blob: 5ff987e0adfd37705048bfbe2f68644421c8a4a6 [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkDeferredCanvas.h"
#include "SkChunkAlloc.h"
#include "SkColorFilter.h"
#include "SkDevice.h"
#include "SkDrawFilter.h"
#include "SkGPipe.h"
#include "SkImage_Base.h"
#include "SkPaint.h"
#include "SkPaintPriv.h"
#include "SkRRect.h"
#include "SkShader.h"
#include "SkSurface.h"
enum {
// Deferred canvas will auto-flush when recording reaches this limit
kDefaultMaxRecordingStorageBytes = 64*1024*1024,
kDeferredCanvasBitmapSizeThreshold = ~0U, // Disables this feature
kNoSaveLayerIndex = -1,
};
enum PlaybackMode {
kNormal_PlaybackMode,
kSilent_PlaybackMode,
};
static uint64_t image_area(const SkImage* image) {
return sk_64_mul(image->width(), image->height());
}
// HACK -- see crbug.com/485243
//
// Work around case where Blink gives us an image, but will "mutate" it (by changing its contents
// directly using webgl). Until that is fixed at the call-site, we treat gpu-backed-images as
// mutable for now (at least for the purposes of deferred canvas)
//
static bool should_draw_gpu_image_immediately(const SkImage* image) {
return as_IB(image)->getTexture() != NULL;
}
static bool should_draw_immediately(const SkBitmap* bitmap, const SkImage* image,
const SkPaint* paint, size_t bitmapSizeThreshold) {
if (bitmap && ((bitmap->getTexture() && !bitmap->isImmutable()) ||
(bitmap->getSize() > bitmapSizeThreshold))) {
return true;
}
if (image) {
if (should_draw_gpu_image_immediately(image) || image_area(image) > bitmapSizeThreshold) {
return true;
}
}
if (paint) {
SkShader* shader = paint->getShader();
// Here we detect the case where the shader is an SkBitmapProcShader
// with a gpu texture attached. Checking this without RTTI
// requires making the assumption that only gradient shaders
// and SkBitmapProcShader implement asABitmap(). The following
// code may need to be revised if that assumption is ever broken.
if (shader && !shader->asAGradient(NULL)) {
SkBitmap bm;
if (shader->asABitmap(&bm, NULL, NULL) &&
bm.getTexture()) {
return true;
}
}
}
return false;
}
//-----------------------------------------------------------------------------
// DeferredPipeController
//-----------------------------------------------------------------------------
class DeferredPipeController : public SkGPipeController {
public:
DeferredPipeController();
void setPlaybackCanvas(SkCanvas*);
virtual ~DeferredPipeController();
void* requestBlock(size_t minRequest, size_t* actual) override;
void notifyWritten(size_t bytes) override;
void playback(bool silent);
bool hasPendingCommands() const { return fAllocator.totalUsed() != 0; }
size_t storageAllocatedForRecording() const { return fAllocator.totalCapacity(); }
private:
enum {
kMinBlockSize = 4096
};
struct PipeBlock {
PipeBlock(void* block, size_t size) { fBlock = block, fSize = size; }
void* fBlock;
size_t fSize;
};
void* fBlock;
size_t fBytesWritten;
SkChunkAlloc fAllocator;
SkTDArray<PipeBlock> fBlockList;
SkGPipeReader fReader;
};
DeferredPipeController::DeferredPipeController() :
fAllocator(kMinBlockSize) {
fBlock = NULL;
fBytesWritten = 0;
}
DeferredPipeController::~DeferredPipeController() {
fAllocator.reset();
}
void DeferredPipeController::setPlaybackCanvas(SkCanvas* canvas) {
fReader.setCanvas(canvas);
}
void* DeferredPipeController::requestBlock(size_t minRequest, size_t *actual) {
if (fBlock) {
// Save the previous block for later
PipeBlock previousBloc(fBlock, fBytesWritten);
fBlockList.push(previousBloc);
}
size_t blockSize = SkTMax<size_t>(minRequest, kMinBlockSize);
fBlock = fAllocator.allocThrow(blockSize);
fBytesWritten = 0;
*actual = blockSize;
return fBlock;
}
void DeferredPipeController::notifyWritten(size_t bytes) {
fBytesWritten += bytes;
}
void DeferredPipeController::playback(bool silent) {
uint32_t flags = silent ? SkGPipeReader::kSilent_PlaybackFlag : 0;
for (int currentBlock = 0; currentBlock < fBlockList.count(); currentBlock++ ) {
fReader.playback(fBlockList[currentBlock].fBlock, fBlockList[currentBlock].fSize,
flags);
}
fBlockList.reset();
if (fBlock) {
fReader.playback(fBlock, fBytesWritten, flags);
fBlock = NULL;
}
// Release all allocated blocks
fAllocator.reset();
