| /* |
| * Copyright 2017 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/utils/SkFloatToDecimal.h" |
| |
| #include <cfloat> |
| #include <climits> |
| #include <cmath> |
| |
| #include "include/core/SkTypes.h" |
| |
| // returns `value * pow(base, e)`, assuming `e` is positive. |
| static double pow_by_squaring(double value, double base, int e) { |
| // https://en.wikipedia.org/wiki/Exponentiation_by_squaring |
| SkASSERT(e > 0); |
| while (true) { |
| if (e & 1) { |
| value *= base; |
| } |
| e >>= 1; |
| if (0 == e) { |
| return value; |
| } |
| base *= base; |
| } |
| } |
| |
| // Return pow(10.0, e), optimized for common cases. |
| static double pow10(int e) { |
| switch (e) { |
| case 0: return 1.0; // common cases |
| case 1: return 10.0; |
| case 2: return 100.0; |
| case 3: return 1e+03; |
| case 4: return 1e+04; |
| case 5: return 1e+05; |
| case 6: return 1e+06; |
| case 7: return 1e+07; |
| case 8: return 1e+08; |
| case 9: return 1e+09; |
| case 10: return 1e+10; |
| case 11: return 1e+11; |
| case 12: return 1e+12; |
| case 13: return 1e+13; |
| case 14: return 1e+14; |
| case 15: return 1e+15; |
| default: |
| if (e > 15) { |
| return pow_by_squaring(1e+15, 10.0, e - 15); |
| } else { |
| SkASSERT(e < 0); |
| return pow_by_squaring(1.0, 0.1, -e); |
| } |
| } |
| } |
| |
| /** Write a string into result, includeing a terminating '\0' (for |
| unit testing). Return strlen(result) (for SkWStream::write) The |
| resulting string will be in the form /[-]?([0-9]*.)?[0-9]+/ and |
| sscanf(result, "%f", &x) will return the original value iff the |
| value is finite. This function accepts all possible input values. |
| |
| Motivation: "PDF does not support [numbers] in exponential format |
| (such as 6.02e23)." Otherwise, this function would rely on a |
| sprintf-type function from the standard library. */ |
| unsigned SkFloatToDecimal(float value, char result[kMaximumSkFloatToDecimalLength]) { |
| /* The longest result is -FLT_MIN. |
| We serialize it as "-.0000000000000000000000000000000000000117549435" |
| which has 48 characters plus a terminating '\0'. */ |
| |
| static_assert(kMaximumSkFloatToDecimalLength == 49, ""); |
| // 3 = '-', '.', and '\0' characters. |
| // 9 = number of significant digits |
| // abs(FLT_MIN_10_EXP) = number of zeros in FLT_MIN |
| static_assert(kMaximumSkFloatToDecimalLength == 3 + 9 - FLT_MIN_10_EXP, ""); |
| |
| /* section C.1 of the PDF1.4 spec (http://goo.gl/0SCswJ) says that |
| most PDF rasterizers will use fixed-point scalars that lack the |
| dynamic range of floats. Even if this is the case, I want to |
| serialize these (uncommon) very small and very large scalar |
| values with enough precision to allow a floating-point |
| rasterizer to read them in with perfect accuracy. |
| Experimentally, rasterizers such as pdfium do seem to benefit |
| from this. Rasterizers that rely on fixed-point scalars should |
| gracefully ignore these values that they can not parse. */ |
| char* output = &result[0]; |
| const char* const end = &result[kMaximumSkFloatToDecimalLength - 1]; |
| // subtract one to leave space for '\0'. |
| |
| /* This function is written to accept any possible input value, |
| including non-finite values such as INF and NAN. In that case, |
| we ignore value-correctness and and output a syntacticly-valid |
| number. */ |
| if (value == INFINITY) { |
| value = FLT_MAX; // nearest finite float. |
| } |
| if (value == -INFINITY) { |
| value = -FLT_MAX; // nearest finite float. |
| } |
| if (!std::isfinite(value) || value == 0.0f) { |
| // NAN is unsupported in PDF. Always output a valid number. |
| // Also catch zero here, as a special case. |
| *output++ = '0'; |
| *output = '\0'; |
| return static_cast<unsigned>(output - result); |
| } |
| if (value < 0.0) { |
| *output++ = '-'; |
| value = -value; |
| } |
| SkASSERT(value >= 0.0f); |
| |
| int binaryExponent; |
| (void)std::frexp(value, &binaryExponent); |
| static const double kLog2 = 0.3010299956639812; // log10(2.0); |
| int decimalExponent = static_cast<int>(std::floor(kLog2 * binaryExponent)); |
| int decimalShift = decimalExponent - 8; |
| double power = pow10(-decimalShift); |
| SkASSERT(value * power <= (double)INT_MAX); |
| int d = static_cast<int>(value * power + 0.5); |
| // SkASSERT(value == (float)(d * pow(10.0, decimalShift))); |
| SkASSERT(d <= 999999999); |
| if (d > 167772159) { // floor(pow(10,1+log10(1<<24))) |
| // need one fewer decimal digits for 24-bit precision. |
| decimalShift = decimalExponent - 7; |
| // SkASSERT(power * 0.1 = pow10(-decimalShift)); |
| // recalculate to get rounding right. |
| d = static_cast<int>(value * (power * 0.1) + 0.5); |
| SkASSERT(d <= 99999999); |
| } |
| while (d % 10 == 0) { |
| d /= 10; |
| ++decimalShift; |
| } |
| SkASSERT(d > 0); |
| // SkASSERT(value == (float)(d * pow(10.0, decimalShift))); |
| unsigned char buffer[9]; // decimal value buffer. |
| int bufferIndex = 0; |
| do { |
| buffer[bufferIndex++] = d % 10; |
| d /= 10; |
| } while (d != 0); |
| SkASSERT(bufferIndex <= (int)sizeof(buffer) && bufferIndex > 0); |
| if (decimalShift >= 0) { |
| do { |
| --bufferIndex; |
| *output++ = '0' + buffer[bufferIndex]; |
| } while (bufferIndex); |
| for (int i = 0; i < decimalShift; ++i) { |
| *output++ = '0'; |
| } |
| } else { |
| int placesBeforeDecimal = bufferIndex + decimalShift; |
| if (placesBeforeDecimal > 0) { |
| while (placesBeforeDecimal-- > 0) { |
| --bufferIndex; |
| *output++ = '0' + buffer[bufferIndex]; |
| } |
| *output++ = '.'; |
| } else { |
| *output++ = '.'; |
| int placesAfterDecimal = -placesBeforeDecimal; |
| while (placesAfterDecimal-- > 0) { |
| *output++ = '0'; |
| } |
| } |
| while (bufferIndex > 0) { |
| --bufferIndex; |
| *output++ = '0' + buffer[bufferIndex]; |
| if (output == end) { |
| break; // denormalized: don't need extra precision. |
| // Note: denormalized numbers will not have the same number of |
| // significantDigits, but do not need them to round-trip. |
| } |
| } |
| } |
| SkASSERT(output <= end); |
| *output = '\0'; |
| return static_cast<unsigned>(output - result); |
| } |