blob: 973e8fe2a4a12535e1c986a1f5365f408e8a9399 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <cmath>
#include "gm/gm.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkBlurTypes.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColor.h"
#include "include/core/SkColorFilter.h"
#include "include/core/SkImage.h"
#include "include/core/SkMaskFilter.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPathBuilder.h"
#include "include/core/SkPoint.h"
#include "include/core/SkRect.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkScalar.h"
#include "include/core/SkShader.h"
#include "include/core/SkSize.h"
#include "include/core/SkString.h"
#include "include/core/SkSurface.h"
#include "include/core/SkTileMode.h"
#include "include/core/SkTypes.h"
#include "include/effects/SkGradientShader.h"
#include "include/gpu/GrRecordingContext.h"
#include "include/private/SkTo.h"
#include "src/core/SkBlurMask.h"
#include "src/core/SkMask.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "tools/timer/TimeUtils.h"
#include <vector>
#define STROKE_WIDTH SkIntToScalar(10)
typedef void (*Proc)(SkCanvas*, const SkRect&, const SkPaint&);
static void fill_rect(SkCanvas* canvas, const SkRect& r, const SkPaint& p) {
canvas->drawRect(r, p);
}
static void draw_donut(SkCanvas* canvas, const SkRect& r, const SkPaint& p) {
SkRect rect;
SkPathBuilder path;
rect = r;
rect.outset(STROKE_WIDTH/2, STROKE_WIDTH/2);
path.addRect(rect);
rect = r;
rect.inset(STROKE_WIDTH/2, STROKE_WIDTH/2);
path.addRect(rect);
path.setFillType(SkPathFillType::kEvenOdd);
canvas->drawPath(path.detach(), p);
}
static void draw_donut_skewed(SkCanvas* canvas, const SkRect& r, const SkPaint& p) {
SkRect rect;
SkPathBuilder path;
rect = r;
rect.outset(STROKE_WIDTH/2, STROKE_WIDTH/2);
path.addRect(rect);
rect = r;
rect.inset(STROKE_WIDTH/2, STROKE_WIDTH/2);
rect.offset(7, -7);
path.addRect(rect);
path.setFillType(SkPathFillType::kEvenOdd);
canvas->drawPath(path.detach(), p);
}
/*
* Spits out a dummy gradient to test blur with shader on paint
*/
static sk_sp<SkShader> make_radial() {
SkPoint pts[2] = {
{ 0, 0 },
{ SkIntToScalar(100), SkIntToScalar(100) }
};
SkTileMode tm = SkTileMode::kClamp;
const SkColor colors[] = { SK_ColorRED, SK_ColorGREEN, };
const SkScalar pos[] = { SK_Scalar1/4, SK_Scalar1*3/4 };
SkMatrix scale;
scale.setScale(0.5f, 0.5f);
scale.postTranslate(25.f, 25.f);
SkPoint center0, center1;
center0.set(SkScalarAve(pts[0].fX, pts[1].fX),
SkScalarAve(pts[0].fY, pts[1].fY));
center1.set(SkScalarInterp(pts[0].fX, pts[1].fX, SkIntToScalar(3)/5),
SkScalarInterp(pts[0].fY, pts[1].fY, SkIntToScalar(1)/4));
return SkGradientShader::MakeTwoPointConical(center1, (pts[1].fX - pts[0].fX) / 7,
center0, (pts[1].fX - pts[0].fX) / 2,
colors, pos, SK_ARRAY_COUNT(colors), tm,
0, &scale);
}
typedef void (*PaintProc)(SkPaint*, SkScalar width);
class BlurRectGM : public skiagm::GM {
public:
BlurRectGM(const char name[], U8CPU alpha) : fName(name), fAlpha(SkToU8(alpha)) {}
private:
sk_sp<SkMaskFilter> fMaskFilters[kLastEnum_SkBlurStyle + 1];
const char* fName;
SkAlpha fAlpha;
void onOnceBeforeDraw() override {
for (int i = 0; i <= kLastEnum_SkBlurStyle; ++i) {
fMaskFilters[i] = SkMaskFilter::MakeBlur((SkBlurStyle)i,
SkBlurMask::ConvertRadiusToSigma(SkIntToScalar(STROKE_WIDTH/2)));
