canvas->restore();
}
canvas->translate(0, 120);
}
}
canvas->restore();
}
// This test exists to exercise batching in the gpu backend.
DEF_SIMPLE_GM(vertices_batching, canvas, 100, 500) {
draw_batching(canvas);
canvas->translate(50, 0);
draw_batching(canvas);
}
using AttrType = SkVertices::Attribute::Type;
DEF_SIMPLE_GM(vertices_data, canvas, 512, 256) {
for (auto attrType : {AttrType::kFloat4, AttrType::kByte4_unorm}) {
SkRect r = SkRect::MakeWH(256, 256);
int vcount = 4; // just a quad
int icount = 0;
SkVertices::Attribute attrs[] = { attrType };
SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, vcount, icount, attrs, 1);
r.toQuad(builder.positions());
if (attrType == AttrType::kFloat4) {
SkV4* col = (SkV4*)builder.customData();
col[0] = {1, 0, 0, 1}; // red
col[1] = {0, 1, 0, 1}; // green
col[2] = {0, 0, 1, 1}; // blue
col[3] = {0.5, 0.5, 0.5, 1}; // gray
} else {
uint32_t* col = (uint32_t*)builder.customData();
col[0] = 0xFF0000FF;
col[1] = 0xFF00FF00;
col[2] = 0xFFFF0000;
col[3] = 0xFF7F7F7F;
}
SkPaint paint;
const char* gProg = R"(
varying float4 vtx_color;
half4 main(float2 p) {
return vtx_color;
}
)";
auto[effect, errorText] = SkRuntimeEffect::Make(SkString(gProg));
if (!effect) {
SK_ABORT("RuntimeEffect error: %s\n", errorText.c_str());
}
paint.setShader(effect->makeShader(nullptr, nullptr, 0, nullptr, true));
canvas->drawVertices(builder.detach(), paint);
canvas->translate(r.width(), 0);
}
}
// Test case for skbug.com/10069. We need to draw the vertices twice (with different matrices) to
// trigger the bug.
DEF_SIMPLE_GM(vertices_perspective, canvas, 256, 256) {
SkPaint paint;
paint.setShader(ToolUtils::create_checkerboard_shader(SK_ColorBLACK, SK_ColorWHITE, 32));
SkRect r = SkRect::MakeWH(128, 128);
SkPoint pos[4];
r.toQuad(pos);
auto verts = SkVertices::MakeCopy(SkVertices::kTriangleFan_VertexMode, 4, pos, pos, nullptr);
SkMatrix persp;
persp.setPerspY(SK_Scalar1 / 100);
canvas->save();
canvas->concat(persp);
canvas->drawRect(r, paint);
canvas->restore();
canvas->save();
canvas->translate(r.width(), 0);
canvas->concat(persp);
canvas->drawRect(r, paint);
canvas->restore();
canvas->save();
canvas->translate(0, r.height());
canvas->concat(persp);
canvas->drawVertices(verts, paint);
canvas->restore();
canvas->save();
canvas->translate(r.width(), r.height());
canvas->concat(persp);
canvas->drawVertices(verts, paint);
canvas->restore();
}
DEF_SIMPLE_GM(vertices_data_lerp, canvas, 256, 256) {
SkPoint pts[12] = {{0, 0}, {85, 0}, {171, 0}, {256, 0}, {256, 85}, {256, 171},
{256, 256}, {171, 256}, {85, 256}, {0, 256}, {0, 171}, {0, 85}};
auto patchVerts = SkPatchUtils::MakeVertices(pts, nullptr, nullptr, 12, 12);
SkVerticesPriv pv(patchVerts->priv());
SkVertices::Attribute attrs[1] = { AttrType::kFloat };
SkVertices::Builder builder(pv.mode(), pv.vertexCount(), pv.indexCount(), attrs, 1);
memcpy(builder.positions(), pv.positions(), pv.vertexCount() * sizeof(SkPoint));
memcpy(builder.indices(), pv.indices(), pv.indexCount() * sizeof(uint16_t));
SkRandom rnd;
float* lerpData = (float*)builder.customData();
for (int i = 0; i < pv.vertexCount(); ++i) {
lerpData[i] = rnd.nextBool() ? 1.0f : 0.0f;
}
auto verts = builder.detach();
SkPaint paint;
const char* gProg = R"(
in shader c0;
in shader c1;
varying float vtx_lerp;
half4 main(float2 p) {
half4 col0 = sample(c0, p);
half4 col1 = sample(c1, p);
return mix(col0, col1, vtx_lerp);
}
)";
auto [effect, errorText] = SkRuntimeEffect::Make(SkString(gProg));
SkMatrix scale = SkMatrix::Scale(2, 2);
sk_sp<SkShader> children[] = {
GetResourceAsImage("images/mandrill_256.png")->makeShader(),
GetResourceAsImage("images/color_wheel.png")->makeShader(scale),
};
