blob: 1df80066308c84e0be746f5a2042c32ea9ad72fd [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/effects/GrBicubicEffect.h"
#include "src/core/SkMatrixPriv.h"
#include "src/gpu/GrTexture.h"
#include "src/gpu/effects/GrMatrixEffect.h"
#include "src/gpu/effects/GrTextureEffect.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/glsl/GrGLSLProgramDataManager.h"
#include "src/gpu/glsl/GrGLSLUniformHandler.h"
class GrBicubicEffect::Impl : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs&) override;
private:
typedef GrGLSLFragmentProcessor INHERITED;
};
void GrBicubicEffect::Impl::emitCode(EmitArgs& args) {
const GrBicubicEffect& bicubicEffect = args.fFp.cast<GrBicubicEffect>();
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
if (bicubicEffect.fKernel == GrBicubicEffect::Kernel::kMitchell) {
/*
* Filter weights come from Don Mitchell & Arun Netravali's 'Reconstruction Filters in\
* Computer * Graphics', ACM SIGGRAPH Computer Graphics 22, 4 (Aug. 1988).
* ACM DL: http://dl.acm.org/citation.cfm?id=378514
* Free:
* http://www.cs.utexas.edu/users/fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
*
* The authors define a family of cubic filters with two free parameters (B and C):
*
* { (12 - 9B - 6C)|x|^3 + (-18 + 12B + 6C)|x|^2 + (6 - 2B) |x| < 1
* k(x) = 1/6 { (-B - 6C)|x|^3 + (6B + 30C)|x|^2 + (-12B - 48C)|x| + (8B + 24C) 1 <= |x| < 2
* { 0 otherwise
*
* Various well-known cubic splines can be generated, and the authors select (1/3, 1/3) as
* their favorite overall spline - this is now commonly known as the Mitchell filter, and
* is the source of the specific weights below.
*
* This is SkSL, so the matrix is column-major (transposed from standard matrix notation).
*/
fragBuilder->codeAppend(
"half4x4 kCoefficients = half4x4("
" 1.0 / 18.0, 16.0 / 18.0, 1.0 / 18.0, 0.0 / 18.0,"
"-9.0 / 18.0, 0.0 / 18.0, 9.0 / 18.0, 0.0 / 18.0,"
"15.0 / 18.0, -36.0 / 18.0, 27.0 / 18.0, -6.0 / 18.0,"
"-7.0 / 18.0, 21.0 / 18.0, -21.0 / 18.0, 7.0 / 18.0);");
} else {
/*
* Centripetal variant of the Catmull-Rom spline.
*
* Catmull, Edwin; Rom, Raphael (1974). "A class of local interpolating splines". In
* Barnhill, Robert E.; Riesenfeld, Richard F. (eds.). Computer Aided Geometric Design.
* pp. 317–326.
*/
SkASSERT(bicubicEffect.fKernel == GrBicubicEffect::Kernel::kCatmullRom);
fragBuilder->codeAppend(
"half4x4 kCoefficients = 0.5 * half4x4("
" 0, 2, 0, 0,"
"-1, 0, 1, 0,"
" 2, -5, 4, -1,"
"-1, 3, -3, 1);");
}
// We determine our fractional offset (f) within the texel. We then snap coord to a texel
// center. The snap prevents cases where the starting coords are near a texel boundary and
// offsets with imperfect precision would cause us to skip/double hit a texel.
// The use of "texel" above is somewhat abstract as we're sampling a child processor. It is
// assumed the child processor represents something akin to a nearest neighbor sampled texture.
