blob: 35b2f13cb2c2fd7299ce9d7cecd641c23bce86ca [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrVkCommandBuffer_DEFINED
#define GrVkCommandBuffer_DEFINED
#include "include/gpu/vk/GrVkTypes.h"
#include "src/gpu/GrManagedResource.h"
#include "src/gpu/vk/GrVkGpu.h"
#include "src/gpu/vk/GrVkSemaphore.h"
#include "src/gpu/vk/GrVkUtil.h"
class GrVkBuffer;
class GrVkFramebuffer;
class GrVkImage;
class GrVkMeshBuffer;
class GrVkPipeline;
class GrVkPipelineState;
class GrVkRenderPass;
class GrVkRenderTarget;
class GrVkTransferBuffer;
class GrVkCommandBuffer {
public:
virtual ~GrVkCommandBuffer() {}
void invalidateState();
////////////////////////////////////////////////////////////////////////////
// CommandBuffer commands
////////////////////////////////////////////////////////////////////////////
enum BarrierType {
kBufferMemory_BarrierType,
kImageMemory_BarrierType
};
void pipelineBarrier(const GrVkGpu* gpu,
const GrManagedResource* resource,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
bool byRegion,
BarrierType barrierType,
void* barrier);
void bindInputBuffer(GrVkGpu* gpu, uint32_t binding, sk_sp<const GrBuffer> buffer);
void bindIndexBuffer(GrVkGpu* gpu, sk_sp<const GrBuffer> buffer);
void bindPipeline(const GrVkGpu* gpu, const GrVkPipeline* pipeline);
void bindDescriptorSets(const GrVkGpu* gpu,
GrVkPipelineState*,
VkPipelineLayout layout,
uint32_t firstSet,
uint32_t setCount,
const VkDescriptorSet* descriptorSets,
uint32_t dynamicOffsetCount,
const uint32_t* dynamicOffsets);
void setViewport(const GrVkGpu* gpu,
uint32_t firstViewport,
uint32_t viewportCount,
const VkViewport* viewports);
void setScissor(const GrVkGpu* gpu,
uint32_t firstScissor,
uint32_t scissorCount,
const VkRect2D* scissors);
void setBlendConstants(const GrVkGpu* gpu, const float blendConstants[4]);
// Commands that only work inside of a render pass
void clearAttachments(const GrVkGpu* gpu,
int numAttachments,
const VkClearAttachment* attachments,
int numRects,
const VkClearRect* clearRects);
void drawIndexed(const GrVkGpu* gpu,
uint32_t indexCount,
uint32_t instanceCount,
uint32_t firstIndex,
int32_t vertexOffset,
uint32_t firstInstance);
void draw(const GrVkGpu* gpu,
uint32_t vertexCount,
uint32_t instanceCount,
uint32_t firstVertex,
uint32_t firstInstance);
void drawIndirect(const GrVkGpu* gpu,
const GrVkMeshBuffer* indirectBuffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride);
void drawIndexedIndirect(const GrVkGpu* gpu,
const GrVkMeshBuffer* indirectBuffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride);
// Add ref-counted resource that will be tracked and released when this command buffer finishes
// execution
void addResource(const GrManagedResource* resource) {
SkASSERT(resource);
resource->ref();
resource->notifyQueuedForWorkOnGpu();
fTrackedResources.append(1, &resource);
}
// Add ref-counted resource that will be tracked and released when this command buffer finishes
// execution. When it is released, it will signal that the resource can be recycled for reuse.