}
}
SkString onShortName() override { return SkString(fName); }
SkISize onISize() override { return {860, 820}; }
void onDraw(SkCanvas* canvas) override {
canvas->translate(STROKE_WIDTH*3/2, STROKE_WIDTH*3/2);
SkRect r = { 0, 0, 100, 50 };
SkScalar scales[] = { SK_Scalar1, 0.6f };
for (size_t s = 0; s < SK_ARRAY_COUNT(scales); ++s) {
canvas->save();
for (size_t f = 0; f < SK_ARRAY_COUNT(fMaskFilters); ++f) {
SkPaint paint;
paint.setMaskFilter(fMaskFilters[f]);
paint.setAlpha(fAlpha);
SkPaint paintWithRadial = paint;
paintWithRadial.setShader(make_radial());
constexpr Proc procs[] = {
fill_rect, draw_donut, draw_donut_skewed
};
canvas->save();
canvas->scale(scales[s], scales[s]);
this->drawProcs(canvas, r, paint, false, procs, SK_ARRAY_COUNT(procs));
canvas->translate(r.width() * 4/3, 0);
this->drawProcs(canvas, r, paintWithRadial, false, procs, SK_ARRAY_COUNT(procs));
canvas->translate(r.width() * 4/3, 0);
this->drawProcs(canvas, r, paint, true, procs, SK_ARRAY_COUNT(procs));
canvas->translate(r.width() * 4/3, 0);
this->drawProcs(canvas, r, paintWithRadial, true, procs, SK_ARRAY_COUNT(procs));
canvas->restore();
canvas->translate(0, SK_ARRAY_COUNT(procs) * r.height() * 4/3 * scales[s]);
}
canvas->restore();
canvas->translate(4 * r.width() * 4/3 * scales[s], 0);
}
}
void drawProcs(SkCanvas* canvas, const SkRect& r, const SkPaint& paint,
bool doClip, const Proc procs[], size_t procsCount) {
SkAutoCanvasRestore acr(canvas, true);
for (size_t i = 0; i < procsCount; ++i) {
if (doClip) {
SkRect clipRect(r);
clipRect.inset(STROKE_WIDTH/2, STROKE_WIDTH/2);
canvas->save();
canvas->clipRect(r);
}
procs[i](canvas, r, paint);
if (doClip) {
canvas->restore();
}
canvas->translate(0, r.height() * 4/3);
}
}
};
DEF_SIMPLE_GM(blurrect_gallery, canvas, 1200, 1024) {
const int fGMWidth = 1200;
const int fPadding = 10;
const int fMargin = 100;
const int widths[] = {25, 5, 5, 100, 150, 25};
const int heights[] = {100, 100, 5, 25, 150, 25};
const SkBlurStyle styles[] = {kNormal_SkBlurStyle, kInner_SkBlurStyle, kOuter_SkBlurStyle};
const float radii[] = {20, 5, 10};
canvas->translate(50,20);
int cur_x = 0;
int cur_y = 0;
int max_height = 0;
for (size_t i = 0 ; i < SK_ARRAY_COUNT(widths) ; i++) {
int width = widths[i];
int height = heights[i];
SkRect r;
r.setWH(SkIntToScalar(width), SkIntToScalar(height));
SkAutoCanvasRestore autoRestore(canvas, true);
for (size_t j = 0 ; j < SK_ARRAY_COUNT(radii) ; j++) {
float radius = radii[j];
for (size_t k = 0 ; k < SK_ARRAY_COUNT(styles) ; k++) {
SkBlurStyle style = styles[k];
SkMask mask;
if (!SkBlurMask::BlurRect(SkBlurMask::ConvertRadiusToSigma(radius),
&mask, r, style)) {
continue;
}
SkAutoMaskFreeImage amfi(mask.fImage);
SkBitmap bm;
bm.installMaskPixels(mask);
if (cur_x + bm.width() >= fGMWidth - fMargin) {
cur_x = 0;
cur_y += max_height + fPadding;
max_height = 0;
}
canvas->save();
canvas->translate((SkScalar)cur_x, (SkScalar)cur_y);
canvas->translate(-(bm.width() - r.width())/2, -(bm.height()-r.height())/2);
canvas->drawBitmap(bm, 0.f, 0.f, nullptr);
canvas->restore();
cur_x += bm.width() + fPadding;
if (bm.height() > max_height)
max_height = bm.height();
}
}
}
}
namespace skiagm {
// Compares actual blur rects with reference masks created by the GM. Animates sigma in viewer.