if (bicubicEffect.fDirection == GrBicubicEffect::Direction::kXY) {
fragBuilder->codeAppendf("float2 coord = %s - float2(0.5);", args.fSampleCoord);
fragBuilder->codeAppend("half2 f = half2(fract(coord));");
fragBuilder->codeAppend("coord += 0.5 - f;");
fragBuilder->codeAppend(
"half4 wx = kCoefficients * half4(1.0, f.x, f.x * f.x, f.x * f.x * f.x);");
fragBuilder->codeAppend(
"half4 wy = kCoefficients * half4(1.0, f.y, f.y * f.y, f.y * f.y * f.y);");
fragBuilder->codeAppend("half4 rowColors[4];");
for (int y = 0; y < 4; ++y) {
for (int x = 0; x < 4; ++x) {
SkString coord;
coord.printf("coord + float2(%d, %d)", x - 1, y - 1);
auto childStr =
this->invokeChild(0, args, SkSL::String(coord.c_str(), coord.size()));
fragBuilder->codeAppendf("rowColors[%d] = %s;", x, childStr.c_str());
}
fragBuilder->codeAppendf(
"half4 s%d = wx.x * rowColors[0] + wx.y * rowColors[1] + wx.z * rowColors[2] + "
"wx.w * rowColors[3];",
y);
}
fragBuilder->codeAppend(
"half4 bicubicColor = wy.x * s0 + wy.y * s1 + wy.z * s2 + wy.w * s3;");
} else {
const char* d = bicubicEffect.fDirection == Direction::kX ? "x" : "y";
fragBuilder->codeAppendf("float coord = %s.%s - 0.5;", args.fSampleCoord, d);
fragBuilder->codeAppend("half f = half(fract(coord));");
fragBuilder->codeAppend("coord += 0.5 - f;");
fragBuilder->codeAppend("half f2 = f * f;");
fragBuilder->codeAppend("half4 w = kCoefficients * half4(1.0, f, f2, f2 * f);");
fragBuilder->codeAppend("half4 c[4];");
for (int i = 0; i < 4; ++i) {
SkString coord;
if (bicubicEffect.fDirection == Direction::kX) {
coord.printf("float2(coord + %d, %s.y)", i - 1, args.fSampleCoord);
} else {
coord.printf("float2(%s.x, coord + %d)", args.fSampleCoord, i - 1);
}
auto childStr = this->invokeChild(0, args, SkSL::String(coord.c_str(), coord.size()));
fragBuilder->codeAppendf("c[%d] = %s;", i, childStr.c_str());
}
fragBuilder->codeAppend(
"half4 bicubicColor = c[0] * w.x + c[1] * w.y + c[2] * w.z + c[3] * w.w;");
}
// Bicubic can send colors out of range, so clamp to get them back in (source) gamut.
// The kind of clamp we have to do depends on the alpha type.
switch (bicubicEffect.fClamp) {
case Clamp::kUnpremul:
fragBuilder->codeAppend("bicubicColor = saturate(bicubicColor);");
break;
case Clamp::kPremul:
fragBuilder->codeAppend(
"bicubicColor.rgb = max(half3(0.0), min(bicubicColor.rgb, bicubicColor.aaa));");
break;
}
fragBuilder->codeAppendf("%s = bicubicColor * %s;", args.fOutputColor, args.fInputColor);
}
std::unique_ptr<GrFragmentProcessor> GrBicubicEffect::Make(GrSurfaceProxyView view,
SkAlphaType alphaType,
const SkMatrix& matrix,
Kernel kernel,
Direction direction) {
auto fp = GrTextureEffect::Make(std::move(view), alphaType, SkMatrix::I());
auto clamp = kPremul_SkAlphaType == alphaType ? Clamp::kPremul : Clamp::kUnpremul;
return GrMatrixEffect::Make(matrix, std::unique_ptr<GrFragmentProcessor>(
new GrBicubicEffect(std::move(fp), kernel, direction, clamp)));
}
std::unique_ptr<GrFragmentProcessor> GrBicubicEffect::Make(GrSurfaceProxyView view,
SkAlphaType alphaType,
const SkMatrix& matrix,
const GrSamplerState::WrapMode wrapX,
const GrSamplerState::WrapMode wrapY,
Kernel kernel,
Direction direction,
const GrCaps& caps) {
GrSamplerState sampler(wrapX, wrapY, GrSamplerState::Filter::kNearest);
std::unique_ptr<GrFragmentProcessor> fp;
fp = GrTextureEffect::Make(std::move(view), alphaType, SkMatrix::I(), sampler, caps);
auto clamp = kPremul_SkAlphaType == alphaType ? Clamp::kPremul : Clamp::kUnpremul;
return GrMatrixEffect::Make(matrix, std::unique_ptr<GrFragmentProcessor>(
new GrBicubicEffect(std::move(fp), kernel, direction, clamp)));
}
std::unique_ptr<GrFragmentProcessor> GrBicubicEffect::MakeSubset(
GrSurfaceProxyView view,
SkAlphaType alphaType,
const SkMatrix& matrix,
const GrSamplerState::WrapMode wrapX,
const GrSamplerState::WrapMode wrapY,
const SkRect& subset,
Kernel kernel,
Direction direction,
const GrCaps& caps) {
GrSamplerState sampler(wrapX, wrapY, GrSamplerState::Filter::kNearest);
std::unique_ptr<GrFragmentProcessor> fp;
fp = GrTextureEffect::MakeSubset(
std::move(view), alphaType, SkMatrix::I(), sampler, subset, caps);
auto clamp = kPremul_SkAlphaType == alphaType ? Clamp::kPremul : Clamp::kUnpremul;