this->purgeCaches();
}
//-----------------------------------------------------------------------------
// SkDeferredDevice
//-----------------------------------------------------------------------------
class SkDeferredDevice : public SkBaseDevice {
public:
explicit SkDeferredDevice(SkSurface* surface);
~SkDeferredDevice();
void setNotificationClient(SkDeferredCanvas::NotificationClient* notificationClient);
SkCanvas* recordingCanvas();
SkCanvas* immediateCanvas() const {return fImmediateCanvas;}
SkBaseDevice* immediateDevice() const {return fImmediateCanvas->getTopDevice();}
SkImage* newImageSnapshot();
void setSurface(SkSurface* surface);
bool isFreshFrame();
bool hasPendingCommands();
size_t storageAllocatedForRecording() const;
size_t freeMemoryIfPossible(size_t bytesToFree);
void flushPendingCommands(PlaybackMode);
void skipPendingCommands();
void setMaxRecordingStorage(size_t);
void recordedDrawCommand();
void setIsDrawingToLayer(bool value) {fIsDrawingToLayer = value;}
SkImageInfo imageInfo() const override;
GrRenderTarget* accessRenderTarget() override;
SkBaseDevice* onCreateDevice(const CreateInfo&, const SkPaint*) override;
SkSurface* newSurface(const SkImageInfo&, const SkSurfaceProps&) override;
protected:
const SkBitmap& onAccessBitmap() override;
bool onReadPixels(const SkImageInfo&, void*, size_t, int x, int y) override;
bool onWritePixels(const SkImageInfo&, const void*, size_t, int x, int y) override;
// None of the following drawing methods should ever get called on the
// deferred device
void drawPaint(const SkDraw&, const SkPaint& paint) override
{SkASSERT(0);}
void drawPoints(const SkDraw&, SkCanvas::PointMode mode,
size_t count, const SkPoint[],
const SkPaint& paint) override
{SkASSERT(0);}
void drawRect(const SkDraw&, const SkRect& r,
const SkPaint& paint) override
{SkASSERT(0);}
void drawOval(const SkDraw&, const SkRect&, const SkPaint&) override
{SkASSERT(0);}
void drawRRect(const SkDraw&, const SkRRect& rr,
const SkPaint& paint) override
{SkASSERT(0);}
void drawPath(const SkDraw&, const SkPath& path,
const SkPaint& paint,
const SkMatrix* prePathMatrix = NULL,
bool pathIsMutable = false) override
{SkASSERT(0);}
void drawBitmap(const SkDraw&, const SkBitmap& bitmap,
const SkMatrix& matrix, const SkPaint& paint) override
{SkASSERT(0);}
void drawBitmapRect(const SkDraw&, const SkBitmap&, const SkRect*,
const SkRect&, const SkPaint&,
SK_VIRTUAL_CONSTRAINT_TYPE) override
{SkASSERT(0);}
void drawSprite(const SkDraw&, const SkBitmap& bitmap,
int x, int y, const SkPaint& paint) override
{SkASSERT(0);}
void drawImage(const SkDraw&, const SkImage*, SkScalar, SkScalar, const SkPaint&) override
{SkASSERT(0);}
void drawImageRect(const SkDraw&, const SkImage*, const SkRect*, const SkRect&,
const SkPaint&, SkCanvas::SrcRectConstraint) override
{SkASSERT(0);}
void drawImageNine(const SkDraw&, const SkImage*, const SkIRect&, const SkRect&,
const SkPaint&) override
{SkASSERT(0);}
void drawText(const SkDraw&, const void* text, size_t len,
SkScalar x, SkScalar y, const SkPaint& paint) override
{SkASSERT(0);}
void drawPosText(const SkDraw&, const void* text, size_t len,
const SkScalar pos[], int scalarsPerPos,
const SkPoint& offset, const SkPaint& paint) override
{SkASSERT(0);}
void drawTextOnPath(const SkDraw&, const void* text,
size_t len, const SkPath& path,
const SkMatrix* matrix,
const SkPaint& paint) override
{SkASSERT(0);}
void drawVertices(const SkDraw&, SkCanvas::VertexMode,
int vertexCount, const SkPoint verts[],
const SkPoint texs[], const SkColor colors[],
SkXfermode* xmode, const uint16_t indices[],
int indexCount, const SkPaint& paint) override
{SkASSERT(0);}
void drawPatch(const SkDraw&, const SkPoint cubics[12], const SkColor colors[4],
const SkPoint texCoords[4], SkXfermode* xmode,
const SkPaint& paint) override
{SkASSERT(0);}
void drawAtlas(const SkDraw&, const SkImage* atlas, const SkRSXform[], const SkRect[],
const SkColor[], int count, SkXfermode::Mode, const SkPaint&) override
{SkASSERT(0);}
void drawDevice(const SkDraw&, SkBaseDevice*, int x, int y,
const SkPaint&) override
{SkASSERT(0);}
bool canHandleImageFilter(const SkImageFilter*) override {
return false;
}
bool filterImage(const SkImageFilter*, const SkBitmap&,