class BlurRectCompareGM : public GM {
protected:
SkString onShortName() override { return SkString("blurrect_compare"); }
SkISize onISize() override { return {900, 1220}; }
void onOnceBeforeDraw() override { this->prepareReferenceMasks(); }
DrawResult onDraw(SkCanvas* canvas, SkString* errorMsg) override {
if (canvas->imageInfo().colorType() == kUnknown_SkColorType ||
(canvas->recordingContext() && !canvas->recordingContext()->asDirectContext())) {
*errorMsg = "Not supported when recording, relies on canvas->makeSurface()";
return DrawResult::kSkip;
}
int32_t ctxID = canvas->recordingContext() ? canvas->recordingContext()->priv().contextID()
: 0;
if (fRecalcMasksForAnimation || !fActualMasks[0][0][0] || ctxID != fLastContextUniqueID) {
if (fRecalcMasksForAnimation) {
// Sigma is changing so references must also be recalculated.
this->prepareReferenceMasks();
}
this->prepareActualMasks(canvas);
this->prepareMaskDifferences(canvas);
fLastContextUniqueID = ctxID;
fRecalcMasksForAnimation = false;
}
canvas->clear(SK_ColorBLACK);
static constexpr float kMargin = 30;
float totalW = 0;
for (auto w : kSizes) {
totalW += w + kMargin;
}
canvas->translate(kMargin, kMargin);
for (int mode = 0; mode < 3; ++mode) {
canvas->save();
for (size_t sigmaIdx = 0; sigmaIdx < kNumSigmas; ++sigmaIdx) {
auto sigma = kSigmas[sigmaIdx] + fSigmaAnimationBoost;
for (size_t heightIdx = 0; heightIdx < kNumSizes; ++heightIdx) {
auto h = kSizes[heightIdx];
canvas->save();
for (size_t widthIdx = 0; widthIdx < kNumSizes; ++widthIdx) {
auto w = kSizes[widthIdx];
SkPaint paint;
paint.setColor(SK_ColorWHITE);
SkImage* img;
switch (mode) {
case 0:
img = fReferenceMasks[sigmaIdx][heightIdx][widthIdx].get();
break;
case 1:
img = fActualMasks[sigmaIdx][heightIdx][widthIdx].get();
break;
case 2:
img = fMaskDifferences[sigmaIdx][heightIdx][widthIdx].get();
// The error images are opaque, use kPlus so they are additive if
// the overlap between test cases.
paint.setBlendMode(SkBlendMode::kPlus);
break;
}
auto pad = PadForSigma(sigma);
canvas->drawImage(img, -pad, -pad, &paint);
#if 0 // Uncomment to hairline stroke around blurred rect in red on top of the blur result.
// The rect is defined at integer coords. We inset by 1/2 pixel so our stroke lies on top
// of the edge pixels.
SkPaint stroke;
stroke.setColor(SK_ColorRED);
stroke.setStrokeWidth(0.f);
stroke.setStyle(SkPaint::kStroke_Style);
canvas->drawRect(SkRect::MakeWH(w, h).makeInset(0.5, 0.5), stroke);
#endif
canvas->translate(w + kMargin, 0.f);
}
canvas->restore();
canvas->translate(0, h + kMargin);
}
}
canvas->restore();
canvas->translate(totalW + 2 * kMargin, 0);
}
return DrawResult::kOk;
}
bool onAnimate(double nanos) override {
fSigmaAnimationBoost = TimeUtils::SineWave(nanos, 5, 2.5f, 0.f, 2.f);
fRecalcMasksForAnimation = true;
return true;
}
private:
void prepareReferenceMasks() {
auto create_reference_mask = [](int w, int h, float sigma, int numSubpixels) {
int pad = PadForSigma(sigma);
int maskW = w + 2 * pad;
int maskH = h + 2 * pad;
// We'll do all our calculations at subpixel resolution, so adjust params
w *= numSubpixels;
h *= numSubpixels;
sigma *= numSubpixels;
auto scale = SK_ScalarRoot2Over2 / sigma;
auto def_integral_approx = [scale](float a, float b) {
return 0.5f * (std::erf(b * scale) - std::erf(a * scale));
};
// Do the x-pass. Above/below rect are rows of zero. All rows that intersect the rect
// are the same. The row is calculated and stored at subpixel resolution.