paint.setShader(effect->makeShader(nullptr, children, 2, nullptr, false));
canvas->drawVertices(verts, paint);
}
static constexpr SkScalar kSin60 = 0.8660254f; // sqrt(3) / 2
static constexpr SkPoint kHexVerts[] = {
{ 0, 0 },
{ 0, -1 },
{ kSin60, -0.5f },
{ kSin60, 0.5f },
{ 0, 1 },
{ -kSin60, 0.5f },
{ -kSin60, -0.5f },
{ 0, -1 },
};
static constexpr SkColor4f kColors[] = {
SkColors::kWhite,
SkColors::kRed,
SkColors::kYellow,
SkColors::kGreen,
SkColors::kCyan,
SkColors::kBlue,
SkColors::kMagenta,
SkColors::kRed,
};
using Attr = SkVertices::Attribute;
DEF_SIMPLE_GM(vertices_custom_colors, canvas, 400, 200) {
ToolUtils::draw_checkerboard(canvas);
auto draw = [=](SkScalar cx, SkScalar cy, SkVertices::Builder& builder, const SkPaint& paint) {
memcpy(builder.positions(), kHexVerts, sizeof(kHexVerts));
canvas->save();
canvas->translate(cx, cy);
canvas->scale(45, 45);
canvas->drawVertices(builder.detach(), paint);
canvas->restore();
};
auto transColor = [](int i) {
return SkColor4f { kColors[i].fR, kColors[i].fG, kColors[i].fB, i % 2 ? 0.5f : 1.0f };
};
// Fixed function SkVertices, opaque
{
SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, 8, 0,
SkVertices::kHasColors_BuilderFlag);
for (int i = 0; i < 8; ++i) {
builder.colors()[i] = kColors[i].toSkColor();
}
draw(50, 50, builder, SkPaint());
}
// Fixed function SkVertices, w/transparency
{
SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, 8, 0,
SkVertices::kHasColors_BuilderFlag);
for (int i = 0; i < 8; ++i) {
builder.colors()[i] = transColor(i).toSkColor();
}
draw(50, 150, builder, SkPaint());
}
const char* gProg = R"(
varying half4 vtx_color;
half4 main(float2 p) {
return vtx_color;
}
)";
SkPaint skslPaint;
auto [effect, errorText] = SkRuntimeEffect::Make(SkString(gProg));
skslPaint.setShader(effect->makeShader(nullptr, nullptr, 0, nullptr, false));
Attr byteColorAttr(Attr::Type::kByte4_unorm, Attr::Usage::kColor);
Attr float4ColorAttr(Attr::Type::kFloat4, Attr::Usage::kColor);
Attr float3ColorAttr(Attr::Type::kFloat3, Attr::Usage::kColor);
// Custom vertices, byte colors, opaque
{
SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, 8, 0, &byteColorAttr, 1);
for (int i = 0; i < 8; ++i) {
((uint32_t*)builder.customData())[i] = kColors[i].toBytes_RGBA();
}
draw(150, 50, builder, skslPaint);
}
// Custom vertices, byte colors, w/transparency
{
SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, 8, 0, &byteColorAttr, 1);
for (int i = 0; i < 8; ++i) {
((uint32_t*)builder.customData())[i] = transColor(i).toBytes_RGBA();
}
draw(150, 150, builder, skslPaint);
}
// Custom vertices, float4 colors, opaque
{
SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, 8, 0, &float4ColorAttr, 1);
for (int i = 0; i < 8; ++i) {
((SkColor4f*)builder.customData())[i] = kColors[i];
}
draw(250, 50, builder, skslPaint);
}
// Custom vertices, float4 colors, w/transparency
{
SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, 8, 0, &float4ColorAttr, 1);
SkColor4f* clr = (SkColor4f*)builder.customData();
for (int i = 0; i < 8; ++i) {
clr[i] = transColor(i);
}
draw(250, 150, builder, skslPaint);
}
// Custom vertices, float3 colors, opaque
{
SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, 8, 0, &float3ColorAttr, 1);
for (int i = 0; i < 8; ++i) {
((SkV3*)builder.customData())[i] = { kColors[i].fR, kColors[i].fG, kColors[i].fB };
}
draw(350, 50, builder, skslPaint);
}
}
static sk_sp<SkVertices> make_cone(Attr::Usage u, const char* markerName) {
Attr attr(Attr::Type::kFloat3, u, markerName);
constexpr int kPerimeterVerts = 64;
// +1 for the center, +1 to repeat the first perimeter point (so we draw a complete circle)
constexpr int kNumVerts = kPerimeterVerts + 2;
SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, kNumVerts, /*indexCount=*/0,