const SkImageFilter::Context&, SkBitmap*, SkIPoint*) override {
return false;
}
private:
void flush() override;
void replaceBitmapBackendForRasterSurface(const SkBitmap&) override {}
void beginRecording();
void init();
void aboutToDraw();
void prepareForImmediatePixelWrite();
DeferredPipeController fPipeController;
SkGPipeWriter fPipeWriter;
SkCanvas* fImmediateCanvas;
SkCanvas* fRecordingCanvas;
SkSurface* fSurface;
SkDeferredCanvas::NotificationClient* fNotificationClient;
bool fFreshFrame;
bool fCanDiscardCanvasContents;
bool fIsDrawingToLayer;
size_t fMaxRecordingStorageBytes;
size_t fPreviousStorageAllocated;
typedef SkBaseDevice INHERITED;
};
SkDeferredDevice::SkDeferredDevice(SkSurface* surface)
: INHERITED(surface->props()) {
fMaxRecordingStorageBytes = kDefaultMaxRecordingStorageBytes;
fNotificationClient = NULL;
fImmediateCanvas = NULL;
fSurface = NULL;
this->setSurface(surface);
this->init();
}
void SkDeferredDevice::setSurface(SkSurface* surface) {
SkRefCnt_SafeAssign(fImmediateCanvas, surface->getCanvas());
SkRefCnt_SafeAssign(fSurface, surface);
fPipeController.setPlaybackCanvas(fImmediateCanvas);
}
void SkDeferredDevice::init() {
fRecordingCanvas = NULL;
fFreshFrame = true;
fIsDrawingToLayer = false;
fCanDiscardCanvasContents = false;
fPreviousStorageAllocated = 0;
fMaxRecordingStorageBytes = kDefaultMaxRecordingStorageBytes;
fNotificationClient = NULL;
this->beginRecording();
}
SkDeferredDevice::~SkDeferredDevice() {
this->flushPendingCommands(kSilent_PlaybackMode);
SkSafeUnref(fImmediateCanvas);
SkSafeUnref(fSurface);
}
void SkDeferredDevice::setMaxRecordingStorage(size_t maxStorage) {
fMaxRecordingStorageBytes = maxStorage;
this->recordingCanvas(); // Accessing the recording canvas applies the new limit.
}
void SkDeferredDevice::beginRecording() {
SkASSERT(NULL == fRecordingCanvas);
fRecordingCanvas = fPipeWriter.startRecording(&fPipeController, 0,
immediateDevice()->width(), immediateDevice()->height());
}
void SkDeferredDevice::setNotificationClient(
SkDeferredCanvas::NotificationClient* notificationClient) {
fNotificationClient = notificationClient;
}
void SkDeferredDevice::skipPendingCommands() {
if (!fIsDrawingToLayer) {
fCanDiscardCanvasContents = true;
if (fPipeController.hasPendingCommands()) {
fFreshFrame = true;
flushPendingCommands(kSilent_PlaybackMode);
}
}
}
bool SkDeferredDevice::isFreshFrame() {
bool ret = fFreshFrame;
fFreshFrame = false;
return ret;
}
bool SkDeferredDevice::hasPendingCommands() {
return fPipeController.hasPendingCommands();
}
void SkDeferredDevice::aboutToDraw() {
if (fNotificationClient) {
fNotificationClient->prepareForDraw();
}
if (fCanDiscardCanvasContents) {
if (fSurface) {
fSurface->notifyContentWillChange(SkSurface::kDiscard_ContentChangeMode);
}
fCanDiscardCanvasContents = false;
}
}
void SkDeferredDevice::flushPendingCommands(PlaybackMode playbackMode) {
if (!fPipeController.hasPendingCommands()) {
return;
}
if (playbackMode == kNormal_PlaybackMode) {
aboutToDraw();
}
fPipeWriter.flushRecording(true);
fPipeController.playback(kSilent_PlaybackMode == playbackMode);
if (fNotificationClient) {
if (playbackMode == kSilent_PlaybackMode) {
fNotificationClient->skippedPendingDrawCommands();
} else {
fNotificationClient->flushedDrawCommands();
}
}
fPreviousStorageAllocated = storageAllocatedForRecording();
}
void SkDeferredDevice::flush() {
this->flushPendingCommands(kNormal_PlaybackMode);
fImmediateCanvas->flush();
}
size_t SkDeferredDevice::freeMemoryIfPossible(size_t bytesToFree) {
size_t val = fPipeWriter.freeMemoryIfPossible(bytesToFree);
fPreviousStorageAllocated = storageAllocatedForRecording();
return val;
}
size_t SkDeferredDevice::storageAllocatedForRecording() const {
return (fPipeController.storageAllocatedForRecording()
+ fPipeWriter.storageAllocatedForRecording());
}
void SkDeferredDevice::recordedDrawCommand() {
size_t storageAllocated = this->storageAllocatedForRecording();
if (storageAllocated > fMaxRecordingStorageBytes) {
// First, attempt to reduce cache without flushing
size_t tryFree = storageAllocated - fMaxRecordingStorageBytes;
if (this->freeMemoryIfPossible(tryFree) < tryFree) {
// Flush is necessary to free more space.
