blob: 5b5907a567c58c39579189866d25cf7169587a1e [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrOpFlushState_DEFINED
#define GrOpFlushState_DEFINED
#include <utility>
#include "src/core/SkArenaAlloc.h"
#include "src/core/SkArenaAllocList.h"
#include "src/gpu/GrAppliedClip.h"
#include "src/gpu/GrBufferAllocPool.h"
#include "src/gpu/GrDeferredUpload.h"
#include "src/gpu/GrProgramInfo.h"
#include "src/gpu/GrRenderTargetProxy.h"
#include "src/gpu/GrSurfaceProxyView.h"
#include "src/gpu/ops/GrMeshDrawOp.h"
class GrGpu;
class GrOpsRenderPass;
class GrResourceProvider;
/** Tracks the state across all the GrOps (really just the GrDrawOps) in a GrOpsTask flush. */
class GrOpFlushState final : public GrDeferredUploadTarget, public GrMeshDrawOp::Target {
public:
// vertexSpace and indexSpace may either be null or an alloation of size
// GrBufferAllocPool::kDefaultBufferSize. If the latter, then CPU memory is only allocated for
// vertices/indices when a buffer larger than kDefaultBufferSize is required.
GrOpFlushState(GrGpu*, GrResourceProvider*, GrTokenTracker*,
sk_sp<GrBufferAllocPool::CpuBufferCache> = nullptr);
~GrOpFlushState() final { this->reset(); }
/** This is called after each op has a chance to prepare its draws and before the draws are
executed. */
void preExecuteDraws();
/** Called to upload data to a texture using the GrDeferredTextureUploadFn. If the uploaded
surface needs to be prepared for being sampled in a draw after the upload, the caller
should pass in true for shouldPrepareSurfaceForSampling. This feature is needed for Vulkan
when doing inline uploads to reset the image layout back to sampled. */
void doUpload(GrDeferredTextureUploadFn&, bool shouldPrepareSurfaceForSampling = false);
/** Called as ops are executed. Must be called in the same order as the ops were prepared. */
void executeDrawsAndUploadsForMeshDrawOp(const GrOp* op, const SkRect& chainBounds,
const GrPipeline*);
GrOpsRenderPass* opsRenderPass() { return fOpsRenderPass; }
void setOpsRenderPass(GrOpsRenderPass* renderPass) { fOpsRenderPass = renderPass; }
GrGpu* gpu() { return fGpu; }
void reset();
/** Additional data required on a per-op basis when executing GrOps. */
struct OpArgs {
// TODO: why does OpArgs have the op we're going to pass it to as a member? Remove it.
explicit OpArgs(GrOp* op, GrSurfaceProxyView* surfaceView, GrAppliedClip* appliedClip,
const GrXferProcessor::DstProxyView& dstProxyView)
: fOp(op)
, fSurfaceView(surfaceView)
, fRenderTargetProxy(surfaceView->asRenderTargetProxy())
, fAppliedClip(appliedClip)
, fDstProxyView(dstProxyView) {
SkASSERT(surfaceView->asRenderTargetProxy());
}
GrSurfaceOrigin origin() const { return fSurfaceView->origin(); }
GrSwizzle writeSwizzle() const { return fSurfaceView->swizzle(); }
GrOp* op() { return fOp; }
const GrSurfaceProxyView* writeView() const { return fSurfaceView; }
GrRenderTargetProxy* proxy() const { return fRenderTargetProxy; }
GrAppliedClip* appliedClip() { return fAppliedClip; }
const GrAppliedClip* appliedClip() const { return fAppliedClip; }
const GrXferProcessor::DstProxyView& dstProxyView() const { return fDstProxyView; }
#ifdef SK_DEBUG
void validate() const {
SkASSERT(fOp);
SkASSERT(fSurfaceView);
}
#endif
private:
GrOp* fOp;
GrSurfaceProxyView* fSurfaceView;
GrRenderTargetProxy* fRenderTargetProxy;
GrAppliedClip* fAppliedClip;
GrXferProcessor::DstProxyView fDstProxyView; // TODO: do we still need the dst proxy here?