return GrMatrixEffect::Make(matrix, std::unique_ptr<GrFragmentProcessor>(
new GrBicubicEffect(std::move(fp), kernel, direction, clamp)));
}
std::unique_ptr<GrFragmentProcessor> GrBicubicEffect::Make(std::unique_ptr<GrFragmentProcessor> fp,
SkAlphaType alphaType,
const SkMatrix& matrix,
Kernel kernel,
Direction direction) {
auto clamp = kPremul_SkAlphaType == alphaType ? Clamp::kPremul : Clamp::kUnpremul;
return GrMatrixEffect::Make(matrix, std::unique_ptr<GrFragmentProcessor>(
new GrBicubicEffect(std::move(fp), kernel, direction, clamp)));
}
GrBicubicEffect::GrBicubicEffect(std::unique_ptr<GrFragmentProcessor> fp,
Kernel kernel,
Direction direction,
Clamp clamp)
: INHERITED(kGrBicubicEffect_ClassID, ProcessorOptimizationFlags(fp.get()))
, fKernel(kernel)
, fDirection(direction)
, fClamp(clamp) {
this->setUsesSampleCoordsDirectly();
this->registerChild(std::move(fp), SkSL::SampleUsage::Explicit());
}
GrBicubicEffect::GrBicubicEffect(const GrBicubicEffect& that)
: INHERITED(kGrBicubicEffect_ClassID, that.optimizationFlags())
, fKernel(that.fKernel)
, fDirection(that.fDirection)
, fClamp(that.fClamp) {
this->setUsesSampleCoordsDirectly();
this->cloneAndRegisterAllChildProcessors(that);
}
void GrBicubicEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const {
uint32_t key = (static_cast<uint32_t>(fKernel) << 0)
| (static_cast<uint32_t>(fDirection) << 1)
| (static_cast<uint32_t>(fClamp) << 3);
b->add32(key);
}
GrGLSLFragmentProcessor* GrBicubicEffect::onCreateGLSLInstance() const { return new Impl(); }
bool GrBicubicEffect::onIsEqual(const GrFragmentProcessor& other) const {
const auto& that = other.cast<GrBicubicEffect>();
return fDirection == that.fDirection && fClamp == that.fClamp;
}
SkPMColor4f GrBicubicEffect::constantOutputForConstantInput(const SkPMColor4f& input) const {
return GrFragmentProcessor::ConstantOutputForConstantInput(this->childProcessor(0), input);
}
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrBicubicEffect);
#if GR_TEST_UTILS
std::unique_ptr<GrFragmentProcessor> GrBicubicEffect::TestCreate(GrProcessorTestData* d) {
Direction direction = Direction::kX;
switch (d->fRandom->nextULessThan(3)) {
case 0:
direction = Direction::kX;
break;
case 1:
direction = Direction::kY;
break;
case 2:
direction = Direction::kXY;
break;
}
auto kernel = d->fRandom->nextBool() ? GrBicubicEffect::Kernel::kMitchell
: GrBicubicEffect::Kernel::kCatmullRom;
auto m = GrTest::TestMatrix(d->fRandom);
switch (d->fRandom->nextULessThan(3)) {
case 0: {
auto [view, ct, at] = d->randomView();
GrSamplerState::WrapMode wm[2];
GrTest::TestWrapModes(d->fRandom, wm);
if (d->fRandom->nextBool()) {
SkRect subset;
subset.fLeft = d->fRandom->nextSScalar1() * view.width();
subset.fTop = d->fRandom->nextSScalar1() * view.height();
subset.fRight = d->fRandom->nextSScalar1() * view.width();
subset.fBottom = d->fRandom->nextSScalar1() * view.height();
subset.sort();
return MakeSubset(std::move(view),
at,
m,
wm[0],
wm[1],
subset,
kernel,
direction,
*d->caps());
}
return Make(std::move(view), at, m, wm[0], wm[1], kernel, direction, *d->caps());
}
case 1: {
auto [view, ct, at] = d->randomView();
return Make(std::move(view), at, m, kernel, direction);
}
default: {
SkAlphaType at;
do {
at = static_cast<SkAlphaType>(d->fRandom->nextULessThan(kLastEnum_SkAlphaType + 1));
} while (at == kUnknown_SkAlphaType);
return Make(GrProcessorUnitTest::MakeChildFP(d), at, m, kernel, direction);
}
}
}
#endif
//////////////////////////////////////////////////////////////////////////////
bool GrBicubicEffect::ShouldUseBicubic(const SkMatrix& matrix, GrSamplerState::Filter* filterMode) {
switch (SkMatrixPriv::AdjustHighQualityFilterLevel(matrix)) {
case kNone_SkFilterQuality:
*filterMode = GrSamplerState::Filter::kNearest;
break;
case kLow_SkFilterQuality:
*filterMode = GrSamplerState::Filter::kBilerp;
break;
case kMedium_SkFilterQuality:
*filterMode = GrSamplerState::Filter::kMipMap;
break;
case kHigh_SkFilterQuality:
// When we use the bicubic filtering effect each sample is read from the texture using
// nearest neighbor sampling.
*filterMode = GrSamplerState::Filter::kNearest;
return true;
}
return false;
}