this->flushPendingCommands(kNormal_PlaybackMode);
// Free as much as possible to avoid oscillating around fMaxRecordingStorageBytes
// which could cause a high flushing frequency.
this->freeMemoryIfPossible(~0U);
}
storageAllocated = this->storageAllocatedForRecording();
}
if (fNotificationClient &&
storageAllocated != fPreviousStorageAllocated) {
fPreviousStorageAllocated = storageAllocated;
fNotificationClient->storageAllocatedForRecordingChanged(storageAllocated);
}
}
SkCanvas* SkDeferredDevice::recordingCanvas() {
return fRecordingCanvas;
}
SkImage* SkDeferredDevice::newImageSnapshot() {
this->flush();
return fSurface ? fSurface->newImageSnapshot() : NULL;
}
SkImageInfo SkDeferredDevice::imageInfo() const {
return immediateDevice()->imageInfo();
}
GrRenderTarget* SkDeferredDevice::accessRenderTarget() {
this->flushPendingCommands(kNormal_PlaybackMode);
return immediateDevice()->accessRenderTarget();
}
void SkDeferredDevice::prepareForImmediatePixelWrite() {
// The purpose of the following code is to make sure commands are flushed, that
// aboutToDraw() is called and that notifyContentWillChange is called, without
// calling anything redundantly.
if (fPipeController.hasPendingCommands()) {
this->flushPendingCommands(kNormal_PlaybackMode);
} else {
bool mustNotifyDirectly = !fCanDiscardCanvasContents;
this->aboutToDraw();
if (mustNotifyDirectly) {
fSurface->notifyContentWillChange(SkSurface::kRetain_ContentChangeMode);
}
}
fImmediateCanvas->flush();
}
bool SkDeferredDevice::onWritePixels(const SkImageInfo& info, const void* pixels, size_t rowBytes,
int x, int y) {
SkASSERT(x >= 0 && y >= 0);
SkASSERT(x + info.width() <= width());
SkASSERT(y + info.height() <= height());
const SkImageInfo deviceInfo = this->imageInfo();
if (info.width() == deviceInfo.width() && info.height() == deviceInfo.height()) {
this->skipPendingCommands();
} else {
this->flushPendingCommands(kNormal_PlaybackMode);
}
this->prepareForImmediatePixelWrite();
return immediateDevice()->onWritePixels(info, pixels, rowBytes, x, y);
}
const SkBitmap& SkDeferredDevice::onAccessBitmap() {
this->flushPendingCommands(kNormal_PlaybackMode);
return immediateDevice()->accessBitmap(false);
}
SkBaseDevice* SkDeferredDevice::onCreateDevice(const CreateInfo& cinfo, const SkPaint* layerPaint) {
// Create a compatible non-deferred device.
// We do not create a deferred device because we know the new device
// will not be used with a deferred canvas (there is no API for that).