void addRecycledResource(const GrRecycledResource* resource) {
resource->ref();
resource->notifyQueuedForWorkOnGpu();
fTrackedRecycledResources.append(1, &resource);
}
void addGrBuffer(sk_sp<const GrBuffer> buffer) {
fTrackedGpuBuffers.push_back(std::move(buffer));
}
void releaseResources();
void freeGPUData(const GrGpu* gpu, VkCommandPool pool) const;
bool hasWork() const { return fHasWork; }
protected:
GrVkCommandBuffer(VkCommandBuffer cmdBuffer, bool isWrapped = false)
: fCmdBuffer(cmdBuffer)
, fIsWrapped(isWrapped) {
fTrackedResources.setReserve(kInitialTrackedResourcesCount);
fTrackedRecycledResources.setReserve(kInitialTrackedResourcesCount);
this->invalidateState();
}
bool isWrapped() const { return fIsWrapped; }
void addingWork(const GrVkGpu* gpu);
void submitPipelineBarriers(const GrVkGpu* gpu, bool forSelfDependency = false);
SkTDArray<const GrManagedResource*> fTrackedResources;
SkTDArray<const GrRecycledResource*> fTrackedRecycledResources;
SkSTArray<16, sk_sp<const GrBuffer>> fTrackedGpuBuffers;
// Tracks whether we are in the middle of a command buffer begin/end calls and thus can add
// new commands to the buffer;
bool fIsActive = false;
bool fHasWork = false;
// Stores a pointer to the current active render pass (i.e. begin has been called but not
// end). A nullptr means there is no active render pass. The GrVKCommandBuffer does not own
// the render pass.
const GrVkRenderPass* fActiveRenderPass = nullptr;
VkCommandBuffer fCmdBuffer;
private:
static const int kInitialTrackedResourcesCount = 32;
virtual void onReleaseResources() {}
virtual void onFreeGPUData(const GrVkGpu* gpu) const = 0;
static constexpr uint32_t kMaxInputBuffers = 2;
VkBuffer fBoundInputBuffers[kMaxInputBuffers];
VkBuffer fBoundIndexBuffer;
// When resetting the command buffer, we remove the tracked resources from their arrays, and
// we prefer to not free all the memory every time so usually we just rewind. However, to avoid
// all arrays growing to the max size, after so many resets we'll do a full reset of the tracked
// resource arrays.
static const int kNumRewindResetsBeforeFullReset = 8;
int fNumResets = 0;
// Cached values used for dynamic state updates
VkViewport fCachedViewport;
VkRect2D fCachedScissor;
float fCachedBlendConstant[4];
// Tracking of memory barriers so that we can submit them all in a batch together.
SkSTArray<4, VkBufferMemoryBarrier> fBufferBarriers;
SkSTArray<1, VkImageMemoryBarrier> fImageBarriers;
bool fBarriersByRegion = false;
VkPipelineStageFlags fSrcStageMask = 0;
VkPipelineStageFlags fDstStageMask = 0;
bool fIsWrapped;
};
class GrVkSecondaryCommandBuffer;
class GrVkPrimaryCommandBuffer : public GrVkCommandBuffer {
public:
~GrVkPrimaryCommandBuffer() override;
static GrVkPrimaryCommandBuffer* Create(GrVkGpu* gpu, VkCommandPool cmdPool);
void begin(GrVkGpu* gpu);
void end(GrVkGpu* gpu);
// Begins render pass on this command buffer. The framebuffer from GrVkRenderTarget will be used
// in the render pass.
bool beginRenderPass(GrVkGpu* gpu,
const GrVkRenderPass* renderPass,
const VkClearValue clearValues[],
GrVkRenderTarget* target,
const SkIRect& bounds,
bool forSecondaryCB);
void endRenderPass(const GrVkGpu* gpu);
// Submits the SecondaryCommandBuffer into this command buffer. It is required that we are
// currently inside a render pass that is compatible with the one used to create the
// SecondaryCommandBuffer.