SkASSERT(!(numSubpixels & 0b1));
std::unique_ptr<float[]> row(new float[maskW * numSubpixels]);
for (int col = 0; col < maskW * numSubpixels; ++col) {
// Compute distance to rect left in subpixel units
float ldiff = numSubpixels * pad - (col + 0.5f);
float rdiff = ldiff + w;
row[col] = def_integral_approx(ldiff, rdiff);
}
// y-pass
SkBitmap bmp;
bmp.allocPixels(SkImageInfo::MakeA8(maskW, maskH));
std::unique_ptr<float[]> accums(new float[maskW]);
const float accumScale = 1.f / (numSubpixels * numSubpixels);
for (int y = 0; y < maskH; ++y) {
// Initialize subpixel accumulation buffer for this row.
std::fill_n(accums.get(), maskW, 0);
for (int ys = 0; ys < numSubpixels; ++ys) {
// At each subpixel we want to integrate over the kernel centered at the
// subpixel multiplied by the x-pass. The x-pass is zero above and below the
// rect and constant valued from rect top to rect bottom. So we can get the
// integral of just the kernel from rect top to rect bottom and multiply by
// the single x-pass value from our precomputed row.
float tdiff = numSubpixels * pad - (y * numSubpixels + ys + 0.5f);
float bdiff = tdiff + h;
auto w = def_integral_approx(tdiff, bdiff);
for (int x = 0; x < maskW; ++x) {
for (int xs = 0; xs < numSubpixels; ++xs) {
int rowIdx = x * numSubpixels + xs;
accums[x] += w * row[rowIdx];
}
}
}
for (int x = 0; x < maskW; ++x) {
auto result = accums[x] * accumScale;
*bmp.getAddr8(x, y) = SkToU8(sk_float_round2int(255.f * result));
}
}
return bmp.asImage();
};
// Number of times to subsample (in both X and Y). If fRecalcMasksForAnimation is true
// then we're animating, don't subsample as much to keep fps higher.
const int numSubpixels = fRecalcMasksForAnimation ? 2 : 8;
for (size_t sigmaIdx = 0; sigmaIdx < kNumSigmas; ++sigmaIdx) {
auto sigma = kSigmas[sigmaIdx] + fSigmaAnimationBoost;
for (size_t heightIdx = 0; heightIdx < kNumSizes; ++heightIdx) {
auto h = kSizes[heightIdx];
for (size_t widthIdx = 0; widthIdx < kNumSizes; ++widthIdx) {
auto w = kSizes[widthIdx];
fReferenceMasks[sigmaIdx][heightIdx][widthIdx] =
create_reference_mask(w, h, sigma, numSubpixels);
}
}
}
}
void prepareActualMasks(SkCanvas* canvas) {
for (size_t sigmaIdx = 0; sigmaIdx < kNumSigmas; ++sigmaIdx) {
auto sigma = kSigmas[sigmaIdx] + fSigmaAnimationBoost;
for (size_t heightIdx = 0; heightIdx < kNumSizes; ++heightIdx) {
auto h = kSizes[heightIdx];
for (size_t widthIdx = 0; widthIdx < kNumSizes; ++widthIdx) {
auto w = kSizes[widthIdx];
auto pad = PadForSigma(sigma);
auto ii = SkImageInfo::MakeA8(w + 2 * pad, h + 2 * pad);
auto surf = canvas->makeSurface(ii);
if (!surf) {
// Some GPUs don't have renderable A8 :(
surf = canvas->makeSurface(ii.makeColorType(kRGBA_8888_SkColorType));
if (!surf) {
return;
}
}
auto rect = SkRect::MakeXYWH(pad, pad, w, h);
SkPaint paint;
// Color doesn't matter if we're rendering to A8 but does if we promoted to
// RGBA above.
paint.setColor(SK_ColorWHITE);
paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma));
surf->getCanvas()->drawRect(rect, paint);
fActualMasks[sigmaIdx][heightIdx][widthIdx] = surf->makeImageSnapshot();
}
}
}
}
void prepareMaskDifferences(SkCanvas* canvas) {
for (size_t sigmaIdx = 0; sigmaIdx < kNumSigmas; ++sigmaIdx) {
for (size_t heightIdx = 0; heightIdx < kNumSizes; ++heightIdx) {
for (size_t widthIdx = 0; widthIdx < kNumSizes; ++widthIdx) {
const auto& r = fReferenceMasks[sigmaIdx][heightIdx][widthIdx];
const auto& a = fActualMasks[sigmaIdx][heightIdx][widthIdx];
auto& d = fMaskDifferences[sigmaIdx][heightIdx][widthIdx];
// The actual image might not be present if we're on an abandoned GrContext.
if (!a) {
d.reset();
continue;
}
SkASSERT(r->width() == a->width());
SkASSERT(r->height() == a->height());
auto ii = SkImageInfo::Make(r->width(), r->height(),
kRGBA_8888_SkColorType, kPremul_SkAlphaType);
auto surf = canvas->makeSurface(ii);
if (!surf) {
return;
}
// We visualize the difference by turning both the alpha masks into opaque green
// images (where alpha becomes the green channel) and then perform a
// SkBlendMode::kDifference between them.