// And connecting a SkDeferredDevice to non-deferred canvas can result
// in unpredictable behavior.
return this->immediateDevice()->onCreateDevice(cinfo, layerPaint);
}
SkSurface* SkDeferredDevice::newSurface(const SkImageInfo& info, const SkSurfaceProps& props) {
return this->immediateDevice()->newSurface(info, props);
}
bool SkDeferredDevice::onReadPixels(const SkImageInfo& info, void* pixels, size_t rowBytes,
int x, int y) {
this->flushPendingCommands(kNormal_PlaybackMode);
return fImmediateCanvas->readPixels(info, pixels, rowBytes, x, y);
}
class AutoImmediateDrawIfNeeded {
public:
AutoImmediateDrawIfNeeded(SkDeferredCanvas& canvas, const SkBitmap* bitmap,
const SkPaint* paint) {
this->init(canvas, bitmap, NULL, paint);
}
AutoImmediateDrawIfNeeded(SkDeferredCanvas& canvas, const SkImage* image,
const SkPaint* paint) {
this->init(canvas, NULL, image, paint);
}
AutoImmediateDrawIfNeeded(SkDeferredCanvas& canvas, const SkPaint* paint) {
this->init(canvas, NULL, NULL, paint);
}
~AutoImmediateDrawIfNeeded() {
if (fCanvas) {
fCanvas->setDeferredDrawing(true);
}
}
private:
void init(SkDeferredCanvas& canvas, const SkBitmap* bitmap, const SkImage* image,
const SkPaint* paint) {
if (canvas.isDeferredDrawing() &&
should_draw_immediately(bitmap, image, paint, canvas.getBitmapSizeThreshold())) {
canvas.setDeferredDrawing(false);
fCanvas = &canvas;
} else {
fCanvas = NULL;
}
}
SkDeferredCanvas* fCanvas;
};
SkDeferredCanvas* SkDeferredCanvas::Create(SkSurface* surface) {
if (!surface) {
return NULL;
}
SkAutoTUnref<SkDeferredDevice> deferredDevice(SkNEW_ARGS(SkDeferredDevice, (surface)));
return SkNEW_ARGS(SkDeferredCanvas, (deferredDevice));
}
SkDeferredCanvas::SkDeferredCanvas(SkDeferredDevice* device) : SkCanvas (device) {
this->init();
}
void SkDeferredCanvas::init() {
fBitmapSizeThreshold = kDeferredCanvasBitmapSizeThreshold;
fDeferredDrawing = true; // On by default
fCachedCanvasSize.setEmpty();
fCachedCanvasSizeDirty = true;
fSaveLevel = 0;
fFirstSaveLayerIndex = kNoSaveLayerIndex;
}
void SkDeferredCanvas::setMaxRecordingStorage(size_t maxStorage) {
this->validate();
this->getDeferredDevice()->setMaxRecordingStorage(maxStorage);
}
size_t SkDeferredCanvas::storageAllocatedForRecording() const {
return this->getDeferredDevice()->storageAllocatedForRecording();
}
size_t SkDeferredCanvas::freeMemoryIfPossible(size_t bytesToFree) {
return this->getDeferredDevice()->freeMemoryIfPossible(bytesToFree);
}
void SkDeferredCanvas::setBitmapSizeThreshold(size_t sizeThreshold) {
fBitmapSizeThreshold = sizeThreshold;
}
void SkDeferredCanvas::recordedDrawCommand() {
if (fDeferredDrawing) {
this->getDeferredDevice()->recordedDrawCommand();
}
}
void SkDeferredCanvas::validate() const {
SkASSERT(this->getDevice());
}
SkCanvas* SkDeferredCanvas::drawingCanvas() const {
this->validate();
return fDeferredDrawing ? this->getDeferredDevice()->recordingCanvas() :
this->getDeferredDevice()->immediateCanvas();
}
SkCanvas* SkDeferredCanvas::immediateCanvas() const {
this->validate();
return this->getDeferredDevice()->immediateCanvas();
}
SkDeferredDevice* SkDeferredCanvas::getDeferredDevice() const {
return static_cast<SkDeferredDevice*>(this->getDevice());
}
void SkDeferredCanvas::setDeferredDrawing(bool val) {
this->validate(); // Must set device before calling this method
if (val != fDeferredDrawing) {
if (fDeferredDrawing) {
// Going live.
this->getDeferredDevice()->flushPendingCommands(kNormal_PlaybackMode);
}
fDeferredDrawing = val;
}
}
bool SkDeferredCanvas::isDeferredDrawing() const {
return fDeferredDrawing;
}
bool SkDeferredCanvas::isFreshFrame() const {
return this->getDeferredDevice()->isFreshFrame();
}
SkISize SkDeferredCanvas::getCanvasSize() const {
if (fCachedCanvasSizeDirty) {
fCachedCanvasSize = this->getBaseLayerSize();
fCachedCanvasSizeDirty = false;
}
return fCachedCanvasSize;
}
bool SkDeferredCanvas::hasPendingCommands() const {
return this->getDeferredDevice()->hasPendingCommands();
}
void SkDeferredCanvas::silentFlush() {
if (fDeferredDrawing) {
this->getDeferredDevice()->flushPendingCommands(kSilent_PlaybackMode);
}
}
SkDeferredCanvas::~SkDeferredCanvas() {
}
SkSurface* SkDeferredCanvas::setSurface(SkSurface* surface) {
SkDeferredDevice* deferredDevice = this->getDeferredDevice();
SkASSERT(deferredDevice);
// By swapping the surface into the existing device, we preserve
// all pending commands, which can help to seamlessly recover from
// a lost accelerated graphics context.