&attr, /*attrCount=*/1);
SkPoint* pos = builder.positions();
SkPoint3* vec = static_cast<SkPoint3*>(builder.customData());
pos[0] = { 0, 0 };
vec[0] = { 0, 0, 1 };
for (int i = 0; i < kPerimeterVerts + 1; ++i) {
SkScalar t = (i / SkIntToScalar(kPerimeterVerts)) * 2 * SK_ScalarPI;
SkScalar s = SkScalarSin(t),
c = SkScalarCos(t);
pos[i + 1] = { c, s };
vec[i + 1] = { c, s, 0 };
}
return builder.detach();
}
DEF_SIMPLE_GM(vertices_custom_matrices, canvas, 400, 400) {
ToolUtils::draw_checkerboard(canvas);
const char* kViewSpace = "local_to_view";
const char* kWorldSpace = "local_to_world";
const char* kLocalSpace = "local_to_local";
auto draw = [=](SkScalar cx, SkScalar cy, sk_sp<SkVertices> vertices, const char* prog,
SkScalar squish = 1.0f) {
SkPaint paint;
auto [effect, errorText] = SkRuntimeEffect::Make(SkString(prog));
paint.setShader(effect->makeShader(nullptr, nullptr, 0, nullptr, false));
canvas->save();
// Device space: mesh is upright, translated to its "cell"
canvas->translate(cx, cy);
// View (camera) space: Mesh is upright, centered on origin, device scale
canvas->markCTM(kViewSpace);
canvas->rotate(90);
// World space: Mesh is sideways, centered on origin, device scale (possibly squished)
canvas->markCTM(kWorldSpace);
canvas->rotate(-90);
canvas->scale(45, 45 * squish);
// Local space: Mesh is upright, centered on origin, unit scale
canvas->markCTM(kLocalSpace);
canvas->drawVertices(vertices, paint);
canvas->restore();
};
const char* vectorProg = R"(
varying float3 vtx_vec;
half4 main(float2 p) {
return (vtx_vec * 0.5 + 0.5).rgb1;
})";
// raw, local vectors, normals, and positions should all look the same (no real transform)
draw(50, 50, make_cone(Attr::Usage::kRaw, nullptr), vectorProg);
draw(150, 50, make_cone(Attr::Usage::kVector, kLocalSpace), vectorProg);
draw(250, 50, make_cone(Attr::Usage::kNormalVector, kLocalSpace), vectorProg);
draw(350, 50, make_cone(Attr::Usage::kPosition, kLocalSpace), vectorProg);
// world-space vectors and normals are rotated 90 degrees, positions are centered but scaled up
draw(150, 150, make_cone(Attr::Usage::kVector, kWorldSpace), vectorProg);
draw(250, 150, make_cone(Attr::Usage::kNormalVector, kWorldSpace), vectorProg);
draw(350, 150, make_cone(Attr::Usage::kPosition, kWorldSpace), vectorProg);
// Squished vectors are "wrong", but normals are correct (because we use the inverse transpose)
// Positions remain scaled up (saturated), but otherwise correct
draw(150, 250, make_cone(Attr::Usage::kVector, kWorldSpace), vectorProg, 0.5f);
draw(250, 250, make_cone(Attr::Usage::kNormalVector, kWorldSpace), vectorProg, 0.5f);
draw(350, 250, make_cone(Attr::Usage::kPosition, kWorldSpace), vectorProg, 0.5f);
draw( 50, 350, make_cone(Attr::Usage::kVector, nullptr), vectorProg, 0.5f);
draw(150, 350, make_cone(Attr::Usage::kNormalVector, nullptr), vectorProg, 0.5f);
// For canvas-space positions, color them according to their position relative to the center.
// We do this test twice, with and without saveLayer. That ensures that we get the canvas CTM,
// not just a local-to-device matrix, which exposes effect authors to an implementation detail.
const char* ctmPositionProg250 = R"(
varying float3 vtx_pos;
half4 main(float2 p) {
return ((vtx_pos - float3(250, 350, 0)) / 50 + 0.5).rgb1;
}
)";
draw(250, 350, make_cone(Attr::Usage::kPosition, nullptr), ctmPositionProg250, 0.5f);
const char* ctmPositionProg350 = R"(
varying float3 vtx_pos;
half4 main(float2 p) {
return ((vtx_pos - float3(350, 350, 0)) / 50 + 0.5).rgb1;
}
)";
canvas->saveLayer({ 300, 300, 400, 400 }, nullptr);
draw(350, 350, make_cone(Attr::Usage::kPosition, nullptr), ctmPositionProg350, 0.5f);
canvas->restore();
}