};
void setOpArgs(OpArgs* opArgs) { fOpArgs = opArgs; }
const OpArgs& drawOpArgs() const {
SkASSERT(fOpArgs);
SkDEBUGCODE(fOpArgs->validate());
return *fOpArgs;
}
void setSampledProxyArray(SkTArray<GrSurfaceProxy*, true>* sampledProxies) {
fSampledProxies = sampledProxies;
}
SkTArray<GrSurfaceProxy*, true>* sampledProxyArray() override {
return fSampledProxies;
}
/** Overrides of GrDeferredUploadTarget. */
const GrTokenTracker* tokenTracker() final { return fTokenTracker; }
GrDeferredUploadToken addInlineUpload(GrDeferredTextureUploadFn&&) final;
GrDeferredUploadToken addASAPUpload(GrDeferredTextureUploadFn&&) final;
/** Overrides of GrMeshDrawOp::Target. */
void recordDraw(const GrGeometryProcessor*,
const GrSimpleMesh[],
int meshCnt,
const GrSurfaceProxy* const primProcProxies[],
GrPrimitiveType) final;
void* makeVertexSpace(size_t vertexSize, int vertexCount, sk_sp<const GrBuffer>*,
int* startVertex) final;
uint16_t* makeIndexSpace(int indexCount, sk_sp<const GrBuffer>*, int* startIndex) final;
void* makeVertexSpaceAtLeast(size_t vertexSize, int minVertexCount, int fallbackVertexCount,
sk_sp<const GrBuffer>*, int* startVertex,
int* actualVertexCount) final;
uint16_t* makeIndexSpaceAtLeast(int minIndexCount, int fallbackIndexCount,
sk_sp<const GrBuffer>*, int* startIndex,
int* actualIndexCount) final;
GrDrawIndirectCommand* makeDrawIndirectSpace(int drawCount, sk_sp<const GrBuffer>* buffer,
size_t* offset) override {
return fDrawIndirectPool.makeSpace(drawCount, buffer, offset);
}
GrDrawIndexedIndirectCommand* makeDrawIndexedIndirectSpace(
int drawCount, sk_sp<const GrBuffer>* buffer, size_t* offset) override {
return fDrawIndirectPool.makeIndexedSpace(drawCount, buffer, offset);
}
void putBackIndices(int indexCount) final;
void putBackVertices(int vertices, size_t vertexStride) final;
const GrSurfaceProxyView* writeView() const final { return this->drawOpArgs().writeView(); }
GrRenderTargetProxy* proxy() const final { return this->drawOpArgs().proxy(); }
const GrAppliedClip* appliedClip() const final { return this->drawOpArgs().appliedClip(); }
const GrAppliedHardClip& appliedHardClip() const {
return (fOpArgs->appliedClip()) ?
fOpArgs->appliedClip()->hardClip() : GrAppliedHardClip::Disabled();
}
GrAppliedClip detachAppliedClip() final;
const GrXferProcessor::DstProxyView& dstProxyView() const final {
return this->drawOpArgs().dstProxyView();
}
GrDeferredUploadTarget* deferredUploadTarget() final { return this; }
const GrCaps& caps() const final;
GrResourceProvider* resourceProvider() const final { return fResourceProvider; }
GrStrikeCache* strikeCache() const final;
// At this point we know we're flushing so full access to the GrAtlasManager is required (and
// permissible).
GrAtlasManager* atlasManager() const final;
/** GrMeshDrawOp::Target override. */
SkArenaAlloc* allocator() override { return &fArena; }
// This is a convenience method that binds the given pipeline, and then, if our applied clip has
// a scissor, sets the scissor rect from the applied clip.
void bindPipelineAndScissorClip(const GrProgramInfo& programInfo, const SkRect& drawBounds) {
SkASSERT((programInfo.pipeline().isScissorTestEnabled()) ==
(this->appliedClip() && this->appliedClip()->scissorState().enabled()));
this->bindPipeline(programInfo, drawBounds);
if (programInfo.pipeline().isScissorTestEnabled()) {
this->setScissorRect(this->appliedClip()->scissorState().rect());
}
}
// This is a convenience method for when the primitive processor has exactly one texture. It
// binds one texture for the primitive processor, and any others for FPs on the pipeline.
void bindTextures(const GrPrimitiveProcessor& primProc,
const GrSurfaceProxy& singlePrimProcTexture, const GrPipeline& pipeline) {
SkASSERT(primProc.numTextureSamplers() == 1);
const GrSurfaceProxy* ptr = &singlePrimProcTexture;
this->bindTextures(primProc, &ptr, pipeline);
}
// Makes the appropriate bindBuffers() and draw*() calls for the provided mesh.
void drawMesh(const GrSimpleMesh& mesh);
// Pass-through methods to GrOpsRenderPass.