deferredDevice->setSurface(surface);
fCachedCanvasSizeDirty = true;
return surface;
}
SkDeferredCanvas::NotificationClient* SkDeferredCanvas::setNotificationClient(
NotificationClient* notificationClient) {
SkDeferredDevice* deferredDevice = this->getDeferredDevice();
SkASSERT(deferredDevice);
if (deferredDevice) {
deferredDevice->setNotificationClient(notificationClient);
}
return notificationClient;
}
SkImage* SkDeferredCanvas::newImageSnapshot() {
SkDeferredDevice* deferredDevice = this->getDeferredDevice();
SkASSERT(deferredDevice);
return deferredDevice ? deferredDevice->newImageSnapshot() : NULL;
}
bool SkDeferredCanvas::isFullFrame(const SkRect* rect,
const SkPaint* paint) const {
SkCanvas* canvas = this->drawingCanvas();
SkISize canvasSize = this->getCanvasSize();
if (rect) {
if (!canvas->getTotalMatrix().rectStaysRect()) {
return false; // conservative
}
SkRect transformedRect;
canvas->getTotalMatrix().mapRect(&transformedRect, *rect);
if (paint) {
SkPaint::Style paintStyle = paint->getStyle();
if (!(paintStyle == SkPaint::kFill_Style ||
paintStyle == SkPaint::kStrokeAndFill_Style)) {
return false;
}
if (paint->getMaskFilter() || paint->getLooper()
|| paint->getPathEffect() || paint->getImageFilter()) {
return false; // conservative
}
}
// The following test holds with AA enabled, and is conservative
// by a 0.5 pixel margin with AA disabled
if (transformedRect.fLeft > SkIntToScalar(0) ||
transformedRect.fTop > SkIntToScalar(0) ||
transformedRect.fRight < SkIntToScalar(canvasSize.fWidth) ||
transformedRect.fBottom < SkIntToScalar(canvasSize.fHeight)) {
return false;
}
}
return this->getClipStack()->quickContains(SkRect::MakeXYWH(0, 0,
SkIntToScalar(canvasSize.fWidth), SkIntToScalar(canvasSize.fHeight)));
}
void SkDeferredCanvas::willSave() {
fSaveLevel++;
this->drawingCanvas()->save();
this->recordedDrawCommand();
this->INHERITED::willSave();
}
SkCanvas::SaveLayerStrategy SkDeferredCanvas::willSaveLayer(const SkRect* bounds,
const SkPaint* paint, SaveFlags flags) {
fSaveLevel++;
if (fFirstSaveLayerIndex == kNoSaveLayerIndex) {
fFirstSaveLayerIndex = fSaveLevel;
this->getDeferredDevice()->setIsDrawingToLayer(true);
}
this->drawingCanvas()->saveLayer(bounds, paint, flags);
this->recordedDrawCommand();
this->INHERITED::willSaveLayer(bounds, paint, flags);
// No need for a full layer.