SkPaint filterPaint;
filterPaint.setColor(SK_ColorWHITE);
// Actually 8 * alpha becomes green to really highlight differences.
static constexpr float kGreenifyM[] = {0, 0, 0, 0, 0,
0, 0, 0, 8, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 1};
auto greenifyCF = SkColorFilters::Matrix(kGreenifyM);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
paint.setColorFilter(std::move(greenifyCF));
surf->getCanvas()->drawImage(a, 0, 0, &paint);
paint.setBlendMode(SkBlendMode::kDifference);
surf->getCanvas()->drawImage(r, 0, 0, &paint);
d = surf->makeImageSnapshot();
}
}
}
}
// Per side padding around mask images for a sigma. Make this overly generous to ensure bugs
// related to big blurs are fully visible.
static int PadForSigma(float sigma) { return sk_float_ceil2int(4 * sigma); }
static constexpr int kSizes[] = {1, 2, 4, 8, 16, 32};
static constexpr float kSigmas[] = {0.5f, 1.2f, 2.3f, 3.9f, 7.4f};
static constexpr size_t kNumSizes = SK_ARRAY_COUNT(kSizes);
static constexpr size_t kNumSigmas = SK_ARRAY_COUNT(kSigmas);
sk_sp<SkImage> fReferenceMasks[kNumSigmas][kNumSizes][kNumSizes];
sk_sp<SkImage> fActualMasks[kNumSigmas][kNumSizes][kNumSizes];
sk_sp<SkImage> fMaskDifferences[kNumSigmas][kNumSizes][kNumSizes];
int32_t fLastContextUniqueID;
// These are used only when animating.
float fSigmaAnimationBoost = 0;
bool fRecalcMasksForAnimation = false;
};
} // namespace skiagm
//////////////////////////////////////////////////////////////////////////////
DEF_GM(return new BlurRectGM("blurrects", 0xFF);)
DEF_GM(return new skiagm::BlurRectCompareGM();)
//////////////////////////////////////////////////////////////////////////////
DEF_SIMPLE_GM(blur_matrix_rect, canvas, 650, 685) {
static constexpr auto kRect = SkRect::MakeWH(14, 60);
static constexpr float kSigmas[] = {0.5f, 1.2f, 2.3f, 3.9f, 7.4f};
static constexpr size_t kNumSigmas = SK_ARRAY_COUNT(kSigmas);
const SkPoint c = {kRect.centerX(), kRect.centerY()};
std::vector<SkMatrix> matrices;
matrices.push_back(SkMatrix::RotateDeg(4.f, c));
matrices.push_back(SkMatrix::RotateDeg(63.f, c));
matrices.push_back(SkMatrix::RotateDeg(30.f, c));
matrices.back().preScale(1.1f, .5f);
matrices.push_back(SkMatrix::RotateDeg(147.f, c));
matrices.back().preScale(3.f, .1f);
SkMatrix mirror;
mirror.setAll(0, 1, 0,
1, 0, 0,
0, 0, 1);
matrices.push_back(SkMatrix::Concat(mirror, matrices.back()));
matrices.push_back(SkMatrix::RotateDeg(197.f, c));
matrices.back().preSkew(.3f, -.5f);
auto bounds = SkRect::MakeEmpty();
for (const auto& m : matrices) {
SkRect mapped;
m.mapRect(&mapped, kRect);
bounds.joinNonEmptyArg(mapped.makeSorted());
}
float blurPad = 2.f*kSigmas[kNumSigmas - 1];
bounds.outset(blurPad, blurPad);
canvas->translate(-bounds.left(), -bounds.top());
for (auto sigma : kSigmas) {
SkPaint paint;
paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma));
canvas->save();
for (const auto& m : matrices) {
canvas->save();
canvas->concat(m);
canvas->drawRect(kRect, paint);
canvas->restore();
canvas->translate(0, bounds.height());
}
canvas->restore();
canvas->translate(bounds.width(), 0);
}
}