void bindPipeline(const GrProgramInfo& programInfo, const SkRect& drawBounds) {
fOpsRenderPass->bindPipeline(programInfo, drawBounds);
}
void setScissorRect(const SkIRect& scissorRect) {
fOpsRenderPass->setScissorRect(scissorRect);
}
void bindTextures(const GrPrimitiveProcessor& primProc,
const GrSurfaceProxy* const primProcTextures[], const GrPipeline& pipeline) {
fOpsRenderPass->bindTextures(primProc, primProcTextures, pipeline);
}
void bindBuffers(const GrBuffer* indexBuffer, const GrBuffer* instanceBuffer,
const GrBuffer* vertexBuffer,
GrPrimitiveRestart primitiveRestart = GrPrimitiveRestart::kNo) {
fOpsRenderPass->bindBuffers(indexBuffer, instanceBuffer, vertexBuffer, primitiveRestart);
}
void draw(int vertexCount, int baseVertex) {
fOpsRenderPass->draw(vertexCount, baseVertex);
}
void drawIndexed(int indexCount, int baseIndex, uint16_t minIndexValue, uint16_t maxIndexValue,
int baseVertex) {
fOpsRenderPass->drawIndexed(indexCount, baseIndex, minIndexValue, maxIndexValue,
baseVertex);
}
void drawInstanced(int instanceCount, int baseInstance, int vertexCount, int baseVertex) {
fOpsRenderPass->drawInstanced(instanceCount, baseInstance, vertexCount, baseVertex);
}
void drawIndexedInstanced(int indexCount, int baseIndex, int instanceCount, int baseInstance,
int baseVertex) {
fOpsRenderPass->drawIndexedInstanced(indexCount, baseIndex, instanceCount, baseInstance,
baseVertex);
}
void drawIndirect(const GrBuffer* drawIndirectBuffer, size_t offset, int drawCount) {
fOpsRenderPass->drawIndirect(drawIndirectBuffer, offset, drawCount);
}
void drawIndexedIndirect(const GrBuffer* drawIndirectBuffer, size_t offset, int drawCount) {
fOpsRenderPass->drawIndexedIndirect(drawIndirectBuffer, offset, drawCount);
}
void drawIndexPattern(int patternIndexCount, int patternRepeatCount,
int maxPatternRepetitionsInIndexBuffer, int patternVertexCount,
int baseVertex) {
fOpsRenderPass->drawIndexPattern(patternIndexCount, patternRepeatCount,
maxPatternRepetitionsInIndexBuffer, patternVertexCount,
baseVertex);
}
private:
struct InlineUpload {
InlineUpload(GrDeferredTextureUploadFn&& upload, GrDeferredUploadToken token)
: fUpload(std::move(upload)), fUploadBeforeToken(token) {}
GrDeferredTextureUploadFn fUpload;
GrDeferredUploadToken fUploadBeforeToken;
};
// A set of contiguous draws that share a draw token, geometry processor, and pipeline. The
// meshes for the draw are stored in the fMeshes array. The reason for coalescing meshes
// that share a geometry processor into a Draw is that it allows the Gpu object to setup
// the shared state once and then issue draws for each mesh.
struct Draw {
~Draw();
// The geometry processor is always forced to be in an arena allocation or appears on
// the stack (for CCPR). In either case this object does not need to manage its
// lifetime.
const GrGeometryProcessor* fGeometryProcessor = nullptr;
// Must have GrPrimitiveProcessor::numTextureSamplers() entries. Can be null if no samplers.
const GrSurfaceProxy* const* fPrimProcProxies = nullptr;
const GrSimpleMesh* fMeshes = nullptr;
const GrOp* fOp = nullptr;
int fMeshCnt = 0;
GrPrimitiveType fPrimitiveType;
};
// Storage for ops' pipelines, draws, and inline uploads.
SkArenaAlloc fArena{sizeof(GrPipeline) * 100};
// Store vertex and index data on behalf of ops that are flushed.
GrVertexBufferAllocPool fVertexPool;
GrIndexBufferAllocPool fIndexPool;
GrDrawIndirectBufferAllocPool fDrawIndirectPool;
// Data stored on behalf of the ops being flushed.
SkArenaAllocList<GrDeferredTextureUploadFn> fASAPUploads;
SkArenaAllocList<InlineUpload> fInlineUploads;
SkArenaAllocList<Draw> fDraws;
// All draws we store have an implicit draw token. This is the draw token for the first draw
// in fDraws.
GrDeferredUploadToken fBaseDrawToken = GrDeferredUploadToken::AlreadyFlushedToken();
// Info about the op that is currently preparing or executing using the flush state or null if
// an op is not currently preparing of executing.
OpArgs* fOpArgs = nullptr;
// This field is only transiently set during flush. Each GrOpsTask will set it to point to an
// array of proxies it uses before call onPrepare and onExecute.
SkTArray<GrSurfaceProxy*, true>* fSampledProxies;
GrGpu* fGpu;
GrResourceProvider* fResourceProvider;
GrTokenTracker* fTokenTracker;
GrOpsRenderPass* fOpsRenderPass = nullptr;
// Variables that are used to track where we are in lists as ops are executed
SkArenaAllocList<Draw>::Iter fCurrDraw;
SkArenaAllocList<InlineUpload>::Iter fCurrUpload;
};
#endif