return kNoLayer_SaveLayerStrategy;
}
void SkDeferredCanvas::willRestore() {
SkASSERT(fFirstSaveLayerIndex == kNoSaveLayerIndex || fFirstSaveLayerIndex <= fSaveLevel);
if (fFirstSaveLayerIndex == fSaveLevel) {
fFirstSaveLayerIndex = kNoSaveLayerIndex;
this->getDeferredDevice()->setIsDrawingToLayer(false);
}
fSaveLevel--;
this->drawingCanvas()->restore();
this->recordedDrawCommand();
this->INHERITED::willRestore();
}
void SkDeferredCanvas::didConcat(const SkMatrix& matrix) {
this->drawingCanvas()->concat(matrix);
this->recordedDrawCommand();
this->INHERITED::didConcat(matrix);
}
void SkDeferredCanvas::didSetMatrix(const SkMatrix& matrix) {
this->drawingCanvas()->setMatrix(matrix);
this->recordedDrawCommand();
this->INHERITED::didSetMatrix(matrix);
}
void SkDeferredCanvas::onClipRect(const SkRect& rect,
SkRegion::Op op,
ClipEdgeStyle edgeStyle) {
this->drawingCanvas()->clipRect(rect, op, kSoft_ClipEdgeStyle == edgeStyle);
this->INHERITED::onClipRect(rect, op, edgeStyle);
this->recordedDrawCommand();
}
void SkDeferredCanvas::onClipRRect(const SkRRect& rrect,
SkRegion::Op op,
ClipEdgeStyle edgeStyle) {
this->drawingCanvas()->clipRRect(rrect, op, kSoft_ClipEdgeStyle == edgeStyle);
this->INHERITED::onClipRRect(rrect, op, edgeStyle);
this->recordedDrawCommand();
}
void SkDeferredCanvas::onClipPath(const SkPath& path,
SkRegion::Op op,
ClipEdgeStyle edgeStyle) {
this->drawingCanvas()->clipPath(path, op, kSoft_ClipEdgeStyle == edgeStyle);
this->INHERITED::onClipPath(path, op, edgeStyle);
this->recordedDrawCommand();
}
void SkDeferredCanvas::onClipRegion(const SkRegion& deviceRgn, SkRegion::Op op) {
this->drawingCanvas()->clipRegion(deviceRgn, op);
this->INHERITED::onClipRegion(deviceRgn, op);
this->recordedDrawCommand();
}
void SkDeferredCanvas::onDrawPaint(const SkPaint& paint) {
if (fDeferredDrawing && this->isFullFrame(NULL, &paint) && SkPaintPriv::Overwrites(paint)) {
this->getDeferredDevice()->skipPendingCommands();
}
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawPaint(paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::onDrawPoints(PointMode mode, size_t count,
const SkPoint pts[], const SkPaint& paint) {
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawPoints(mode, count, pts, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::onDrawOval(const SkRect& rect, const SkPaint& paint) {
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawOval(rect, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::onDrawRect(const SkRect& rect, const SkPaint& paint) {
if (fDeferredDrawing && this->isFullFrame(&rect, &paint) && SkPaintPriv::Overwrites(paint)) {
this->getDeferredDevice()->skipPendingCommands();
}
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawRect(rect, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::onDrawRRect(const SkRRect& rrect, const SkPaint& paint) {
if (rrect.isRect()) {
this->SkDeferredCanvas::drawRect(rrect.getBounds(), paint);
} else if (rrect.isOval()) {
this->SkDeferredCanvas::drawOval(rrect.getBounds(), paint);
} else {
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawRRect(rrect, paint);
this->recordedDrawCommand();
}
}
void SkDeferredCanvas::onDrawDRRect(const SkRRect& outer, const SkRRect& inner,
const SkPaint& paint) {
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawDRRect(outer, inner, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::onDrawPath(const SkPath& path, const SkPaint& paint) {
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawPath(path, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::onDrawBitmap(const SkBitmap& bitmap, SkScalar left,
SkScalar top, const SkPaint* paint) {
SkRect bitmapRect = SkRect::MakeXYWH(left, top,
SkIntToScalar(bitmap.width()), SkIntToScalar(bitmap.height()));
if (fDeferredDrawing &&
this->isFullFrame(&bitmapRect, paint) &&
SkPaintPriv::Overwrites(bitmap, paint)) {
this->getDeferredDevice()->skipPendingCommands();
}
AutoImmediateDrawIfNeeded autoDraw(*this, &bitmap, paint);
this->drawingCanvas()->drawBitmap(bitmap, left, top, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::onDrawBitmapRect(const SkBitmap& bitmap, const SkRect* src,
const SkRect& dst, const SkPaint* paint,
SK_VIRTUAL_CONSTRAINT_TYPE constraint) {
if (fDeferredDrawing &&
this->isFullFrame(&dst, paint) &&
SkPaintPriv::Overwrites(bitmap, paint)) {
this->getDeferredDevice()->skipPendingCommands();
}
AutoImmediateDrawIfNeeded autoDraw(*this, &bitmap, paint);
this->drawingCanvas()->drawBitmapRect(bitmap, src, dst, paint, (SrcRectConstraint)constraint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::onDrawImage(const SkImage* image, SkScalar x, SkScalar y,
const SkPaint* paint) {
SkRect bounds = SkRect::MakeXYWH(x, y,
SkIntToScalar(image->width()), SkIntToScalar(image->height()));
if (fDeferredDrawing &&
this->isFullFrame(&bounds, paint) &&
SkPaintPriv::Overwrites(image, paint)) {