void executeCommands(const GrVkGpu* gpu,
std::unique_ptr<GrVkSecondaryCommandBuffer> secondaryBuffer);
// Commands that only work outside of a render pass
void clearColorImage(const GrVkGpu* gpu,
GrVkImage* image,
const VkClearColorValue* color,
uint32_t subRangeCount,
const VkImageSubresourceRange* subRanges);
void clearDepthStencilImage(const GrVkGpu* gpu,
GrVkImage* image,
const VkClearDepthStencilValue* color,
uint32_t subRangeCount,
const VkImageSubresourceRange* subRanges);
void copyImage(const GrVkGpu* gpu,
GrVkImage* srcImage,
VkImageLayout srcLayout,
GrVkImage* dstImage,
VkImageLayout dstLayout,
uint32_t copyRegionCount,
const VkImageCopy* copyRegions);
void blitImage(const GrVkGpu* gpu,
const GrManagedResource* srcResource,
VkImage srcImage,
VkImageLayout srcLayout,
const GrManagedResource* dstResource,
VkImage dstImage,
VkImageLayout dstLayout,
uint32_t blitRegionCount,
const VkImageBlit* blitRegions,
VkFilter filter);
void blitImage(const GrVkGpu* gpu,
const GrVkImage& srcImage,
const GrVkImage& dstImage,
uint32_t blitRegionCount,
const VkImageBlit* blitRegions,
VkFilter filter);
void copyImageToBuffer(const GrVkGpu* gpu,
GrVkImage* srcImage,
VkImageLayout srcLayout,
GrVkTransferBuffer* dstBuffer,
uint32_t copyRegionCount,
const VkBufferImageCopy* copyRegions);
void copyBufferToImage(const GrVkGpu* gpu,
GrVkTransferBuffer* srcBuffer,
GrVkImage* dstImage,
VkImageLayout dstLayout,
uint32_t copyRegionCount,
const VkBufferImageCopy* copyRegions);
void copyBuffer(GrVkGpu* gpu,
GrVkBuffer* srcBuffer,
GrVkBuffer* dstBuffer,
uint32_t regionCount,
const VkBufferCopy* regions);
void updateBuffer(GrVkGpu* gpu,
GrVkBuffer* dstBuffer,
VkDeviceSize dstOffset,
VkDeviceSize dataSize,
const void* data);
void resolveImage(GrVkGpu* gpu,
const GrVkImage& srcImage,
const GrVkImage& dstImage,
uint32_t regionCount,
const VkImageResolve* regions);
bool submitToQueue(GrVkGpu* gpu, VkQueue queue,
SkTArray<GrVkSemaphore::Resource*>& signalSemaphores,
SkTArray<GrVkSemaphore::Resource*>& waitSemaphores);
void forceSync(GrVkGpu* gpu);
bool finished(GrVkGpu* gpu);
void addFinishedProc(sk_sp<GrRefCntedCallback> finishedProc);
void callFinishedProcs() {
fFinishedProcs.reset();
}
void recycleSecondaryCommandBuffers(GrVkCommandPool* cmdPool);
private:
explicit GrVkPrimaryCommandBuffer(VkCommandBuffer cmdBuffer)
: INHERITED(cmdBuffer)
, fSubmitFence(VK_NULL_HANDLE) {}
void onFreeGPUData(const GrVkGpu* gpu) const override;
void onReleaseResources() override;
SkTArray<std::unique_ptr<GrVkSecondaryCommandBuffer>, true> fSecondaryCommandBuffers;
VkFence fSubmitFence;
SkTArray<sk_sp<GrRefCntedCallback>> fFinishedProcs;
using INHERITED = GrVkCommandBuffer;
};
class GrVkSecondaryCommandBuffer : public GrVkCommandBuffer {
public:
static GrVkSecondaryCommandBuffer* Create(GrVkGpu* gpu, GrVkCommandPool* cmdPool);
// Used for wrapping an external secondary command buffer.
static GrVkSecondaryCommandBuffer* Create(VkCommandBuffer externalSecondaryCB);
void begin(GrVkGpu* gpu, const GrVkFramebuffer* framebuffer,
const GrVkRenderPass* compatibleRenderPass);
void end(GrVkGpu* gpu);
void recycle(GrVkCommandPool* cmdPool);
VkCommandBuffer vkCommandBuffer() { return fCmdBuffer; }
private:
explicit GrVkSecondaryCommandBuffer(VkCommandBuffer cmdBuffer, bool isWrapped)
: INHERITED(cmdBuffer, isWrapped) {}
void onFreeGPUData(const GrVkGpu* gpu) const override {}
// Used for accessing fIsActive (on GrVkCommandBuffer)
friend class GrVkPrimaryCommandBuffer;
using INHERITED = GrVkCommandBuffer;
};
#endif