this->getDeferredDevice()->skipPendingCommands();
}
AutoImmediateDrawIfNeeded autoDraw(*this, image, paint);
this->drawingCanvas()->drawImage(image, x, y, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::onDrawImageRect(const SkImage* image, const SkRect* src, const SkRect& dst,
const SkPaint* paint SRC_RECT_CONSTRAINT_PARAM(constraint)) {
if (fDeferredDrawing &&
this->isFullFrame(&dst, paint) &&
SkPaintPriv::Overwrites(image, paint)) {
this->getDeferredDevice()->skipPendingCommands();
}
AutoImmediateDrawIfNeeded autoDraw(*this, image, paint);
this->drawingCanvas()->drawImageRect(image, src, dst, paint
SRC_RECT_CONSTRAINT_ARG(constraint));
this->recordedDrawCommand();
}
void SkDeferredCanvas::onDrawImageNine(const SkImage* image, const SkIRect& center,
const SkRect& dst, const SkPaint* paint) {
if (fDeferredDrawing &&
this->isFullFrame(&dst, paint) &&
SkPaintPriv::Overwrites(image, paint)) {
this->getDeferredDevice()->skipPendingCommands();
}
AutoImmediateDrawIfNeeded autoDraw(*this, image, paint);
this->drawingCanvas()->drawImageNine(image, center, dst, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::onDrawBitmapNine(const SkBitmap& bitmap,
const SkIRect& center, const SkRect& dst,
const SkPaint* paint) {
// TODO: reset recording canvas if paint+bitmap is opaque and clip rect
// covers canvas entirely and dst covers canvas entirely
AutoImmediateDrawIfNeeded autoDraw(*this, &bitmap, paint);
this->drawingCanvas()->drawBitmapNine(bitmap, center, dst, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::onDrawSprite(const SkBitmap& bitmap, int left, int top,
const SkPaint* paint) {
SkRect bitmapRect = SkRect::MakeXYWH(
SkIntToScalar(left),
SkIntToScalar(top),
SkIntToScalar(bitmap.width()),
SkIntToScalar(bitmap.height()));
if (fDeferredDrawing &&
this->isFullFrame(&bitmapRect, paint) &&
SkPaintPriv::Overwrites(bitmap, paint)) {
this->getDeferredDevice()->skipPendingCommands();
}
AutoImmediateDrawIfNeeded autoDraw(*this, &bitmap, paint);
this->drawingCanvas()->drawSprite(bitmap, left, top, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::onDrawText(const void* text, size_t byteLength, SkScalar x, SkScalar y,
const SkPaint& paint) {
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawText(text, byteLength, x, y, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::onDrawPosText(const void* text, size_t byteLength, const SkPoint pos[],
const SkPaint& paint) {
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawPosText(text, byteLength, pos, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::onDrawPosTextH(const void* text, size_t byteLength, const SkScalar xpos[],
SkScalar constY, const SkPaint& paint) {
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawPosTextH(text, byteLength, xpos, constY, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::onDrawTextOnPath(const void* text, size_t byteLength, const SkPath& path,
const SkMatrix* matrix, const SkPaint& paint) {
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawTextOnPath(text, byteLength, path, matrix, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::onDrawTextBlob(const SkTextBlob* blob, SkScalar x, SkScalar y,
const SkPaint& paint) {
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawTextBlob(blob, x, y, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::onDrawPicture(const SkPicture* picture, const SkMatrix* matrix,
const SkPaint* paint) {
this->drawingCanvas()->drawPicture(picture, matrix, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::onDrawVertices(VertexMode vmode, int vertexCount,
const SkPoint vertices[],
const SkPoint texs[],
const SkColor colors[], SkXfermode* xmode,
const uint16_t indices[], int indexCount,
const SkPaint& paint) {
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawVertices(vmode, vertexCount, vertices, texs, colors, xmode,
indices, indexCount, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::onDrawPatch(const SkPoint cubics[12], const SkColor colors[4],
const SkPoint texCoords[4], SkXfermode* xmode,
const SkPaint& paint) {
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawPatch(cubics, colors, texCoords, xmode, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::onDrawAtlas(const SkImage* atlas, const SkRSXform xform[],
const SkRect tex[], const SkColor colors[], int count,
SkXfermode::Mode mode, const SkRect* cullRect,
const SkPaint* paint) {
AutoImmediateDrawIfNeeded autoDraw(*this, paint);
this->drawingCanvas()->drawAtlas(atlas, xform, tex, colors, count, mode, cullRect, paint);
this->recordedDrawCommand();
}
SkDrawFilter* SkDeferredCanvas::setDrawFilter(SkDrawFilter* filter) {
this->drawingCanvas()->setDrawFilter(filter);
this->INHERITED::setDrawFilter(filter);
this->recordedDrawCommand();
return filter;
}
SkCanvas* SkDeferredCanvas::canvasForDrawIter() {
return this->drawingCanvas();
}